-
海底沉积物是记录海洋环境长期变迁、演化历史的档案馆。通过对海底沉积物中放射性同位素的探究,可以了解放射性核素在地球化学行为中扮演的角色。比如:通过放射性核素在沉积物岩心中的含量分布、深度变化,可以了解洋流活动规律、沉积物的沉积速率和年代变迁[1]。同时以海底沉积物中的放射性同位素作为天然示踪剂,也可研究海洋环境的化学演化过程和沉积物形成过程(如物质的来源与迁移等)[2]。南沙海域地形特点为递次升高的3级阶梯,由北向南走向依次可划分为深海盘、大陆坡、大陆架。通过分析一些天然放射性核素在该海域沉积物中的变化规律,可以对该海域的环境、地质、化学和生物等多方面的情况进行广泛而深入的探讨。然而,早期工作者对南沙海域的研究主要是围绕表层沉积物展开[3-6],对沉积物岩心的研究数据较为匮乏,这导致了该海域的历史演化数据很难被系统描述。
226Ra与210Pb都属于238U衰变系列核素,可以把226Ra与210Pb看成一对母子体。假定226Ra与210Pb没有其他的输入和输出,在两核素衰变达到了平衡后,通过226Ra与210Pb随深度的变化探知整个岩心在沉积过程中这2个核素是否存在额外的来源或者流失,由此可以判断过去几十年来该海域发生的一些海洋环境变化事件。沉积物岩心中的210Pb主要来源于两方面:一个是沉积物自身含有的226Ra衰变产生的210Pb,该部分210Pb经过一段时间后与沉积物中的226Ra能够达到平衡;二是沉积物自身之外的外部来源,包括降水、尘埃沉降、海水中210Pb的清除等方式进入到沉积物中,这部分210Pb称为过剩210Pb(210Pbex)[7-10]。同时,沉积物在沉降过程中,部分226Ra会通过沉积物间隙水进入水溶液中[11]。因此通过226Ra与210Pb随岩心深度的变化,可以探知这2个核素在整个岩心的沉积过程中是否存在额外的来源或者流失,从而反映海洋环境的变迁和演化。
本实验用HPGeγ谱方法分别测定6个沉积物岩心不同层段中226Ra和210Pb的含量,阐明它们随深度变化的特征,通过分析深度变化、210Pbex的沉积速率,探讨岩心在沉积过程中的所在海域环境发生的变迁,对南沙海域环境的变迁有着重要的指示意义。
南沙海域沉积物226Ra和210Pb的分布特征及环境意义
Characteristics of distribution and environmental significance of 226Ra and 210Pb in sediments in Nansha sea area
-
摘要: 用HPGe γ谱方法测定了6个来自南沙海域沉积物岩心的226Ra与210Pb,研究结果表明,226Ra的活度变化范围为(8.81±0.96)—(38.51±0.73 )Bq·kg−1;210Pb的活度变化范围为(17.2±1.87) Bq·kg−1至(143.28±3.31)Bq·kg−1。226Ra和210Pb核素含量随岩心深度的增加总体上呈现不断减小的趋势,但在其中两个站位,226Ra的含量变化随着岩心深度增加先微弱增加,然后再逐渐减小。比较这6个岩心中226Ra与210Pb的活度发现,226Ra活度的变化范围相对较小,210Pb活度的变化范围相对较大,且226Ra与210Pb没有达到放射性平衡,有着明显的过剩210Pb(210Pbex)。由岩心中210Pbex的垂直分布计算了这6个岩心中的沉积速率,其变化范围为0.270—0.652 cm·a−1。不同站位沉积速率的大小反映了陆源碎屑输入和生源碎屑输入对该海区沉积过程的影响。同时,在南沙海区复杂的生态系统中,底栖生物的生物扰动和水流也是影响沉积环境特征的重要因素。Abstract: The results of the determination of 226Ra and 210Pb in six sediment cores from Nansha sea area by high-purity germanium (HPGe) γ spectrometry were as follows: the radioactivity of 226Ra ranged from(8.81±0.96)—(38.51±0.73) Bq·kg−1; 210Pb from(17.2±1.87)—(143.28±3.31)Bq·kg−1. The activities of 226Ra and 210Pb generally decreased with the depth. However, 226Ra activity was observed to increase with the depth in the upper sediment layer at two stations(BKAS12 and BKAS64).Comparing the activities of 226Ra and 210Pb in these six cores, it was found that the range of 226Ra activity was relatively small and the range of 210Pb activity was relatively large. At the same time, 226Ra and 210Pb did not reach radioactivity balance, so there was obvious excess 210Pb (210Pbex).According to the vertical distribution of 210Pbex, The sediment accumulation rate ranged from 0.270—0.652 cm·a−1 in the six cores. At different station, the magnitude of sediment accumulation rate could reflect the impact of terrestrial debris input or/and biogenic debris input during the sedimentation process. In addition, the bioturbation and water flow were also important factors affecting the characteristics of sedimentary environment in the complex ecosystem of Nansha sea area.
