-
我国经济迅速发展的同时,大气中细微颗粒物(PM2.5)污染问题也逐渐备受人们关注。PM2.5中的主要成分为二次无机离子(sulfate-nitrate-ammonium, SNA)、地壳尘(GM)、有机碳(OC)、元素碳(EC),以及其他微量元素[1]。形成二次颗粒物的主要前体为二氧化硫(SO2)、氮氧化物(NOx)、氨气(NH3)和有机化合物(尤其是挥发性有机污染物,VOCs)[2]。自然界排入大气中的微量气体是还原态的,如氨气(NH3)、甲烷(CH4)、二氧化硫(SO2)等[3],但还原态的气体大都无法稳定存在[4],容易与氧化物发生反应生成铵根、硫酸根和硝酸根等离子,因此当这些气体回到地表时往往是该气体的氧化状态[5],如硫酸(H2SO4)、硝酸(HNO3)、硫酸盐(
${\rm{SO}}_4^{2-} $ )、硝酸盐(${\rm{NO}}_3^{-} $ )、二氧化碳(CO2)等[6-7],这些自然界的物理化学反应是生成PM2.5的重要过程[8]。NH3是大气中唯一能够大量存在的碱性气体,中国平均氨排放强度约为0.9 kg·(km2·a)−1(NH3),排放强度最大的地区分布在中东部地区和广东地区,华北地区的排放量约为1.90 kg·(km2·a)−1(NH3)[9]。由于NH3在大气中的浓度较小,也并不属于有毒有害气体,所以难以引起人们的重视[10-11]。但是,NH3容易被氢氧自由基(·OH)氧化成NO,进一步转化为NOx、HNO3等污染物[12],且容易与酸性物质反应生成铵根离子(
${\rm{NH}}_4^{+} $ )[13],${\rm{NH}}_4^{+} $ 与${\rm{SO}}_4^{2-} $ 发生不可逆的化学反应生成的(NH4)2SO4或NH4HSO4等颗粒态物质[14],${\rm{SO}}_4^{2-} $ 的成盐过程是生成颗粒物的有效途径,这种气-粒转化过程形成的二次气溶胶是大气中PM2.5的重要来源[15]。研究表明碱性环境容易促进SO2和二氧化氮(NO2)的转化,以及可以直接通过聚集作用与H2SO4、HNO3和OC的聚合成大分子,间接提高二次新粒子(secondary new particulate formation, NPF)的形成,提高大气中PM2.5的浓度[16]。邯郸市位于河北省南部,东临山东,西邻山西,南邻河南,地处四省交界,是全国空气污染最重的10个城市之一。2018年邯郸市PM2.5年均浓度为86.6 µg·m−3,为国家二级标准的2.4倍。大气中的NH3除了部分来源于自然界以外,很多来源于人类活动,如人类代谢过程、工业生产、肥料的使用等等[17]。近年来针对邯郸市PM2.5污染特征、化学成分及来源的研究较多。孟琛琛等对PM2.5的化学组分及其特征做了详细的研究,OC、EC和SNA是邯郸市PM2.5的主要成分[18];马思萌等指出,PM2.5对环境质量和人类健康有着很大的影响,这些影响均与PM2.5的化学组成直接相关[19];Zhao等研究表明,二次无机离子对PM2.5的形成有很大贡献[20]。但是对NH3的研究相对较少,人们通常用被动采样法采集大气中的NH3[21],邵生成等研究发现氨-铵气粒转化是推动气溶胶形成的重要因素,体现在低温高湿时NH3和NH4+转化速率较快[22]。
本研究对邯郸市包括NH3在内的主要大气污染物进行了长期在线监测,通过数据分析深入了解NH3的污染特征及其在PM2.5形成中扮演的角色和NH3参与反应的机理,以期为邯郸市未来的霾污染控制提供技术支持。
邯郸市NH3污染特征及其在PM2.5形成中的作用
NH3 pollution and its role in PM2.5 pollution in Handan, China
-
摘要: 本研究对邯郸市大气中细微颗粒物(PM2.5)和氨气(NH3)进行了长期连续在线监测,探讨邯郸市NH3在PM2.5生成中的作用。结果表明,2015—2018年邯郸市NH3平均浓度为15.7 µg·m−3,并呈现出夏季(22.8 µg·m−3)、春季(22.0 µg·m−3)浓度高,秋季(11.7 µg·m−3)、冬季(9.6 µg·m−3)浓度较低的特征。2015年的铵根离子(
${\rm{NH}}_4^{+} $ )对PM2.5的贡献率(${\rm{NH}}_4^{+} $ /PM2.5)为15.4%,2017年下降到13.6%,冬季重污染时段${\rm{NH}}_4^{+} $ 平均浓度为25.5 µg·m−3。华北地区大气处于富NH3状态,且温度在−5—10 ℃、湿度在60%—100%时,NH3-${\rm{NH}}_4^{+} $ 气固转化率处于较高水平。春冬季节${\rm{NH}}_4^{+} $ 可满足硫酸根(${\rm{SO}}_4^{2-} $ )、硝酸根(${\rm{NO}}_3^{-} $ )和氯离子(Cl−)分别生成(NH4)2SO4、NH4NO3和NH4Cl。夏秋季节Cl−主要以NH4Cl和KCl的形式存在。以${\rm{NH}}_4^{+} $ 为代表的二次无机盐是PM2.5的关键成分,在污染中起着重要作用,未来大幅度降低NH3浓度可以降低二次颗粒物浓度。