-
苯系物(BTEX)是挥发性有机污染物(VOCs)中含量较高的一类,在常温下蒸发速率大、易挥发[1],且具有较高的化学反应活性,是环境空气中臭氧(O3)和二次有机污染物(SOA)的重要前体物。苯、甲苯、乙苯、间、对-二甲苯和邻-二甲苯是苯系物中的主要污染物,通常可以代表苯系物来研究其污染特征,其来源主要与石油化工产品、产业相关[1]。长期暴露在环境空气中的BTEX下会刺激人体皮肤和粘膜,同时对人体的呼吸系统、造血系统和神经系统等造成一定的损害[2],而且BTEX具有一定的致癌风险。
随着我国城市化进程的加快,环境中有毒有害污染物增多,已经对人类赖以生存的生态环境造成严重冲击。由于BTEX对环境的显著效应以及对人体的健康效应,许多学者对其进行了研究。近年来,对BTEX的研究多集中在北京、南京等发达城市,杨婷等[3]研究指出对北京臭氧和二次有机气溶胶生成贡献最大的组分是苯和甲苯,苯的致癌风险远超美国环保署(US EPA)提供的安全阈值。王宇亮等[4]采用Tenax-TA/吸附热解吸、光离子化气相色谱法(GC-PD)研究北京苯系污染物的主要污染源为机动车排放。张玉欣等[5]研究指出南京周末BTEX浓度升高主要是由机动车排放量增加导致的,且本地源对南京污染水平影响最大。通过对健康风险的来源分析后发现,机动车排放是致癌风险最高的来源。赵若杰等[6]研究表明,苯系物的污染浓度与气候变化息息相关。
邯郸大气污染严重,空气质量在中国生态环境部发布的《2018年中国生态环境状况公报》(http://www.mee.gov.cn/hjzl/)中规定的169个新标准重点监测城市中倒排第五。Wang等[7]基于CMAQ模型对河北省PM2.5进行源解析,孟琛琛等[8]研究了河北省细颗粒物(PM2.5)浓度及水溶性无机离子的特征,鲁晓晗等[9]分析了VOCs的污染特征及O3和SOA生成潜势,但并未对BTEX进行深入分析,针对邯郸市BTEX的研究仍然十分缺乏。邯郸市高校区人群密度大且流动性较差,环境空气中的BTEX浓度严重影响人体健康及环境空气质量,因此对邯郸市高校区开展BTEX的特征研究具有重要意义。
邯郸市高校区苯系物(BTEX)污染特征及其健康风险评价
BTEX contamination characteristics and health risk assessment in university district of Handan,China
-
摘要: 采用德国AMA GC5000型挥发性有机物(VOC)在线监测系统对邯郸市高校区环境空气中56种VOCs进行连续长期监测,选取2018年全年的苯系物(BTEX)在线监测数据,分析其污染特征、各组分含量、光化学反应特性,以及健康风险。研究结果表明,2018年苯系物平均浓度为12.92 µg·m−3,与国外其他城市相比仅高于埃斯基谢希尔,在国内处于中度污染水平,平均浓度夜间高于白天,14:00—16:00最低;季节变化特征为冬季>秋季>春季>夏季。邯郸市BTEX的臭氧生成潜势(OFP)为46.34 µg·m−3,二次有机气溶胶生成潜势(SOAFP)为0.67 µg·m−3。通过苯与甲苯的比值(B/T)可以判断BTEX全年污染浓度由工业源和机动车排放共同影响。针对站点附近在校大学生进行健康风险评估后发现,BTEX的非致癌风险商值均小于安全阈值1,不会引发人体不适;乙苯对在校大学生会产生可忽略的致癌风险,苯会产生可能的致癌风险。Abstract: In this study, German AMA GC5000 volatile organic compounds (VOCs) online monitoring system was used to continuously monitor 56 VOCs in the ambient air of University District in Handan. The concentrations of benzene series (BTEX) in 2018 were selected to analyze the pollution characteristics, component content, photochemical reaction and health risks. The results showed that the BTEX concentration in Handan (2018) was 12.92 µg·m−3, which was only higher than Eskisehir comparing with other cities abroad and at a medium level at home. The BTEX concentration was higher at night than in the day, and the valley occurred at 14:00—16:00. The seasonal variation was winter >autumn >spring >summer. The ozone formation potential (OFP) of BTEX in Handan was 46.34 µg·m−3, and the secondary organic aerosol formation potential (SOAFP) was 0.67 µg·m−3. It can be determined from the ratio of benzene to toluene (B/T) that the pollution of BTEX was mainly affected by industrial and vehicle emissions. Health risk assessment was conducted for college students near the site, and it was found that the non-carcinogenic risk of BTEX were all lower than the safety threshold of 1, which would not cause physical discomfort. Ethylbenzene may cause negligible carcinogenic risk to college students, and benzene may cause carcinogenic risk.