-
Key words:
- radionuclide /
- HPGe γ spectrometry /
- sediment core /
- sediment accumulation rate
-
表 1 岩心与样品基本信息
Table 1. Basic information of the core and sample
BKAS12 BKAS30 BKAS35 BKAS64 BKAS79 BKAS80 采样站位 7°31'19"N, 113°28'7"E 4°59'58"N,
113°9'45"E6°27'30"N,
113°0'16"E5°14'41"N,
112°7'27"E5°10'37"N,
110°20'14"E4°50'15"N,
110°26'37"E水深/m 1335 119 1537 123 141 121 岩心长度/
cm24 29 21 25 26 25 取样层位/
cm0—24 0—29 0—21 0—25 0—26 0—25 样品个数 5 6 4 5 5 5 表观性状 灰色软泥 粉砂 灰棕色软泥 粉砂质泥 粉砂质泥 粉砂质泥 表 2 六个岩心样品各核素含量(Bq·kg−1)
Table 2. Nuclide contents of the six core samples(Bq·kg−1)
层数(Interval)/cm 平均值
Mean0—5 5—11 11—15 15—20 20—24 BKAS12 226Ra 33.13±0.53 33.34±0.53 36.08±0.57 18.47±0.41 10.94±0.33 26.39±0.47 210Pb 143.28±3.31 88.69±2.80 67.59±2.72 44.97±2.40 33.55±2.26 75.62±2.70 210Pbex 110.15±3.84 55.35±3.33 31.50±3.29 26.50±2.81 22.61±2.59 49.22±3.17 210Pb/226Ra 4.32 2.66 1.87 2.43 3.07 2.87 层数(Interval)/cm 平均值
Mean0—6 6—10 10—15 15—20 20—25 25—29 226Ra 15.19±0.733 13.23±0.74 12.41±0.57 12.95±0.58 13.57±0.58 12.28±0.62 13.27±0.64 BKAS30 210Pb 87.38±3.17 77.68±2.68 65.96±2.46 46.83±2.24 41.87±2.01 38.75±1.98 59.75±2.42 210Pbex 72.19±3.90 64.45±3.42 53.55±3.03 33.88±2.82 28.30±2.59 26.47±2.60 46.47±3.06 210Pb/226Raa 5.75 5.87 5.31 3.61 3.09 3.16 4.50 层数(Interval)/cm 平均值
Mean0—5 5—10 10—15 15—21 BKAS35 226Ra 38.51±0.73 24.40±0.93 21.49±0.57 21.24±0.92 26.41±0.79 210Pb 133.54±3.37 71.10±2.84 54.20±2.71 45.62±2.83 76.12±2.94 210Pbex 95.03±4.10 46.71±3.77 32.71±3.28 24.38±3.75 49.71±3.73 210Pb/226Ra 3.47 2.91 2.52 2.15 2.88 续表 2 层数(Interval)/cm 平均值
Mean0—5 5—10 10—15 15—20 20—25 BKAS64 226Ra 14.60±0.85 16.25±0.86 15.87±0.82 13.17±0.80 11.42±0.44 14.26±0.75 210Pb 72.33±4.03 43.22±3.55 30.14±3.46 26.78±3.19 18.05±1.81 38.10±3.21 210Pbex 57.72±4.88 26.96±4.41 14.27±4.28 13.61±3.99 6.63±2.25 23.84±3.96 210Pb/226Ra 4.95 2.66 1.90 2.03 1.59 2.67 层数(Interval)/cm 平均值
Mean0—5 5—10 10—15 15—20 20—26 BKAS79 226Ra 22.20±0.53 14.44±0.50 13.48±0.50 10.65±0.47 9.38±0.49 14.03±0.50 210Pb 66.59±2.48 56.53±2.33 26.75±2.01 21.75±1.87 17.20±1.87 37.76±2.11 210Pbex 44.39±3.01 42.09±2.83 13.27±2.51 11.10±2.34 7.81±2.36 23.73±2.61 210Pb/226Ra 3.0 3.9 1.98 2.04 1.83 2.69 层数(Interval)/cm 平均值
