-
NH3是大气中主要的碱性气体,进入大气后与酸性气体(SO2、NOx等)反应产生二次颗粒物,是PM2.5形成的重要原因[1]。大气中氨气通过干湿沉降进入水体后,使水体氮素增加,导致水体富营养化;进入土壤后,在土壤微生物作用下转化为硝态氮,导致土壤酸化[2-3]。大量氨气进入生态系统,会改变生态系统中物种竞争格局,降低物种的多样性[4]。
直接通量测量发现植被冠层是NH3的排放源[5-7]。冠层与大气的氨交换主要由叶表氨交换、叶片气孔氨交换及土壤氨气双向交换组成。叶-大气NH3交换的过程通常为双向交换,交换平衡时NH3浓度称为气孔NH3补偿点(χs)[8]。当大气NH3浓度高于χs时,植被吸收NH3,反之亦然[9-11]。χs估算较为困难,常用叶片质外体中
${\rm{NH}}_4^{+} $ 浓度与H+浓度的比值来代替χs评估植被NH3排放的可能性,该比值称为氨排放潜势(Γ)[12]。Γ一个无量纲的指标,受植被类型、植物生长发育期、谷氨酰胺合成酶(GS)活性等因素影响[12-13]。土壤含氮量直接影响植被${\rm{NH}}_4^{+} $ 吸收量,因此施肥对Γ值影响较大[13-14],不同氮素种类也会通过影响质外体pH值改变Γ值的大小[15]。尿素是我国主要的氮肥品种,施肥后导致大量NH3挥发。添加脲酶抑制剂作为一种有效抑制尿素氨挥发的措施被广泛研究[16-20]。研究发现,硝化抑制剂双氰胺(DCD) 和脲酶抑制剂氢醌(HQ) 混合施用时,可增加肥料作用时间,提高土壤肥效[21]。抑制剂同样能够促进土壤细菌、真菌和放线菌生长[22],还能减少氧化亚氮与其他温室气体的排放,提高肥效[23-24]。总之,脲酶抑制剂能够有效地抑制土壤脲酶活性,延缓尿素水解,降低土壤氨挥发。添加脲酶抑制剂导致植被N吸收增加,改变叶组织中
${\rm{NH}}_4^{+} $ 浓度,影响Γ值及氨排放通量。当前添加脲酶抑制剂评估集中在土壤-大气气体交换通量[23, 25],忽略了对植被排放的影响。本研究对比了单独施加尿素(NS)、尿素添加脲酶抑制剂(NS+YZ)的两种处理小麦氨排放潜势的差异,综合评估添加脲酶抑制剂后小麦NH3通量变化特征。这些结论为进一步评估施肥类型对植被氨排放潜势及通量的影响有重要意义。
脲酶抑制剂对冬小麦叶片氨排放潜势的影响
Effect of urease inhibitors on the ammonia emission potential of winter wheat
-
摘要: 为研究脲酶抑制剂对冬小麦气孔氨排放潜势(Γs)的影响,田间试验获得单施尿素(NS)及尿素+抑制剂(NS+YZ)两种施肥处理方式下冬小麦气孔氨排放潜势(Γs)和土壤氨排放潜势(Γg)变化特征,以及天气晴朗条件下冬小麦叶片与大气间氨气(NH3)交换日间变化。结果表明,不同生长期小麦质外体
${{\rm{NH}}_4^{+} }$ 浓度及Γs值不同,扬花期及衰老期较高,灌浆期较低;对NH3交换日间变化观测发现,灌浆期小麦通过气孔吸收大气NH3,吸收通量主要受到气孔导度控制,最大值及最低小分别出现在上午10:00及下午19:00,其值分别为:(0.147±0.001) g·hm−2·h−1,(0.008±3.444·10−5 )g·hm−2·h−1。试验期间,NS+YZ处理冬小麦叶片${{\rm{NH}}_4^{+}} $ 浓度及Γs值明显高于NS处理,与土壤氨排放潜势(Γg)比较发现,脲酶抑制剂在降低土壤氨气排放潜势的同时增加植被氨气排放潜势, 酶抑制剂对农业氨排放的影响应结合土壤与植被系统评估。Abstract: To investigate the influence of urease inhibitors on the stomatal ammonia emission potential (Γs) of winter wheat, The characteristic of ammonia emission potential of winter wheat and soil(Γg) were collected by field experiment respectively in both urea(NS) and urea with inhibitors (NS+YZ) treatments, and the diurnal variation of ammonia exchange between atmosphere and winter wheat was conducted. The results showed that the ammonium concentration and Γs of winter wheat changed with the growth period: the flowering stage and senescence stage were higher, and the filling stage was lower. The observation of the diurnal variation of ammonia exchange showed that the wheat absorbed the atmospheric ammonia through the stomata during the filling period, and the absorption flux was mainly controlled by stomatal conductance, the maximum and minimum values appear at 10:00 a.m. ((0.147±0.001)g·hm−2·h−1) and 19:00 p.m. ((0.008±3.444·10−5)g·hm−2·h−1), respectively.${\rm{NH}}_4^{+} $ concentration and ammonia emission potential of NS+YZ treatment were significantly higher than that of NS treatment in leaves but lower in soils, indicated that urease inhibitor could increase ammonia emission potential of winter wheat but reduce soil ammonia emission potential. Therefore, the effects of urease inhibitors on agricultural ammonia emissions should be systematically evaluated in combination with soil and vegetation.-