Abstract: The fine particulate matter (PM2.5) and ammonia (NH3) were continuous observed on-line from 2015 to 2018 in Handan, Hebei. We investigated the formation mechanisms of PM2.5. The results showed that the average concentration of NH3 in Handan was 15.7 µg·m−3 from 2015 to 2018. The NH3 concentration was higher in summer (22.8 µg·m−3) and spring (22.0 µg·m−3), but lower in autumn (11.7 µg·m−3) and winter (8.9 µg·m−3). The contribution of${\rm{NH}}_4^{+} $ to PM2.5 in 2015 was 15.3%, and rose to 16.3% in 2017. In the heavy pollution period in winter, the average concentration of${\rm{NH}}_4^{+} $ was 25.5 µg·m−3. North China Plain is in NH3−rich region, and when the temperature is between −5—10 ℃ and the humidity is between 60% and 100%, the NH3-${\rm{NH}}_4^{+} $ gas-solid conversion rate is at a relatively high level. NH4+ can meet the requirements of${\rm{SO}}_4^{2-} $ ,${\rm{NO}}_3^{-} $ and Cl− to generate (NH4)2SO4, NH4NO3 and NH4Cl in spring and winter. In summer and autumn, Cl− mainly exists in the form of NH4Cl and KCl.${\rm{NH}}_4^{+} $ , as the representative of the secondary inorganic components, is the key component of PM2.5, which plays an important role in pollution. A substantial reduction of NH3 concentration can the reduce secondary particulate matter concentrations in the future.-
Key words:
- NH3 /
- PM2.5 /
- gas-particle equilibrium /
- Handan
-
表 1 本研究与国内外城市大气中NH3浓度对比
Table 1. Concentration levels of NH3 in other cities
地点
Station类型
Type监测时段
PeriodNH3/ (µg·m−3)
Concentration参考文献
Reference邯郸 城市 2015.1—12 15.2 本研究 城市 2016.1—12 18.8 本研究 城市 2017.1—12 13.8 本研究 城市 2018.1—12 15.1 本研究 曲周县(邯郸) 农村 2006.8—2008.10 14.5 [25] 北京(中国) 城市 2008.2—2010.7 22.8 [26] 农村 2007.1—2010.7 10.2 [26] 上海(中国) 城市 2013.7—2014.9 6.2 [27] 农村 2013.7—12 12.4 [27] 工业区 2014.1—6 17.6 [27] 南京(中国) 工业区 2018年秋 15.3 [28] 城市 1995.10—1996.8 11.6 [28] 西安(中国) 城市 2006.4—2007.4 18.6 [29] 郊区 2006.4—2007.4 20.3 [29] 青岛(中国) 郊区 2012.6—7 4.7 [11] 广东(中国) 郊区 2004.10—11 7.3 [30] 香港(中国) 城市 2000年秋 3 [31] 首尔(韩国) 城市 2010全年 11.2 [32] 纽约(美国) 城市 1999.7—2000.6 5.1 [1] 德里(印度) 农村 2012.10—2013.9 40.7 [4] 拉合尔(巴基斯坦) 城市 2005.12—2006.1 50.1 [33] 罗马(意大利) 城市 2001.5—2002.3 5.5 [34] 表 2 NH3和PM2.5的年均浓度 (µg·m−3)
Table 2. Annual concentrations of NH3 and PM2.5 (µg·m−3)
2015年 2016年 2017年 2018年 NH3 15.2 18.8 13.8 15.7 PM2.5 90.8 80.9 86.2 82.0 表 3 NH3、
及PM2.5的季节浓度特征 (µg·m−3)${\rm{NH}}_4^{+} $ Table 3. Seasonal characteristics of NH3,
and PM2.5 concentration (µg·m−3)${\rm{NH}}_4^{+} $ 2015年 2017年 春
Spring夏
Summer秋
Autumn冬
Winter春
Spring夏
Summer秋
Autumn冬
