-
作为一种持久性有机污染物(persistent organic pollutants,POPs)[1],多环芳烃(polycyclic aromatic hydrocarbons,PAHs)广泛存在于气、水、土壤、沉积物及动植物等环境介质中. 因其三致效应和内分泌干扰作用[2-3],备受关注[4-5]. 环境中PAHs的来源有自然源和人为源,而人为源是环境中PAHs的主要来源[6-7]. 因此,对环境中PAHs进行源识别不仅可有效控制污染源,而且是环境法医学判别和鉴定污染责任归属的第一步,可为环境法律诉讼提供相应的证据[8-9],是建立并完善生态损害赔偿制度的国家需求[10]. 然而,现有的生态环境损害赔偿评估方法中,缺少确定污染事件中污染物来源识别的标准方法. 因此,探索并建立环境污染事件中污染物源识别方法并使其标准化,兼具科研和实际意义.
本文拟通过归纳和总结1999年至今发表文献中有关环境中PAHs源识别方法的研究进展,分析各种源识别方法的优缺点,并结合本研究小组目前开展的相关研究工作,概述该研究领域新的研究动态,提出环境中PAHs源识别研究亟待解决的问题及今后可能的发展方向.
在污染责任主体认定中环境中多环芳烃源识别方法的研究进展
Research progress of source identification of polycyclic aromatic hydrocarbons in the identification of pollution liability subject
-
摘要:
环境污染事件中,污染源责任主体的认定对生态环境损害赔偿制度的实施至关重要. 本文以多环芳烃(polycyclic aromatic hydrocarbons,PAHs)为例,通过对现有环境中PAHs源识别所使用的比值法、指纹图谱法、热源指数法和稳定碳同位素法效果的分析、归纳、总结,结合最新研究进展,讨论了其今后的发展趋势,以期为建立适用于生态环境损害赔偿制度的环境法医学判别、鉴定污染源责任主体的技术方法提供参考.
Abstract:The identification of the responsible subject of pollution source is crucial to the implementation for the compensation of ecological environment damage in the environmental pollution events. Take polycyclic aromatic hydrocarbons (PAHs) as an example, some future trends were discussed by summarizing the source identification methods of PAHs in the environment, included diagnostic ratios, fingerprint, pyrogenic index and stable carbon isotope method, and combining with the latest research progress to support the establishment of technical method which was applicable to the environmental forensic and identification of the responsible subject of pollution source for the compensation of ecological environment damage.
-
表 1 PAHs化合物分析清单
Table 1. The analysis list of PAHs compound
PAHs 缩略词
AbbreviationPAH16[29] PAH34[30] PAH44[31] PAH50[31] 萘(Naphthalene) Nap √ √ √ √ Cl-萘(Cl-naphthalenes) C1N √ √ √ C2-萘(C2-naphthalenes) C2N √ √ √ C3-萘(C3-naphthalenes) C3N √ √ √ C4-萘(C4-naphthalenes) C4N √ √ √ 联苯(Biphenyl) Bip √ √ 苊烯(Acenaphthylene) Acl √ √ 苊(Acenaphthene) Ace √ √ √ √ 二苯并呋喃(Dibenzofuran) DBF √ √ √ √ 芴(Fluorene) Flu √ √ √ √ Cl-芴(Cl-fluorenes) C1F √ √ √ C2-芴(C2-fluorenes) C2F √ √ √ C3-芴(C3-fluorenes) C3F √ √ √ 蒽(Anthracene) Ant √ √ √ √ 菲(Phenanthrene) Phe √ √ √ √ C1-菲/蒽(C1-phenanthrenes/anthracenes) C1P/A √ √ √ C2-菲/蒽(C2-phenanthrenes/anthracenes) C2P/A √ √ √ C3-菲/蒽(C3-phenanthrenes/anthracenes) C3P/A √ √ √ C4-菲/蒽(C4-phenanthrenes/anthracenes) C4P/A √ √ √ 二苯并噻吩(Dibenzothiophene) DBT √ √ C1-二苯并噻吩(C1-dibenzothiophenes) C1DBT √ √ C2-二苯并噻吩(C2-dibenzothiophenes) C2DBT √ √ C3-二苯并噻吩(C3-dibenzothiophenes) C3DBT √ √ C4-二苯并噻吩(C4-dibenzothiophenes) C4DBT √ √ 荧蒽(Fluoranthen) Fla √ √ √ √ 芘(Pyrene) Pyr √ √ √ √ C1-荧蒽/芘(C1-fluoranthenes/pyrenes) C1F/P √ √ √ C2-荧蒽/芘(C2-fluoranthenes/pyrenes) C2F/P √ √ C3-荧蒽/芘(C3-fluoranthenes/pyrenes) C3F/P √ √ 苯并[a]蒽(Benz [a] anthracene) B[a]A √ √ 䓛(Chrysene) Chr √ √ √ √ Cl-䓛(Cl-chrysenes) C1C √ √ √ √ C2-䓛(C2-chrysenes) C2C √ √ √ C3-䓛(C3-chrysenes) C3C √ √ √ C4-䓛(C4-chrysenes) C4C √ √ √ 苯并[a]荧蒽(Benzo [a] fluoranthene) B[a]F √ √ √ 苯并[b]荧蒽(Benzo [b] fluoranthene) B[b]F √ √ √ √ 苯并[k]荧蒽(Benzo [k] fluoranthene) B[k]F √ √ √ √ 苯并[e]芘(Benzo [e] pyrene) B[e]P √ √ √ 苯并[a]芘(Benzo [a] pyrene) B[a]P √ √ √ √ 苝(Perylene) Per √ √ √ 茚并[1,2,3-c,d]芘(Indeno [1,2,3-c,d] pyrene) I[cd]P √ √ √ √ 二苯并[a,h]蒽(Dibenzo [a,h] anthracene) D[ah]A √ √ √ √ 苯并[g,h,i]苝(Benzo [g,h,i] perylene) B[ghi]P √ √ √ √ 二苯并[a,e]芘(Dibenzo [a,e] pyrene) D[ae]P √ 二苯并[a,h]芘(Dibenzo [a,h] pyrene) D[ah]P √ 二苯并[a,l]芘(Dibenzo [a,l] pyrene) D[al]P √ 二苯并[a,i]芘(Dibenzo [a,i] pyrene) D[ai]P √ 二苯并[a,e]荧蒽(Dibenzo [a,e] fluoranthene) D[ae]F √ 蒽嵌蒽(Anthanthrene) AnA √ 表 2 PAHs源识别方法在环境法医学中应用的优缺点
Table 2. The advantages and disadvantages of PAHs source identification in environmental forensics
方法名称
The name of method方法的优缺点
The advantages and disadvantages of methodPAHs比值法 方法较简单;PAHs从污染源释放到环境中,会受到风化、生物、物理、化学和生物等作用的影响,从而使PAHs比值发生变化. 同时,忽略了有助于判别PAHs来源的A-PAHs信息. PAHs指纹图谱法 可获得溢油样品详细的指纹图谱,为识别溢油污染源提供有力的法医学证据;但在许多情况下,特别是复杂的混合污染源或风化严重的样品和降解的油渣,单一的PAHs指纹图谱不能满足法医调查的目标和定量区分PAHs的来源. 热源指数法 该指标可作为明确区分热生成型PAHs和燃烧型PAHs的一般有效标准. 但该方法通常需与其他标准方法相结合来区分PAHs的来源. 稳定碳同位素法 是环境法医学调查分析的补充技术,为环境法医学PAHs源识别起着支持和确认作用. -
[1] LOHMANN R, BREIVIK K, DACHS J, et al. Global fate of POPs: Current and future research directions [J]. Environmental Pollution, 2007, 150: 150-165. doi: 10.1016/j.envpol.2007.06.051 [2] PARINOS C, GOGOU A, BOULOUBASSI I, et al. Sources and downward fluxes of polycyclic aromatic hydrocarbons in the open southwestern Black Sea [J]. Organic Geochemistry, 2013, 57: 65-75. doi: 10.1016/j.orggeochem.2013.01.007 [3] MANZETTI S. Polycyclic aromatic hydrocarbons in the environment: environmental fate and transformation [J]. Polycyclic Aromatic Compounds, 2013, 33: 311-330. doi: 10.1080/10406638.2013.781042 [4] KIM K H, JAHAN S A, KABIR E, et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects [J]. Environment International, 2013, 60: 71-80. doi: 10.1016/j.envint.2013.07.019 [5] LEMIEUX C L, LONG A S, LAMBERT I B, et al. Cancer risk assessment of polycyclic aromatic hydrocarbon contaminated soils determined using bioassayderived levels of benzo[a]pyrene equivalents [J]. Environmental Science & Technology, 2015, 49: 1797-1805. [6] WANG C H, WU S H, ZHOU S L, et al. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: concentration, source, spatial distribution, and potential human health risk [J]. Science of The Total Environment, 2015, 527: 375-383. [7] BUCZYNSKA A J, GEYPENS B, GRIEKEN R V, et al. Stable carbon isotopic ratio measurement of polycyclic aromatic hydrocarbons as a tool for source identification and apportionment-A review of analytical methodologies [J]. Talanta, 2013, 105: 435-450. doi: 10.1016/j.talanta.2012.10.075 [8] O'REILLY K T, PIETARI J, BOEHM P D. Parsing pyrogenic polycyclic aromatic hydrocarbons: Forensic chemistry, receptor models, and source control policy [J]. Integrated Environmental Assessment and Management, 2013, 10: 279-285. [9] WANG Z D, YANG C, PARROTT J L, et al. Forensic source differentiation of petrogenic, pyrogenic, and biogenic hydrocarbons in Canadian oil sands environmental samples [J]. Journal of Hazardous Materials, 2014, 271: 166-177. doi: 10.1016/j.jhazmat.2014.02.021 [10] 张红振, 曹东, 於方, 等. 