-
Key words:
- BTEX /
- pollution characteristics /
- health risks assessment /
- Monte Carlo simulation
-
表 1 各组分污染物的计算参数
Table 1. Calculation parameters of each component BTEX
MIR FAC/% FVOCr/% Rfc/(mg·(kg×d)−1) CSF/(mg·(kg×d)−1) 苯Benzene 0.79 2.00 10.00 0.03 0.0273[17] 甲苯Boluene 4.02 5.40 12.00 5.00 — 乙苯Ethylbenzene 3.11 5.40 15.00 1.00 0.00385 间、对-二甲苯M, P-xylene 8.51/5.47a 4.70 34.00 0.10 — 邻-二甲苯O-xylene 3.11 5.00 26.00 0.10 — 注:a间、对-二甲苯的MIR值为间-二甲苯与邻-二甲苯的平均值[18].
The MIR of m, p-xylene is the average values of m-xylene and p-xylene.表 2 邯郸市高校区与其他城市监测期间BTEX平均浓度对比(µg·m−3)
Table 2. Comparison of BTEX concentration between University District of Handan and other cities during monitoring period (µg·m−3)
城市
City时间
Time苯
Benzene甲苯
Toluene乙苯
Ethylbenzene二甲苯
XyleneBTEX B/T 参考文献
Reference邯郸市高校区 2018春 3.05 3.82 1.59 2.25 10.71 1.11 本研究 2018夏 2.66 3.04 2.26 2.60 10.56 0.91 2018秋 4.19 4.78 1.84 3.23 14.04 1.68 2018冬 5.80 6.10 1.64 3.22 16.76 1.19 2018 3.88 4.39 1.84 2.80 12.92 1.21 国内城市 北京 2014 3.75 6.03 2.58 5.44 17.80 1.05 [3] 兰州 201712—201806 2.42 2.50 0.79 1.65 7.36 1.66 [21] 天津 2012夏 7.58 9.88 7.87 13.31 38.72 0.77 [20] 唐山 201207 5.18 2.98 1.06 1.75 10.97 1.74 [19] 沈阳 2008 6.41 9.66 4.21 4.88 25.16 0.66 [6] 南京 201303—201402 2.50 1.86 1.53 1.01 6.90 1.34 [5] 国外城市 新德里 2013—2014 14.29 27.79 6.61 13.24 61.92 0.51 [22] 2013秋 8.20 28.8 4.50 26.3 67.80 0.28 [23] 埃斯基谢希尔 2009春 1.23 6.11 0.26 0.85 8.45 0.20 [24] 阿利亚加 2009—2010 2.7 7.7 0.6 3.5 14.5 0.35 [25] 罗马 2011 2.46 8.40 0.30 4.81 15.97 0.29 [26] 曼谷 201302—201306 26.90 34.74 5.47 5.28 72.39 0.77 [27] 亚兹德 2015夏、
2015冬21 38 14.61 41 114.61 0.55 [28] -
[1] 郝吉明, 马广大, 王书肖. 大气污染控制工程. 第3版[M]. 北京: 高等教育出版社, 2010. HAO J M, MA G D, WANG S X. Air pollution control engineering. The third edition[M]. Beijing: Higher Education Press, 2010 (in Chinese).