Mean0—5 5—10 10—15 15—20 20—25 BKAS80 226Ra 16.17±0.97 16.10±0.91 14.82±0.88 12.16±0.91 8.81±0.96 13.61±0.93 210Pb 93.69±4.34 50.71±3.72 34.83±3.75 21.29±3.52 17.30±3.59 43.56±3.78 210Pbex 77.52±5.31 34.61±4.63 20.01±4.63 9.12±4.43 8.48±4.55 29.95±4.71 210Pb/226Ra 5.79 3.15 2.35 1.75 1.96 3.2 表 3 不同海域岩心226Ra和210Pb的含量范围与平均值(Bq·kg−1)
Table 3. The content and average value of 226Ra and 210Pb in Core in different sea areas
站位
Sea areas226Ra 210Pb 参考文献
Reference范围Content 平均值Average 范围Content 平均值Average 南沙海域 8.81—38.5 18.0 17.2—143 55.1 本文 南沙海区表层(海盆) 27.9—41.7 35.2 52.6—97.6 75.0 [24] 南海东北部 25.4—32.4 27.7 49.7—173 116 [25] 阳江核电站海域 32.6—38.6 35.2±2.0 86.9—148 127±14.0 [26] 胶州湾表层 20.6—44.1 26.5±3.30 50.0—70.0 61.0±13.0 [27] 黄茅海广海湾海域表层 32.0—48.7 36.6 96.2—147 123 [28] 北部湾白龙半岛临近海域 10.3—51.8 32.4±9.4 10.4—184 89.2±41.2 [29] The Red Sea coast(红海海岸) 2.10—5.08 3.03 3.50—16.3 8.60 [30] Cubata˜o河口 28.0—80.0 56.0 84.0—213 160 [31] The East Malaysia coastal 17.0—26.0 — 11.0—84.0 — [32] Mumbai Harbor Bay 16.3—26.3 22.2 ± 3.0 20.2—48.0 37.0±10.8 [33] 注:“—”代表没有数据.
Note:“—” means no data. -
[1] 刘广山, 黄奕普, 彭安国. 深海沉积物岩心锕放射系核素的γ谱测定 [J]. 台湾海峡, 2002(1): 86-93. LIU G S, HUANG Y P, PENG A G. Measurement of actinium series radionuclides in deep sea sediment core usingγspectrometry [J]. Journal of oceanography in Taiwan strait, 2002(1): 86-93(in Chinese).
[2] 刘广山. 海洋放射年代学[M]. 厦门: 厦门大学出版社, 2016. LIU G S. Marine geochronology.[M]. Xiamen: Xiamen University Press, 2016(in Chinese).
[3] 赵利, 蔡观强, 钟和贤, 等. 南海北部陆架海域表层沉积物地球化学特征及地质意义 [J]. 地质学刊, 2017, 41(1): 103-111. doi: 10.3969/j.issn.1674-3636.2017.01.103 ZHAO L, CAI G Q, ZHONG H X, et al. Geochemical characteristics and geological significance of surface sediments from the continental shelf waters of the northern South China Sea [J]. Journal of Geology, 2017, 41(1): 103-111(in Chinese). doi: 10.3969/j.issn.1674-3636.2017.01.103
[4] 崔振昂, 林进清, 甘华阳, 等. 南海北部湾东部海域表层沉积物地球化学特征 [J]. 海洋科学, 2015, 39(7): 103-111. CUI Z A, LIN J Q, GAN H Y, et al. Geochemical characteristics of surface sediments in the eastern Beibu Gulf of the South China Sea [J]. Marine Sciences, 2015, 39(7): 103-111(in Chinese).