环境损害评估: 国际制度及对中国的启示 [J]. 环境科学, 2013, 34: 1653-1666. ZHANG H Z, CAO D, YU F, et al. Environmental damage assessment: international regulations and revelation to China [J]. Environmental Science, 2013, 34: 1653-1666(in Chinese).
[11] ZHANG R, LI T, RUSSELL J, et al. Source apportionment of polycyclic aromatic hydrocarbons in continental shelf of the East China Sea with dual compound-specific isotopes (δ13C and δ2H) [J]. Science of the Total Environment, 2020, 704: 315. [12] CAI M G, LIU M Y, HONG Q Q, et al. Fate of Polycyclic Aromatic Hydrocarbons in Seawater from the Western Pacific to the Southern Ocean (17.5°N to 69.2°S) and Their Inventories on the Antarctic Shelf) [J]. Environmental Science & Technology, 2016, 50: 9161-9168. [13] LIU Y G, GAO P, JING S U, et al. PAHs in urban soils of two Florida cities: Background concentrations, distribution, and sources [J]. Chemosphere, 2019, 214: 220-227. doi: 10.1016/j.chemosphere.2018.09.119 [14] MARR, L C, DZEPINA K, JIMENEZ J L, et al. Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City [J]. Atmospheric Chemistry and Physics, 2006, 6: 1733-1745. doi: 10.5194/acp-6-1733-2006 [15] MOSTERT M R, AYOKO G A, KOKOT S, et al. Application of chemometrics to analysis of soil pollutants [J]. Trends in Analytical Chemistry, 2010, 29: 430-435. doi: 10.1016/j.trac.2010.02.009 [16] FANG X Z, WU L, ZHANG Q J, et al. Characteristics, emissions and source identifications of particle polycyclic aromatic hydrocarbons from traffic emissions using tunnel measurement [J]. Transportation Research Part D, 2019, 67: 674-684. doi: 10.1016/j.trd.2018.02.021 [17] ATHANASIOS K, KNUT B. Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification Tool [J]. Environmental Pollution, 2014, 184: 488-494. doi: 10.1016/j.envpol.2013.09.028 [18] SANTOS P M, SÁNCHEZ M D N, PAVÓN J L P, et al. Determination of polycyclic aromatic hydrocarbons in human biological samples: A critical review [J]. TrAC Trends in Analytical Chemistry, 2019, 113: 194-209. doi: 10.1016/j.trac.2019.02.010 [19] PLANAS C, PUIG A, RIVERA J, et al. Analysis of alkyl and 2-6-ringed polycyclic aromatic hydrocarbons by isotope dilution gas chromatography/mass spectrometry. Quality assurance and determination in Spanish river sediments [J]. Journal of Chromatography A, 2006, 113: 220-230. [20] WANG Z D, YANG C, PARROTT J L, et al. Quantitative characterization of PAHs in burn residue and soot samples and differentiation of pyrogenic PAHs from petrogenic PAHs - the 1994 Mobile Burn Study [J]. Environmental Science & Technology, 1999, 33: 3100-3109. [21] YA M, WANG X, WU Y, et al. Seasonal variation of terrigenous polycyclic aromatic hydrocarbons along the Marginal