[2] SMITH M T, ZHANG L, MCHALE C M, et al. Benzene, the exposome and future investigations of leukemia etiology [J]. Chemical-Biological Interactions, 2011, 192(1/2): 155-159. [3] 杨婷, 李丹丹, 单玄龙, 等. 北京市典型城区环境空气中苯系物的污染特征、来源分析与健康风险评价 [J]. 生态毒理学报, 2017, 12(5): 79-97. YANG T, LI D D, SHAN X L, et al. Pollution characterization, source apportionment and health risk assessment of benzene homologues in the ambient air of a typical urban area in Beijing, China [J]. Asian Journal of Ecotoxicology, 2017, 12(5): 79-97(in Chinese).
[4] 王宇亮, 张玉洁, 刘俊锋, 等. 2009年北京市苯系物污染水平和变化特征 [J]. 环境化学, 2011, 30(2): 412-417. WANG Y L, ZHANG Y J, LIU J F, et al. Pollution level and variation of BTEX in Beijing 2009 [J]. Environmental Chemistry, 2011, 30(2): 412-417(in Chinese).
[5] 张玉欣, 安俊琳, 王健宇, 等. 南京北郊大气BTEX变化特征和健康风险评估 [J]. 环境科学, 2017, 38(2): 453-460. ZHANG Y X, AN J L, WANG J Y, et al. Variation characteristics and health risk assessment of BTEX in the atmospheric of northern suburbs of Nanjing [J]. Environmental Science, 2017, 38(2): 453-460(in Chinese).
[6] 赵若杰, 史建武, 韩斌, 等. 中国北方典型城市空气中苯系物的污染特征 [J]. 环境化学, 2012, 31(6): 777-782. ZHAO R J, SHI J W, HAN B, et al. Pollution characteristics of BTEX in typical urban air in northern China [J]. Environmental Chemistry, 2012, 31(6): 777-782(in Chinese).
[7] WANG L T, WEI Z, WEI W, et al. Source apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model [J]. Atmospheric Environment, 2015, 122: 723-736. doi: 10.1016/j.atmosenv.2015.10.041 [8] 孟琛琛, 王丽涛, 苏捷, 等. 邯郸市PM2.5化学组成特征及来源解析 [J]. 环境科学与技术, 2016, 39(2): 57-64. MENG C C, WANG L T, SU J, et al. Chemical compositions and source apportionment of PM2.5 in Handan City, Hebei Province [J]. Environmental Science & Technology, 2016, 39(2): 57-64(in Chinese).
[9] 鲁晓晗, 王丽涛, 马笑, 等. 邯郸市VOCs变化特征及O3和SOA生成潜势 [J]. 环境科学与技术, 2019, 42(3): 30-37. LU X H, WANG L T, MA X, et al. Change characteristics of VOCs and their formation potential of O3 and SOA in Handan City [J]. Environmental Science and Technology, 2019, 42(3): 30-37(in Chinese).
[10] VENECEK M A, CARTER WPL, KLEEMAN M J. Updating the SAPRC maximum incremental reactivity (MIR) scale for the United States from 1988 to 2010 [J]. Air Waste Manag Assoc, 2018, 68(12): 1301-1316. doi: 10.1080/10962247.2018.1498410 [11] GROSJEAN D, SEINFELD J H. Parameterization of the formation potential of secondary organic aerosols [J]. Atmospheric Environment, 1989, 23(8): 1733-1747. doi: 10.1016/0004-6981(89)90058-9 [12] GROSJEAN D. In situ organic aerosol formation during a smog episode: estimated production and chemical functionality [J]. Atmospheric Environment, 1992, 6(26): 953-963. [13] MOHD T L, HAMID H H A, AHAMAD F, et al. BTEX compositions and its potential health impacts in Malaysia [J]. Chemosphere, 2019, 237: 124451. doi: 10.1016/j.chemosphere.2019.124451 [14] LI T T, LIU Z R, BAI Y H. Human cancer risk from the inhalation of formaldehyde in different indoor environments in Guiyang City, China [J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81(2): 200-204. doi: 10.1007/s00128-008-9409-6 [15] 李爽, 陈凤君, 朱利中, 等. 大学校园室内BTEX的浓度水平、来源及健康风险 [J]. 环境科学学报, 2009, 29(3): 511-515. doi: 10.3321/j.issn:0253-2468.2009.03.007 LI S, CHEN F J, ZHU L Z, et al. Concentration, source analysis and risk assessment of BTEX in the indoor air of a university campus [J]. Acta Scientiae Circumstantiae, 2009, 29(3): 511-515(in Chinese). doi: 10.3321/j.issn:0253-2468.2009.03.007
[16] 环境保护部. 中国人群暴露参数手册成人卷[M]. 北京: 中国环境出版社, 2013. Ministry of Environmental Protection. Exposure factors handbook of chinese population adults[M]. Beijing: China Environmental Science Press, 2013 (in Chinese).