[5] 赵建如. 南海西北部表层沉积物元素地球化学空间多尺度变化与机制研究[D]. 武汉: 中国地质大学(武汉), 2016. ZHAO J R. Study on spatial multi-scale variation and mechanism of element geochemistry of surface sediments in northwestern South China Sea[D]. Wuhan: ChinaUniversity of Geosciences (Wuhan), 2016(in Chinese).
[6] 吴宗洋, 梁前勇, 蒋文敏, 等. 南海珠江口盆地西部海域海马冷泉区表层沉积物的生物标志物特征 [J]. 地球化学, 2019, 48(1): 88-99. WU Z Y, LIANG Q Y, JIANG W M, et al. Biomarker characteristics of surface sediments in the hippocampal cold spring area in the western Pearl River Estuary Basin, South China Sea [J]. Geochemistry, 2019, 48(1): 88-99(in Chinese).
[7] 胡春明, 李曜, 尤立, 等. 三门峡坝下河漫滩沉积物137Cs、210Pb计年研究 [J]. 人民黄河, 2017, 39(4): 62-65. doi: 10.3969/j.issn.1000-1379.2017.04.014 HU C M, LI Y, YOU L, et al. Study on 137Cs and 210Pb dating of floodplain sediments under Sanmenxia Dam [J]. Yellow River, 2017, 39(4): 62-65(in Chinese). doi: 10.3969/j.issn.1000-1379.2017.04.014
[8] 王小雷, 杨浩, 顾祝军, 等. 不同营养湖泊沉积物中210Pbex和营养盐垂向分布特征及相关性分析 [J]. 环境科学, 2014, 35(7): 2565-2571. WANG X L, YANG H, GU Z J, et al. Vertical distribution characteristics and correlation analysis of 210Pbex and nutrients in sediments of different nutrient lakes [J]. Environmental Science, 2014, 35(7): 2565-2571(in Chinese).
[9] LI Y, LI J J, ARE K S, et al. Livestock grazing significantly accelerates soil erosion more than climate change in Qinghai-Tibet Plateau: Evidenced from 137Cs and 210Pbex measurements [J]. Agriculture, Ecosystems and Environment, 2019, 285(C): 1-8. [10] 胡菊芳, 沙占江, 马玉军, 等. 210Pbex示踪法技术原理及其在土壤侵蚀中的应用 [J]. 盐湖研究, 2017, 25(1): 76-80. HU J F, SHA Z J, MA Y J, et al. Technical principle of 210Pbex Tracer method and its Application in soil erosion [J]. Journal of Salt Lake Research, 2017, 25(1): 76-80(in Chinese).
[11] 林武辉, 余克服, 王英辉, 等. 海洋沉积过程的铀系放射性核素示踪技术: 物源识别、沉积、再悬浮 [J]. 海洋地质与第四纪地质, 2020, 40(1): 60-70. LIN W H, YU K F, WANG Y H, et al. Tracer technique of uranium series radionuclides in marine sedimentary process: provenance identification, deposition and resuspension [J]. Marine geology and Quaternary Geology, 2020, 40(1): 60-70(in Chinese).
[12] 陈俊畅, 夏良树, 麻卓然, 等. 南沙海域沉积物岩心中238U和40K的测定及深度变化 [J]. 环境化学, 2018, 37(5): 968-973. CHEN J C, XIA L S, MA Z R, et al. Determination of 238U and 40K in sediment cores in Nansha sea area and their depth profiles [J]. Environmental Chemistry, 2018, 37(5): 968-973(in Chinese).
[13] 蔡树群, 龙小敏, 陈荣裕, 等. 春季南沙群岛海区环流结构的探讨 [J]. 热带海洋学报, 2004, 23(2): 37-44. doi: 10.3969/j.issn.1009-5470.2004.02.005 CAI S Q, LONG X M, CHEN R Y, et al. A study on circulation structure in spring in Nansha islands sea area south China sea [J]. Journal of Tropical Oceanography, 2004, 23(2): 37-44(in Chinese). doi: 10.3969/j.issn.1009-5470.2004.02.005
[14] 丁敏霞, 刘国卿, 苏玲玲, 等. 深圳近岸海域海水及沉积物中放射性核素水平 [J]. 核化学与放射化学, 2017, 39(6): 442-446. doi: 10.7538/hhx.2017.YX.2016067 DING M X, LIU G Q, SU L L, et al. Rationuclides in seawater and sediments from near-shore area of Shenzhen [J]. Journal of nuclear and radio chemistry, 2017, 39(6): 442-446(in Chinese). doi: 10.7538/hhx.2017.YX.2016067
[15] 陈敏, 黄奕普, 施文远, 等. 东沙群岛附近海域表层沉积物中的镭同位素//台湾海峡及邻近海域海洋科学讨论会论文集[C]. 北京: 海洋出版社, 1995: 208-216. CHEN M, HUANG Y P, SHI W Y, et al. Radium isotopes in surface sediments of sea area near the Dongsha Islands//Proceedings of Symposium of Marine Sciences in Taiwan Strait and its Adjacent Waters[C]. Beijing: China Ocean Press, 1995: 208-216(in Chinese).