Seas of China: Input, phase partitioning, and ocean-current transport [J]. Environmental Science & Technology, 2017, 51: 9072-9079. [22] PETRISIC M G, MURI G, OGRIN N. Source identification and sedimentary record of polycyclic aromatic hydrocarbons in Lake Bled (NW Slovenia) using stable carbon isotopes [J]. Environmental Science & Technology, 2013, 47: 1280-1286. [23] ZENG Q, JEPPESEN E, GU X, et al. Distribution, fate and risk assessment of PAHs in water and sediments from an aquaculture- and shipping-impacted subtropical lake, China [J]. Chemosphere, 2018, 201: 612-620. doi: 10.1016/j.chemosphere.2018.03.031 [24] CORALIE B, LAURENCE M H, PIERRE F. Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: Implications for the source identifications [J]. Journal of Hazardous Materials, 2014, 267: 31-39. doi: 10.1016/j.jhazmat.2013.12.036 [25] QI P Z, QU C K, ALBANESE S, et al. Investigation of polycyclic aromatic hydrocarbons in soils from Caserta provincial territory, southern Italy: Spatial distribution, source apportionment, and risk assessment [J]. Journal of Hazardous Materials, 2020, 383: 121158. [26] BOEHM P D, PIETARI J, COOK L L, et al. Improving rigor in polycyclic aromatic hydrocarbon source fingerprinting [J]. Environmental Forensics, 2018, 19: 1-13. doi: 10.1080/15275922.2017.1408159 [27] ALAM M S, DELGADO-SABORIT J M, STARK C, et al. Using atmospheric measurements of PAH and quinone compounds at roadside and urban background sites to assess sources and reactivity [J]. Atmospheric Environment, 2013, 77: 24-35. doi: 10.1016/j.atmosenv.2013.04.068 [28] HWANG H M, WADE T L, SERICANO J L. Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States [J]. Atmospheric Environment, 2003, 37: 2259-2267. doi: 10.1016/S1352-2310(03)00090-6 [29] Test Methods for Evaluating Solid Waste: Physical/Chemical Methods[S]. United States: Environmental Protection Agency, 1986. [30] Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures[S]. United States: Environmental Protection Agency, 2003. [31] Development Of A Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures: In Support of Summary Information on the Integrated Risk Information System (IRIS)[S]. United States: Environmental Protection Agency, 2010. [32] STOUT S A, EMSBO-MATTINGLY S D, DOUGLAS F S, et al. Beyond 16 priority pollutant PAHs: A review of PACs used in environmental forensic chemistry [J]. Polycyclic Aromatic Hydrocarbons, 2015, 35: 285-315. doi: 10.1080/10406638.2014.891144 [33] NEFF J M, STOUT S A, GUNSTER D G. Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: Identifying sources and ecological hazard [J]. Integrated Environmental Assessment and Management, 2005, 1: 22-33. doi: 10.1897/IEAM_2004a-016.1 [34] 汪新. 溢油的环境法医学鉴定: 化学指纹分析与源识别 [J]. 渔业研究, 2017, 39: 397-402. WANG X. Oil spill environmental forensics: chemical fingerprinting and source identification [J]. Journal of Fisheries Research, 2017, 39: 397-402(in Chinese).