[17] KANJANASIRANONT N, PRUEKSASIT T, MORKNOY D. Inhalation exposure and health risk levels to BTEX and carbonyl compounds of traffic policeman working in the inner city of Bangkok, Thailand [J]. Atmospheric Environment, 2017, 152: 111-120. doi: 10.1016/j.atmosenv.2016.11.062 [18] DUAN J C, TAN J H, YANG L, et al. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing [J]. Atmospheric Research, 2008, 88(1): 25-35. doi: 10.1016/j.atmosres.2007.09.004 [19] 丁洁然, 景长勇. 唐山夏季大气VOCs污染特征及臭氧生成潜势 [J]. 环境工程, 2016, 34(6): 130-135. DING H R, JING C Y. Pollution Characteristics and ozone formation potential of ambient VOCs in summer in Tangshan [J]. Environmental Engineering, 2016, 34(6): 130-135(in Chinese).
[20] 姚青, 韩素芹, 蔡子颖, 等. 2012年夏季天津城区BTEX污染特征与臭氧潜势分析 [J]. 中国环境科学, 2013, 33(5): 793-799. doi: 10.3969/j.issn.1000-6923.2013.05.004 YAO Q, HAN S Q, CAI Z Y, et al. The diurnal variation and ozone production potential of BTEX in Tianjin in the summer of 2012 [J]. China Environmental Science, 2013, 33(5): 793-799(in Chinese). doi: 10.3969/j.issn.1000-6923.2013.05.004
[21] 管贤贤, 齐安安, 雷春妮, 等. 兰州市大气苯系物的化学活性特征与健康风险评价 [J]. 环境科学学报, 2020, 40(2): 459-468. GUAN X X, QI A A, LEI C N, et al. Chemical activity characteristics and health risk assessment of atmospheric benzene homologues in Lanzhou [J]. Acta Scientiae Circumstantiae, 2020, 40(2): 459-468(in Chinese).
[22] SINGH D, KUMAR A, SINGH B P, et al. Spatial and temporal variability of VOCs and its source estimation during rush/non-rush hours in ambient air of Delhi, India [J]. Air Quality, Atmosphere & Health, 2016, 9(5): 483-493. [23] KUMAR A, SINGH D, KUMAR K, et al. Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution, ratios, OFP and risk assessment [J]. Science of the Total Environment, 2018, 613/614: 492-501. doi: 10.1016/j.scitotenv.2017.09.096 [24] DEMIREL G, OEZDEN O, DOEGEROGLU T, et al. Personal exposure of primary school children to BTEX, NO2 and ozone in Eskisehir, Turkey: Relationship with indoor/outdoor concentrations and risk assessment [J]. Science of the total environment, 2014, 473/474: 537-548. doi: 10.1016/j.scitotenv.2013.12.034 [25] DUMANOGLU Y, KARA M, ALTIOK H, et al. Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region [J]. Atmospheric Environment, 2014, 98: 168-178. doi: 10.1016/j.atmosenv.2014.08.048 [26] FANIZZA C, INCORONATO F, BAIGUERA S, et al. Volatile organic compound levels at one site in Rome urban air [J]. Atmospheric Pollution Research, 2014, 5(2): 303-314. doi: 10.5094/APR.2014.036 [27] TUNSARINGKARN T, PRUEKSASIT T, MORKNOY D, et al. Ambient air`s volatile organic compounds and potential ozone formation in urban area, Bangkok, Thailand [J]. Journal of Environmental and Occupational Science, 2014, 3(3): 1. [28] HAJIZADEH Y, MOKHTARI M, FARAJI M, et al. Trends of BTEX in the central urban area of Iran: A preliminary study of photochemical ozone pollution and health risk assessment [J]. Atmospheric Pollution Research, 2018, 9(2): 220-229. doi: 10.1016/j.apr.2017.09.005 [29] LIU J F, MU Y J, ZHANG Y J, et al. Atmospheric levels of BTEX compounds during the 2008 Olympic Games in the urban area of Beijing [J]. Science of The Total Environment, 2009, 408(1): 109-116. doi: 10.1016/j.scitotenv.2009.09.026 [30] YURDAKUL S, CIVAN M, KUNTASAL ÖZNUR, et al. Temporal variations of VOC concentrations in Bursa atmosphere [J]. Atmospheric Pollution Research, 2018, 9(2): 189-206. doi: 10.1016/j.apr.2017.09.004 [31] WU FK, YU Y, SUN J, et al. Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong Province, China [J]. Science of The Total Environment, 2016, 548/549: 347/359. [32] MARTÍN-REVIEJO M, WIRTZ K. Is benzene a precursor for secondary organic aerosol [J]. Environmental Science & Technology, 2005, 39(4): 1045-1054. [33] 吕子峰, 郝吉明, 段菁春, 等. 北京市夏季二次有机气溶胶生成潜势的估算 [J]. 环境科学, 2009, 30(4): 969-975. doi: 10.3321/j.issn:0250-3301.2009.04.005 LV Z F, HAO J M, DUAN J C, et al. Estimate of the formation potential of secondary organic aerosol in Beijing summertime [J]. Chinese Journal of Environmental Science, 2009, 30(4): 969-975(in Chinese). doi: 10.3321/j.issn:0250-3301.2009.04.005
[34] 高松, 崔虎雄, 伏晴艳, 等. 某化工区典型高污染过程VOCs污染特征及来源解析 [J]. 环境科学, 2016, 37(11): 4094-4102. GAO S, CUI H X, FU Q Y, et al. Characteristics and Source Apportionment of VOCs of High Pollution Process at Chemical Industrial Area in Winter of China [J]. Chinese Journal of Environmental Science, 2016, 37(11): 4094-4102(in Chinese).
[35] 夏芬美, 李红, 李金娟, 等. 北京市东北城区夏季环境空气中苯系物的污染特征与健康风险评价 [J]. 生态毒理学报, 2014, 9(6): 1041-1052. XIA F M, LI H, LI J J, et al. Characteristics and health risk assessment of atmospheric benzene homologues in summer in the northeastern urban area of Beijing, China [J]. Asian Journal of Ecotoxicology, 2014, 9(6): 1041-1052(in Chinese).
[36] 朱少峰, 黄晓锋, 何凌燕, 等. 深圳大气VOCs浓度的变化特征与化学反应活性 [J]. 中国环境科学, 2012, 32(12): 2140-2148. doi: 10.3969/j.issn.1000-6923.2012.12.005 ZHU S F, HAUNG X F, HE L Y, et al. Variation characteristics and chemical reactivity of ambient VOCs in Shenzhen [J]. China Environmental Science, 2012, 32(12): 2140-2148(in Chinese). doi: 10.3969/j.issn.1000-6923.2012.12.005
[37] BARLETTA B, MEINARDI S, Sherwood Rowland F, et al. Volatile organic compounds in 43 Chinese cities [J]. Atmospheric Environment, 2005, 39(32): 5979-5990. doi: 10.1016/j.atmosenv.2005.06.029 [38] KARL T G, CHRISTIAN T J, YOKELSON R J, et al. The Tropical forest and fire emissions experiment: method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning [J]. Atmospheric Chemistry and Physics, 2008, 156(2): 553-562. [39] HADEI M, HOPKE P K, SHAHSAVANI A, et al. Indoor concentrations of VOCs in beauty salons; association with cosmetic practices and health risk assessment [J]. Journal of Occupational Medicine and Toxicology (London, England), 2018, 13: 30. doi: 10.1186/s12995-018-0213-x