WinterNH3 19.8 23.3 11.3 8.6 17.3 27.1 14.2 10.7 ${\rm{NH}}_4^{+} $ 6.8 8.3 8.9 32.0 6.8 8.4 9.5 18.9 PM2.5 60.5 60.9 75.8 167.3 66.8 65.1 61.3 128.1 /PM2.5/%${\rm{NH}}_4^{+} $ 11.2 13.6 11.7 19.1 10.2 12.9 15.5 14.8 表 4 2015和2017年不同空气质量状况下NH3、
和PM2.5的浓度水平${\rm{NH}}_4^{+}$ Table 4. The concentrations of NH3,
and PM2.5 during clean periods (CP), slightly pollution periods (PP) and heavy pollution (HP) at Handan in 2015 and 2017${\rm{NH}}_4^{+} $ 空气质量状况
Air conditionsNH3 ${\rm{NH}}_4^{+} $ PM2.5 /PM2.5${\rm{NH}}_4^{+} $ NH3/ ${\rm{NH}}_4^{+} $ RH/% T/°C 2015年 CP 26.7 6.8 49.6 0.14 3.95 65 20.1 PP 23.3 12.3 97.5 0.23 1.90 65 14.7 HP 40.8 24.1 257.7 0.09 1.70 73 1.7 2017年 CP 27.0 7.3 46.3 0.16 3.71 64 20.3 PP 20.3 16.2 102.1 0.20 1.25 62 10.6 HP 36.8 24.3 193.6 0.13 1.51 80 3.3 表 5 不同温湿度区间下
/NHx的比值${\rm{NH}}_4^{+} $ Table 5. The ratio of
/NHx under different temperature and humidity intervals${\rm{NH}}_4^{+} $ 温度/°C
Temperature${\rm{NH}}_4^{+}/{\rm{NH}}_x $ 湿度20%—40% 湿度40%—60% 湿度60%—80% 湿度80%—100% −5—10 0.39 0.55 0.60 0.71 10—20 0.27 0.29 0.33 0.44 20—30 0.34 0.35 0.38 0.46 -
[1] BARI A, FERRARO V, WILSON L R, et al. Measurements of gaseous HONO, HNO3, SO2, HCl, NH3 particulate sulfate and PM2.5 in Newyork [J]. Atmospheric Environment, 2003(37): 2825-2835. [2] 刘营营, 王丽涛, 齐孟姚, 等. 邯郸大气VOCs污染特征及其在O3生成中的作用 [J]. 环境化学, 2020, 39(11): 1-10. LIU Y Y, WANG L T, QI M Y, et al. Characteristics of atmospheric VOCs and their role in O3 generation in Handan [J]. Environmental Chemistry, 2020, 39(11): 1-10(in Chinese).
[3] 曹军骥. PM2.5与环境[M]. 北京: 科学出版社, 2014: 78-87. CAO J J. PM2.5 and the environment in China[M]. Beijing: Science Press, 2014: 78-87 (in Chinese).
[4] SINGH S, KULSHRESTHA U C. Rural versus urban gaseous inorganic reactive nitrogen in the Indo-Gangetic Plains (IGP) of India [J]. Environmental Research Letters, 2014, 9(12): 125004. doi: 10.1088/1748-9326/9/12/125004 [5] SHEN J L, TANG A H, LIU X J, et al. High concentrations and dry deposition of reactive nitrogen species at two sites in the North China Plain [J]. Environmental Pollution, 2009, 157(11): 3106-3113. doi: 10.1016/j.envpol.2009.05.016 [6] 刘寿东, 张莉, 张园园, 等. 温湿度对南京北郊PM2.5中二次无机离子生成演化的影响 [J]. 生态环境学报, 2018, 27(4): 714-721. LIU S D, ZHANG L, ZHANG Y Y, et al. Influences of temperature and humidity on formation and evolution of secondary aerosol inorganic ions of PM2.5 at Northern Suburban Nanjing [J]. Ecology and Environmental Sciences, 2018, 27(4): 714-721(in Chinese).