[16] 万国江. 现代沉积的210Pb计年 [J]. 第四纪研究, 1997(3): 230-239. doi: 10.3321/j.issn:1001-7410.1997.03.005 WAN G J. 210Pb dating of modern sediments [J]. Quaternary Sciences, 1997(3): 230-239(in Chinese). doi: 10.3321/j.issn:1001-7410.1997.03.005
[17] 孙丽, 介冬梅, 濮励杰. 210Pb、137Cs计年法在现代海岸带沉积速率研究中的应用述评 [J]. 地理科学进展, 2007, 26(2): 67-76. doi: 10.3969/j.issn.1007-6301.2007.02.008 SUN L, JIE D M, PU L J. A Review of the Application of 210Pb and 137Cs dating methods in the study of sedimentation rate in Modern Coastal Zone [J]. Progress in Geography, 2007, 26(2): 67-76(in Chinese). doi: 10.3969/j.issn.1007-6301.2007.02.008
[18] 徐经意, 万国江, 王长生, 等. 云南省泸沽湖、洱海现代沉积物中210Pb, 137Cs的垂直分布及其计年 [J]. 湖泊科学, 1999, 11(2): 110-116. doi: 10.18307/1999.0204 XU J Y, WAN G J, WANG C S, et al. Vertical Distribution and dating of 210Pb, 137Cs in Modern sediments of Lugu Lake and Erhai Lake in Yunnan Province [J]. Journal of Lake Sciences, 1999, 11(2): 110-116(in Chinese). doi: 10.18307/1999.0204
[19] 尹毅. 对海洋沉积物放射性调查工作的一点看法 [J]. 海洋通报, 1984, 3(1): 101-107. YI Y. Some opinions on the radioactive investigation of marine sediments [J]. Marine Science Bulletin, 1984, 3(1): 101-107(in Chinese).
[20] 许红昆, 林畅松. 沉积物压实的一种校正方法 [J]. 地学前缘, 2000, 7(2): 366. doi: 10.3321/j.issn:1005-2321.2000.02.030 XU H K, LIN C S. A correction method for sediment compaction [J]. Earth Science Frontiers, 2000, 7(2): 366(in Chinese). doi: 10.3321/j.issn:1005-2321.2000.02.030
[21] LIN W H, YU K F, WANG Y H, et al. Radioactive level of coral reefs in the South China Sea [J]. Marine Pollution Bulletin, 2019, 142: 43-53. doi: 10.1016/j.marpolbul.2019.03.030 [22] PAPADOPOULOS A. 226Ra/238U and 228Th/228Ra disequilibrium as weathering indices in beach sand sediments associated with granitoids from Cyclades. Greece [J]. Applied Geochemistry, 2019, 100: 223-233. doi: 10.1016/j.apgeochem.2018.12.002 [23] 林武辉, 冯禹, 余克服, 等. 北部湾沉积物中放射性核素的分布特征与控制因素 [J]. 海洋学报, 2020, 42(2): 143-154. LIN W H, FENG Y, YU K F, et al. Distribution characteristics and controlling factors of radionuclides in sediments of Beibu Gulf [J]. Acta Oceanologica Sinica, 2020, 42(2): 143-154(in Chinese).