Key words:
- urea /
- urease inhibitor /
- winter wheat /
- the emission potential of NH3
-
表 1 不同时期质外体气体、液体体积(cm3·g−1)及渗透后稀释倍数
Table 1. Volume of gas and liquid of apoplast and Dilution ratio after penetration at different time
日期 Data 4/29(4/20—5/1) 5/7(5/3—5/14) 5/20(5/17—5/29) Vair 0.2653 0.2757 0.2852 Vapo 0.0748 0.0914 0.0694 稀释倍数(Dilution ratio) 4.5468 4.0300 5.1100 -
[1] CHANG S C, CHOU C C K, CHAN C C, et al. Temporal characteristics from continuous measurements of PM2.5 and speciation at the Taipei Aerosol Supersite from 2002 to 2008 [J]. Atmospheric Environment, 2010, 44(8): 1088-1096. doi: 10.1016/j.atmosenv.2009.11.046 [2] WANG L, PEDAS P, ERIKSSON D, et al. Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants [J]. Journal of Experimental Botany, 2013, 64(10): 2713-2724. doi: 10.1093/jxb/ert117 [3] OSBURN C L, HANDSEL L T, PEIERLS B J, et al. Predicting sources of dissolved organic nitrogen to an estuary from an agro-urban coastal watershed [J]. Environmental Science & Technology, 2016, 50(16): 8473-8484. [4] CLARK C M, TILMAN D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands [J]. Nature, 2008, 451(7179): 712-715. doi: 10.1038/nature06503 [5] FARQUHAR G D, FIRTH P M, WETSELAAR R, et al. On the gaseous exchange of ammonia between leaves and the environment-determination of the ammonia compensation point [J]. Plant Physiology, 1980, 66(4): 710-714. doi: 10.1104/pp.66.4.710 [6] SCHJOERRING J K, KYLLINGSBEAK A, MORTERSEN J V, et al. Field investigations of ammonia exchange between barley plans and the atmosphere. 1. concentration profiles and flux densities of ammonia [J]. Plant Cell and Environment, 1993, 16(2): 161-167. doi: 10.1111/j.1365-3040.1993.tb00857.x [7] SUTTON M A, SCHJOERRING J K, WYERS G P. Plant atmosphere exchange of ammonia [J]. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 1995, 351(1696): 261-276. [8] FLECHARD C R, MASSAD R S, LOUBET B, et al. Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange [J]. Biogeosciences, 2013, 10(7): 5183-5225. doi: 10.5194/bg-10-5183-2013 [9] NERIYNCK J, CEULEMANS R. Bidirectional ammonia exchange above a mixed coniferous forest [J]. Environmental Pollution, 2008, 154(3): 424-438. doi: 10.1016/j.envpol.2007.11.030 [10] ZHANG L, WRIGHT L P, Asman W A H. Bi-directional air-surface exchange of atmospheric ammonia: A review of measurements and a development of a big-leaf model for applications in regional-scale air-quality models [J]. Journal of Geophysical Research-Atmospheres, 2010, 115(D20): D20310. [11] WANG L, IBROM A, KORHONEN J F J, et al. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies [J]. Biogeosciences, 2013, 10(2): 999-1011. doi: 10.5194/bg-10-999-2013 [12] MASSAD R S, NEMITZ E, SUTTON M A. Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere [J]. Atmospheric Chemistry and Physics, 2010, 10(21): 10359-10386. doi: 10.5194/acp-10-10359-2010 [13] MATTSON M, HERRMANN B, JONES S. Contribution of different grass species to plant-atmosphere ammonia exchange in intensively managed grassland [J]. Biogeosciences, 2009, 6(1): 59-66. doi: 10.5194/bg-6-59-2009 [14] DAVID M, LOUBET B, CELLIER P, et al. Ammonia sources and sinks in an intensively managed grassland canopy [J]. Biogeosciences, 2009, 6(9): 1903-1915. doi: 10.5194/bg-6-1903-2009 [15] MASSAD R S, LOUBET B, TUZET A. Relationship between ammonia stomatal compensation point and nitrogen metabolism in arable crops: Current status of knowledge and potential modelling approaches[C]. Environmental Pollution, 2008, 154(3): 390-403. [16] GRANT C A, JIA S, BROWN K R, et al. Volatile losses of NH3 from surface-applied urea and urea ammonium nitrate with and without the urease inhibitors NBPT or ammonium thiosulphate [J]. Canadian Journal of Soil Science, 1996, 76(3): 417-419. doi: 10.4141/cjss96-050 [17] HEBER R, MULLER S, MATZEL W, et al. Ammonia losses in urea fertilization, 4. influence of the urease inhibitor phosphoric acid phenyl ester diamide on the amount of NH3 losses and the fertilizing effect of urea in model and pot experiments [J]. Archiv Fur Acker Und Pflanzenbau Und Bodenkunde-Archives of Agronomy and Soil Science, 1979, 23(4): 231-240. [18] LICHIHEB N, MYLES S, PERSONNE E, et al. Implementation of the effect of urease inhibitor on ammonia emissions following urea-based fertilizer application at a Zea mays field in central Illinois: A study with SURFATM-NH3 model [J]. Agricultural and Forest Meteorology, 2019, 269: 78-87. [19] MARTINS M R, SANTANNA S A C, ZAMAN M, et al. Strategies for the use of urease and nitrification inhibitors with urea: Impact on N2O and NH3 emissions, fertilizer-N-15 recovery and maize yield in a tropical soil [J]. Agriculture Ecosystems & Environment, 2017, 247: 54-62. [20] ZAMAN M, NGUYEN M L. BLENERHASSETT J D, et al Reducing NH3, N2O and NO3-N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers [J]. Biology and Fertility of Soils, 2008, 44(5): 693-705. doi: 10.1007/s00374-007-0252-4 [21] 徐星凯, 周礼恺, OSWALD, 等. 脲酶抑制剂/硝化抑制剂对土壤中尿素氮转化及形态分布的影响 [J]. 土壤学报, 2000, 37(3): 339-345. doi: 10.3321/j.issn:0564-3929.2000.03.007 XU X K, ZHOU L K, OSWALD, et al. Effects of enzyme inhibitors / nitrification inhibitors on transformation and distribution of urea-N in soil [J]. Journal of Soil Science, 2000, 37(3): 339-345(in Chinese). doi: 10.3321/j.issn:0564-3929.2000.03.007
[22] 王趁义, 陈仙仙, 王兆玮, 等. 第四类脲酶抑制剂对土壤脲酶活性和微生物量的影响 [J]. 水土保持通报, 2019, 39(2): 155-160. WANG C Y, CHEN X X, WANG Z W, et al. The fourth type of urease inhibitors on soil urease activity and microbial biomass [J]. Water and Soil Conservation Notice, 2019, 39(2): 155-160(in Chinese).