[35] HINDERSMANN B, ANTONIA FÖRSTER A, Achten C. Novel and specific source identification of PAH in urban soils: Alk-PAH-BPCA index and“V”-shape distribution pattern [J]. Environmental Pollution, 2010, 257: 113594. [36] WANG Z D, STOUT S A, FINGAS M. Forensic fingerprinting of biomarkers for oil spill characterization and source identification [J]. Environmental Forensics, 2007, 7: 105-46. [37] WANG Z D, FINGAS M F. Development of oil hydrocarbon fingerprinting and identification techniques [J]. Marine Pollution Bulletin, 2003, 47: 423-452. doi: 10.1016/S0025-326X(03)00215-7 [38] WANG Z D, FINGAS M, LAMBERT P, et al. Characterization and identification of the Detroit River mystery oil spill (2002) [J]. Journal of Chromatography A, 2004, 1038: 201-214. doi: 10.1016/j.chroma.2004.03.004 [39] WANG Z D, YANG C, YANG Z, et al. Forensic fingerprinting and source identification of the 2009 Sarnia (Ontario) oil spill [J]. Journal of Environmental Monitoring, 2011, 13: 3004-3017. doi: 10.1039/c1em10620a [40] KIM M, KENNICUTT M C, QIAN Y. Polycyclic aromatic hydrocarbon purification procedures for compound specific isotope analysis [J]. Environmental Science & Technology, 2005, 39: 6770-6776. [41] ROSENBERG Y O, KUTUZOV I, AMRANI A. Sulfurization as a preservation mechanism for the δ13C of biomarkers [J]. Organic Geochemistry, 2018, 125: 66-69. doi: 10.1016/j.orggeochem.2018.08.010 [42] HOLMAN A I, GRICE K. δ13C of aromatic compounds in sediments, oils and atmospheric emissions: A review [J]. Organic Geochemistry, 2018, 123: 27-37. doi: 10.1016/j.orggeochem.2018.06.004 [43] WALKER S, DICKHUT R, CHISHOLMBRAUSE C, et al. Molecular and isotopic identification of PAH sources in a highly industrialized urban estuary [J]. Organic Geochemistry, 2005, 36: 619-632. doi: 10.1016/j.orggeochem.2004.10.012 [44] BOSCH C, ANDERSSON A, KRUSA M, t al. Source Apportionment of Polycyclic Aromatic Hydrocarbons in Central European Soils with Compound-Specific Triple Isotopes (δ13C, δ14C, and δ2H) [J]. Environmental Science & Technology, 2015, 49: 7657-7665. [45] XU L, ZHENG M, DING X, et al. Modern and Fossil Contributions to Polycyclic Aromatic Hydrocarbons in PM2.5 from North Birmingham, Alabama in the Southeastern U. S. [J]. Environmental Science & Technology, 2012, 46: 1422-1429. [46] TSAPAKIS M, STEPHANOU E G. Diurnal cycle of PAHs, nitro-PAHs, and oxy-PAHs in a high oxidation capacity marine background atmosphere [J]. Environmental Science & Technology, 2007, 41: 8011-8017. [47] LUNDSTEDT S, WHITE P A, LEMIEUX C L, et al. Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites [J]. A Journal of the Human Environment, 2007, 36: 475-485. doi: 10.1579/0044-7447(2007)36[475:SFATHO]2.0.CO;2 [48] WEI S, HUANG B, LIU M, et al. Characterization of PM2.5-bound nitrated and oxygenated PAHs in two industrial sites of South China [J]. Atmospheric Research, 2012, 109-110: 76-83. doi: 10.1016/j.atmosres.2012.01.009 [49] JIN R, ZHENG M H, Gerhard Lammel G, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons: Sources, formation mechanisms, and occurrence in the environment [J]. Progress in Energy and Combustion Science, 2020, 76: 100803. doi: 10.1016/j.pecs.2019.100803 [50] 曾祥英, 徐亮, 胡琼璞, 等. 台湾海鲜沉积物中多种有机污染物分布与来源初步解析[C]//第十届全国环境化学大会, 2019. ZENG X Y, XU L, HU Q P, et al. A preliminary analysis on the distribution and sources of organic pollutants in sediments of Taiwan[C]. The tenth national conference on environmental chemistry, 2019 (in Chinese).