[24] 刘广山, 黄奕普, 陈敏, 等. 南沙海区表层沉积物放射性核素分布特征 [J]. 海洋科学, 2001, 25(8): 1-5. doi: 10.3969/j.issn.1000-3096.2001.08.001 LIU G S, HUANG Y P, CHEN M, et al. Distribution features of radionuclides in surface sediments of nansha sea areas [J]. Marine Sciences, 2001, 25(8): 1-5(in Chinese). doi: 10.3969/j.issn.1000-3096.2001.08.001
[25] 刘广山, 黄奕普, 陈敏, 等. 南海东北部表层沉积物天然放射性核素与137Cs [J]. 海洋学报(中文版), 2001, 23(6): 76-84. LIU G S, HUANG Y P, CHEN M, et al. Specific activity and distribution of natural radionuclides and 137Cs in surface sediments of the northeastern South China Sea [J]. Acta Oceanologica Sinica, 2001, 23(6): 76-84(in Chinese).
[26] 吴梅桂, 周鹏, 赵峰, 等. 阳江核电站附近海域表层沉积物中γ放射性核素含量水平 [J]. 海洋环境科学, 2018, 37(1): 43-47. WU M G, ZHOU P, ZHAO F, et al. Content of γ radionuclides in surface sediments near Yangjiang Nuclear Power Station [J]. Marine Environmental Science, 2018, 37(1): 43-47(in Chinese).
[27] 贾成霞, 刘广山, 徐茂泉, 等. 胶州湾表层沉积物放射性核素含量与矿物组成 [J]. 海洋与湖沼, 2003, 34(5): 490-498. doi: 10.3321/j.issn:0029-814X.2003.05.004 JIA C X, LIU G S, XU M Q, et al. Radionuclides and minerals in surface sendiments of JiaoZhou Bay [J]. Oceanologia et Limnologia Sinica, 2003, 34(5): 490-498(in Chinese). doi: 10.3321/j.issn:0029-814X.2003.05.004
[28] 赵峰, 吴梅桂, 周鹏, 等. 黄茅海-广海湾及其邻近海域表层沉积物中γ放射性核素含量水平 [J]. 热带海洋学报, 2015, 34(4): 77-82. doi: 10.3969/j.issn.1009-5470.2015.04.011 ZHAO F, WU M G, ZHOU P, et al. Radionuclides in surface sediments from HuangmaohaiEstuary-Guanghai bay and its adjacent sea area, South China Sea of γ [J]. Journal of Tropical Oceanography, 2015, 34(4): 77-82(in Chinese). doi: 10.3969/j.issn.1009-5470.2015.04.011
[29] 毛远意, 林静, 黄德坤, 等. 北部湾白龙半岛邻近海域沉积物中放射性核素含量水平 [J]. 应用海洋学学报, 2018, 37(2): 194-202. doi: 10.3969/J.ISSN.2095-4972.2018.02.006 MAO Y Y, LIN J, HUANG D K, et al. Radionuclides in the surface sediments along the coast of Bailong Peninsula in Beibu Gulf [J]. Journal of Applied Oceanography, 2018, 37(2): 194-202(in Chinese). doi: 10.3969/J.ISSN.2095-4972.2018.02.006
[30] SIRELKHATIM D A, SAM A K, HASSONA R K. Distribution of 226 Ra– 210 Pb– 210 Po in marine biota and surface sediments of the Red Sea, Sudan [J]. Journal of Environmental Radioactivity, 2008, 99(12): 1825-1828. doi: 10.1016/j.jenvrad.2008.07.008 [31] SANDERS L M, SANDERS C J, LUIZ-SILVA W, et al. Patchineelam. Anthropogenic source assessment of 226Ra and 210Pb in a sediment core from the Cubatão River estuary (SE Brazil) [J]. Journal of Radioanalytical and Nuclear Chemistry, 2011, 287(3): 729-732. doi: 10.1007/s10967-010-0813-0 [32] ZAL U’YUN WAN MAHMOOD, RAHIM MOHAMED C A, ISHAK A K, et al. Vertical distribution of 210Pb and 226Ra and their activity ratio in marine sediment core of the East Malaysia coastal waters [J]. Journal of Radioanalytical and Nuclear Chemistry, 2011, 289(3): 953-959. doi: 10.1007/s10967-011-1206-8 [33] KUMAR A, ROUT S, KARPE R, et al. Inventory, fluxes and residence times from the depth profiles of naturally occurring 210Pb in marine sediments of Mumbai Harbor Bay [J]. Environmental Earth Sciences, 2015, 73(8): 4019-4031. doi: 10.1007/s12665-014-3687-6