[7] 丁萌萌, 周健楠, 刘保献, 等. 2015年北京城区大气PM2.5中NH4+、NO3-、SO42-及前体气体的污染特征 [J]. 环境科学, 2017, 38(4): 1308-1316. DING M M, ZHOU J N, LIU B X, et al. Pollution characteristics of NH4+, NO3-, SO42- in PM2.5 and their precursor gases during 2015 in an urban area of Beijing [J]. Environmental Science, 2017, 38(4): 1308-1316(in Chinese).
[8] 唐笑炎, 张远航, 邵敏. 大气环境化学(第二版)[M]. 北京: 高等教育出版社, 2006: 55-72. TANG X Y, ZHANG Y H, SHAO M, et al. Atmospheric environmental chemistry[M]. Beijing: Higher Education Press, 2006: 55-72 (in Chinese).
[9] 王文兴, 卢筱凤, 庞燕波, 等. 中国氨的排放强度地理分布 [J]. 环境科学学报, 1997, 17(1): 3-8. WANG W X, LU X F, PANG Y B, et al. Geographical distribution of ammonia emission intensity in China [J]. Acta Scientiae Circumstantiae, 1997, 17(1): 3-8(in Chinese).
[10] RECHE C, VIANA M, KARANASIOU A, et al. Urban NH3 levels and sources in six major Spanish cities [J]. Chemosphere, 2015, 119: 769-777. doi: 10.1016/j.chemosphere.2014.07.097 [11] 李非非. 青岛大气中HNO3、HNO2和NH3的浓度分布及其沉降通量[D]. 青岛: 中国海洋大学, 2013. LI F F. Concentration and deposition flux of atmospheric nitric acid, nitrous acid and ammonia in Qingdao, China[D]. Qingdao: Ocean University of China, 2013 (in Chinese).
[12] CHENG Y, ZHENG G, WEI C, et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China [J]. Science Advances, 2016, 2(12): 1601530. doi: 10.1126/sciadv.1601530 [13] FU X, WANG T, GAO J, et al. Persistent heavy winter nitrate pollution driven by increased photochemical oxidants in northern China [J]. Environmental Science and Technology, 2020, 54(7): 3881-3889. doi: 10.1021/acs.est.9b07248 [14] ZHENG G, SU H, WANG S, et al. Multiphase buffer theory explains contrasts in atmospheric aerosol acidity [J]. Science, 2020, 369(6509): 1374-1377. doi: 10.1126/science.aba3719 [15] 周佳佳, 石金辉, 李丽平, 等. 青岛大气中酸碱气体及PM2.5中水溶性离子的浓度特征和气粒平衡关系 [J]. 环境科学, 2015, 36(9): 3135-3143. ZHOU J J, SHI J H, LI L P, et al. Concentrations of acidic gases, ammonia and related water-soluble ions in PM2.5 and gas-particle partitioning in Qingdao [J]. Environmental Science, 2015, 36(9): 3135-3143(in Chinese).
[16] LEE H. S, KANG B Chemical characteristics of principal PM2.5 species in Chongju, South Korea [J]. Atmospheric Environment, 2001, 35: 739-746. doi: 10.1016/S1352-2310(00)00267-3 [17] WANG R, YE X, LIU Y, et al. Characteristics of atmospheric ammonia and its relationship with vehicle emissions in a megacity in China [J]. Atmospheric Environment, 2018, 182: 97-104. doi: 10.1016/j.atmosenv.2018.03.047 [18] 孟琛琛, 王丽涛, 苏捷, 等. 邯郸市PM2.5化学组成特征及来源解析 [J]. 环境科学与技术, 2016, 39(2): 57-64. MENG C C, WANG L T, SU J, et al. Chemical compositions and source apportionment of PM2.5 in Handan city, Hebei province [J]. Environmental Science and Technology, 2016, 39(2): 57-64(in Chinese).