[23] 姚凡云, 王立春, 多馨曲, 等. 不同氮肥对东北春玉米农田温室气体周年排放的影响 [J]. 应用生态学报, 2019, 30(4): 1303-1311. YAO F Y, WANG L C, DUO X Q, et al. Effects of different nitrogen fertilizers on annual greenhouse gas emissions of Spring Maize in Northeast China [J]. Journal of Ecological Environment, 2019, 30(4): 1303-1311(in Chinese).
[24] 朱永昶, 李玉娥, 秦晓波, 等. 控释肥和硝化抑制剂对华北春玉米N2O排放的影响 [J]. 农业环境科学学报, 2016, 35(7): 1421-1428. doi: 10.11654/jaes.2016.07.027 ZHU Y C, LI Y E, QIN X B, et al. Effects of controlled release fertilizers and nitrification inhibitors on N2O emission from spring maize in North China [J]. Journal of Agro-Environment Science, 2016, 35(7): 1421-1428(in Chinese). doi: 10.11654/jaes.2016.07.027
[25] 周旋, 吴良欢, 戴峰, 等. 新型磷酰胺类脲酶抑制剂对不同质地土壤尿素转化的影响 [J]. 应用生态学报, 2016, 27(12): 4003-4012. ZHOU X, WU L H, DAI F, et al. Influence of a new phosphoramide urease inhibitor on urea-N transformation in different texture soil [J]. The Journal of Applied Ecology, 2016, 27(12): 4003-4012(in Chinese).
[26] HUSTED S, SCHAAP M, HAAIMA M, SCHJOERRING J K. Apoplastic pH and ammonium concentration in leves of brassica-napus. L [J]. Plant Physiology, 1995, 109(4): 1453-1460. doi: 10.1104/pp.109.4.1453 [27] GOLLAN T, SCHURR U, SCHULZE E. D Stomatal response to drying soil in relation to changes in the xylem sap composition of helianthus-annuus. 1. The concentration of cations, anions, amino-acids in and pH of the xylem sap [J]. Plant Cell and Environment, 1992, 15(5): 551-559. doi: 10.1111/j.1365-3040.1992.tb01488.x [28] BACON M A, WILKINSON S, DAVIES W J. pH-regulated leaf cell expansion in droughted plants is abscisic acid dependent [J]. Plant Physiology, 1998, 118(4): 1507-1515. doi: 10.1104/pp.118.4.1507 [29] MORGAN J A, PARTON W J. Characteristics of ammonia volatilization from spring wheat [J]. Crop Science, 1989, 29(3): 726-731. doi: 10.2135/cropsci1989.0011183X002900030038x [30] SCHJOERRING J K, HUSTED S, MATTSSON M. Physiological parameters controlling plant-atmosphere ammonia exchange [J]. Atmospheric Environment, 1998, 32(3): 491-498. doi: 10.1016/S1352-2310(97)00006-X [31] AFFENDI N M N, MANSOR N, Ammonia stomatal compensation point of young oilseed SAMIRI S S. Addition of chemical and natural urease inhibitors in reducing ammonia and nitrous oxide losses [J]. Journal of Soil Science and Plant Nutrition, 2020, 20(1): 253-258. doi: 10.1007/s42729-019-00136-6 [32] HUSTED S, SCHJOERRING J K, NIELSEN K H, et al. Stomatal compensation points for ammonia in oilseed rape plants under field conditions [J]. Agricultural and Forest Meteorology, 2000, 105(4): 371-383. doi: 10.1016/S0168-1923(00)00204-5