[51] WITTER A M, NGUYEN M N. Determination of oxygen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments [J]. Environmental Pollution, 2016, 209: 186-196. doi: 10.1016/j.envpol.2015.10.037 [52] 何广杰, 李琳琳, 谢晨妍, 等. 中国环境法医学的研究现状及发展趋势 [J]. 科教文汇, 2019, 467: 89-92. HE G J, LI L L, XIE C Y, et al. Research status and development trend of environmental forensics in China [J]. The Science Education Article Collects, 2019, 467: 89-92(in Chinese).
[53] 李涛, 王玉, 徐枫, 等. 太湖流域地表水中多环芳烃的来源解析及风险评价 [J]. 环境科学与技术, 2018, 41(11): 198-204. LI T, WANG Y, XU F, et al. Pollution characteristics, source apportionment and risk assessment of polycyclic aromatic hydrocarbons in surface water from Taihu Lake Basin [J]. Environmental Science & Technology, 2018, 41(11): 198-204(in Chinese).
[54] IDOWU O, CARBERY M, O’CONNOR W, et al. Speciation and source apportionment of polycyclic aromatic compounds (PACs) in sediments of the largest salt water lake of Australia [J]. Chemosphere, 2020, 246: 125779. doi: 10.1016/j.chemosphere.2019.125779 [55] WU Y L, WANG X H, LI Y Y, et al. Polybrominated diphenyl ethers, organochlorine pesticides, and polycyclic aromatic hydrocarbons in water from the Jiulong River Estuary, China: levels, distributions, influencing factors, and risk assessment [J]. Environmental Science and Pollution Research, 2017, 24: 8933-8945. doi: 10.1007/s11356-015-4782-2 [56] 周佩瑜, 陈畅曙, 胡平, 等. 多环芳烃油指纹应用于船舶溢油鉴别研究 [J]. 海洋学报, 2014, 36: 91-101. ZHOU P Y, CHEN C S, HU P., et al Oil fingerprinting of polyaromatic hydrocarbons applied to the identification study of oil spill from ship [J]. Acta Oceanologica Sinica, 2014, 36: 91-101(in Chinese).
[57] ZOU Y H, WANG L X, ERIK R C. Problems in the fingerprints based polycyclic aromatic hydrocarbons source apportionment analysis and a practical solution [J]. Environmental Pollution, 2015, 205: 394-402. doi: 10.1016/j.envpol.2015.05.029 [58] PENG L, YOU Y, BAI Z, et al. Stable carbon isotope evidence for origin of atmospheric polycyclic aromatic hydrocarbons in Zhengzhou and Urumchi, China [J]. Geochemical Journal, 2006, 40: 219-226. doi: 10.2343/geochemj.40.219 [59] SUN C, SNAPE C E, MCRAE C, et al. Resolving coal and petroleum-derived polycyclic aromatic hydrocarbons (PAHs) in some contaminated land samples using compound-specific stable carbon isotope ratio measurements in conjunction with molecular fingerprints [J]. Fuel, 2003, 82: 2017-2023. doi: 10.1016/S0016-2361(03)00180-7 [60] JOSUÉ J, JASON M E A, CHARLES G, et al. Century-long source apportionment of PAHs in athabasca oil sands region lakes using diagnostic ratios and compound-specific carbon isotope signatures [J]. Environmental Science & Technology. 2013, 47, 6155-6163.