[19] 马思萌, 王丽涛, 魏哲, 等. 邯郸市PM2.5及其化学组分的季节性变化 [J]. 环境工程学报, 2016, 10(7): 3743-3750. doi: 10.12030/j.cjee.201502068 MA S M, WANG L T, WEI Z, et al. Seasonal variation of PM2.5 and its chemical compositions in Handan, China [J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3743-3750(in Chinese). doi: 10.12030/j.cjee.201502068
[20] ZHAO L, WANG L T, TAN J H, et al. Changes of chemical composition and source apportionment of PM2.5 during 2013-2017 in urban Handan, China [J]. Atmospheric Environment, 2019(206): 119-131. [21] WANG C, YIN S S, BAI L, et al. High-resolution ammonia emission inventories with comprehensive analysis and evaluation in Henan, China, 2006–2016 [J]. Atmospheric Environment, 2018, 193: 11-23. doi: 10.1016/j.atmosenv.2018.08.063 [22] 邵生成, 常运华, 曹芳, 等. 南京城市大气氨-铵的高频演化及其气粒转化机制 [J]. 环境科学, 2019, 40(10): 4355-4363. SHAO S C, CHANG Y H, CAO F, et al. High-frequency evolution of urban atmospheric ammonia and ammonium and its gas-to-particle conversion mechanism in Nanjing city [J]. Environmental Science, 2019, 40(10): 4355-4363(in Chinese).
[23] 齐孟姚, 王丽涛, 张城瑜, 等. 邯郸市黑碳气溶胶浓度变化及影响因素分析 [J]. 环境科学学报, 2018, 38(5): 1751-1758. QI M Y, WANG L T, ZHANG C Y, et al. Variation of black carbon aerosol concentration and its influencing factors in Handan City, Hebei Province [J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1751-1758(in Chinese).
[24] 马笑, 王丽涛, 马思萌, 等. 邯郸市PM2.5成分的时空分布特征及来源 [J]. 环境化学, 2017, 36(9): 1932-1940. doi: 10.7524/j.issn.0254-6108.2017020102 MA X, WANG L T, MA S M, et al. Spatial and temporal distribution and source analysis of components in PM2.5, Handan [J]. Environmental Chemistry, 2017, 36(9): 1932-1940(in Chinese). doi: 10.7524/j.issn.0254-6108.2017020102
[25] WANG X, SUN W. Meteorological parameters and gaseous pollutant concentrations as predictors of daily continuous PM2.5 concentrations using deep neural network in Beijing–Tianjin–Hebei, China [J]. Atmospheric Environment, 2019(211): 128-137. [26] MENG Z, LIN W, YAN P, et al. Characteristics of atmospheric ammonia over Beijing, China [J]. Atmospheric Chemistry and Physics, 2011: 6139-6151. [27] WANG S, NAN J, SHI C, et al. Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China [J]. Scientific Reports, 2015, 5: e15842. doi: 10.1038/srep15842 [28] WANG W, WANG S, XU J, et al. Gas-phase ammonia and PM2.5 ammonium in a busy traffic area of Nanjing, China [J]. Environmental Science and Pollution Research, 2016, 23(2): 1691-1702. doi: 10.1007/s11356-015-5397-3 [29] CAO J J, ZHANG T, CHOW J C, et al. Characterization of Atmospheric Ammonia over Xi'an, China [J]. Aerosol and Air Quality Research, 2009, 9(2): 277-289. doi: 10.4209/aaqr.2008.10.0043 [30] HU M, WU Z, SLANINA J, et al. Acidic gases, ammonia and water-soluble ions in PM2.5 at a coastal site in the Pearl River Delta, China [J]. Atmospheric Environment, 2008, 42(25): 6310-6320. doi: 10.1016/j.atmosenv.2008.02.015 [31] YAO X, LING T Y, FANG M, et al. Comparison of thermodynamic predictions for in situ pH in PM2.5 [J]. Atmospheric Environment, 2006, 40: 2835-2844. doi: 10.1016/j.atmosenv.2006.01.006 [32] SHON Z, GHOSH S, KIM K, et al. Analysis of water-soluble ions and their precursor gases over diurnal cycle [J]. Atmospheric Research, 2013, 132-133: 309-321. doi: 10.1016/j.atmosres.2013.06.003 [33] BISWAS K. F, GHAURI B. M, HUSAIN L Gaseous and aerosol pollutants during fog and clear episodes in South Asian urban atmosphere [J]. Atmospheric Environment, 2008, 42(33): 7775-7785. doi: 10.1016/j.atmosenv.2008.04.056 [34] PERRINO C, CATRAMBONE M, BUCCHIANICO A D, et al. Gaseous ammonia in the urban area of Rome, Italy and its relationship with traffic emissions [J]. Atmospheric Environment, 2002, 36(34): 5385-5394. doi: 10.1016/S1352-2310(02)00469-7 [35] 董文煊, 邢佳, 王书肖. 1994-2006年中国人为源大气氨排放时空分布 [J]. 环境科学, 2010, 31(7): 1457-1463. DONG W X, XING J, WANG S X. Temporal and spatial distribution of anthropogenic ammonia emissions in China: 1994-2006 [J]. Environmental Science, 2010, 31(7): 1457-1463(in Chinese).
[36] 李新艳, 李恒鹏. 中国大气NH3和NOx排放的时空分布特征 [J]. 中国环境科学, 2012, 32(1): 37-42. doi: 10.3969/j.issn.1000-6923.2012.01.006 LI Y X, LI H P. Emission and distribution of NH3 and NOx in China [J]. China Environmental Science, 2012, 32(1): 37-42(in Chinese). doi: 10.3969/j.issn.1000-6923.2012.01.006
[37] 李亚林, 郭秀锐, 程水源, 等. 邯郸市大气污染源排放清单建立及总量校验 [J]. 环境科学研究, 2020, 33(1): 1-8. LI Y L, GUO X R, CHENG S Y, et al. Establishment and verification of air pollution source emission inventory in Handan City [J]. Research of Environmental Sciences, 2020, 33(1): 1-8(in Chinese).
[38] HORNE J R, ZHU S, MOTOYA A J, et al. Reactive uptake of ammonia by secondary organic aerosols: Implications for air quality [J]. Atmospheric Environment, 2018, 189: 1-8. doi: 10.1016/j.atmosenv.2018.06.021 [39] CHANG Y, DENG C, DORE A J, et al. Human excreta as a stable and important source of atmospheric ammonia in the megacity of Shanghai [J]. PLOS ONE, 2015, 10(12): e144661. [40] 王晓琪, 周颖, 程水源, 等. 典型城市冬季PM2.5水溶性离子污染特征与传输规律研究 [J]. 中国环境科学, 2016, 36(8): 2289-2296. doi: 10.3969/j.issn.1000-6923.2016.08.007 WANG X Q, ZHOU Y, CHENG S Y, et al. Characterization and regional transmission impact of water-soluble ions in PM2.5 during winter in typical cities [J]. China Environmental Science, 2016, 36(8): 2289-2296(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.08.007
[41] 吴佳伟, 王祖武, 陈楠, 等. 军运会前后武汉市大气氨-铵气/粒转化监测研究 [J]. 环境科学与技术, 2020, 43(5): 132-138. WU J W, WANG Z W, CHEN N, et al. Atmospheric gas-to-particle conversion between NH3 and NH4+ and its effect on PM2.5 before, during and after military world games in Wuhan City [J]. Environmental Science and Technology, 2020, 43(5): 132-138(in Chinese).
[42] JING B, XIA D. Role identification of NH3 in atmospheric secondary new particle formation in haze occurrence of China [J]. Atmospheric Environment, 2017, 163: 107-117. doi: 10.1016/j.atmosenv.2017.05.035 [43] MCCURDY T, ZELENKA M P, LAWRENCE P M, et al. Acid aerosols in the Pittsburgh Metropolitan area [J]. Atmospheric Environment, 1999, 33(30): 5133-5145. doi: 10.1016/S1352-2310(99)00119-3 [44] 赵鹏, 朱彤, 梁宝生, 等. 北京郊区农田夏季大气颗粒物质量和离子成分谱分布特征 [J]. 环境科学, 2006, 27(2): 193-199. doi: 10.3321/j.issn:0250-3301.2006.02.001 ZHAO P, ZHU T, LIANG B S, et al. Characteristics of mass distributions of aerosol particle and Its inorganic water soluble ions in summer over a suburb farmland in Beijing [J]. Environmental Science, 2006, 27(2): 193-199(in Chinese). doi: 10.3321/j.issn:0250-3301.2006.02.001