-
溶解性有机质(dissolved organic matter, DOM)是具有不同官能团和分子结构的芳香族和脂肪族有机化合物的复杂多相混合物[1],富含碳、氮、磷等多种生物需要的有机物质,在各种水体中具有多种地球化学和生态功能[2],DOM的形成、转化和命运及其伴随的养分再生过程是水生生态系统生物地球化学循环的关键环节,此外DOM作为能量和营养的重要来源,对水生生态系统中浮游植物和细菌的生物活性具有重大影响,在内陆湖泊爆发藻华过程中也起重要作用[3]。三维荧光光谱技术(EEMs)用于DOM来源及动力学的研究,具有灵敏度高、样品用量少、重复性好且不易损坏样品的特点[4],近年来被用于追踪其在自然水域中的变化,如河流、湖泊、水库[5]等,已经成为地球化学、环境化学和海洋化学等领域关注的热点。
银川市是西北干旱半干旱区典型的绿洲区域,受其地貌类型、气候、土壤等自然条件影响,形成了全球范围内荒漠半荒漠地区少见的高原湿地,是西北干旱半干旱区人工绿洲生态系统的有机组成部分,是黄河中上游重要的保水、蓄水和调水基地,也是银川市具水源保持、水质净化、蓄洪防旱、气候调节等重要功能的生态资源[6]。自20世纪以来,银川湿地大规模的农垦开发,开创了湖泊湿地的多重利用、全面利用的局面,从湿地垦殖到水利工程建设、渔业养殖再到旅游休闲和城镇建设,湿地利用方式具有越来越多样性、深度化的特征,产生了良好的经济、生态和社会效益的同时也对湿地生态环境造成了一定的不利影响[7]。而对于银川市DOM的研究还未见报道。
了解银川市湿地表层水体DOM的组成分布,探明DOM在银川市湿地中的组分信号及来源,以期为银川市湿地资源的综合管理与水资源的健康评价提供基础依据,为当地有关部门对湿地资源的开发利用提供参考依据,同时为湿地的可持续利用发展与实施湿地修复治理工程提供科学依据。
利用光谱分析法表征银川市湿地水体中溶解性有机质的特征
Characterization of dissolved organic matter in the surface water of the Yinchuan Wetlands using spectroscopic analysis
-
摘要:
为了研究银川市湿地表层水体中溶解性有机质(DOM)的光谱特征、空间分布及其来源,对银川市20个采样点采集的186个湿地表层水样进行了三维荧光光谱技术(EEMs)结合区域积分法(FRI)、平行因子分析法(PARAFAC)以及荧光指数法的分析。结果表明,银川市湿地水体DOM主要包括6种组分:C1组分(类酪氨酸物质)相对含量最大,占41.21%,其次为C2(微生物腐殖质),占15.54%、C4(海洋腐殖质),占15.10%、C3(红移的陆地腐殖质),占10.30%、C5(类色氨酸物质),占10.69%,相对含最小为C6(未能分离的酪氨酸样和陆地腐殖质物质),占7.20%,DOM的组分信号为蛋白质主导型;空间分布结合主成分分析显示,银川市湿地水体各研究区域DOM差异显著,主要受到湿地开发利用程度,湖泊水源补给,周围土地利用类型的影响;荧光光谱特征参数分析结果显示,银川市湿地表层水体DOM的来源为陆源-自生源复合型,但自生源特征明显,且新生的DOM的比重较大。
-
关键词:
- 溶解性有机质(DOM) /
- 银川湿地 /
- 三维荧光光谱(EEMs) /
- 区域积分(FRI) /
- 平行因子分析(PARAFAC)
Abstract:In order to explore the sources, spatial distribution and spectral characteristics of the dissolved organic matter (DOM) in surface waters of Yinchuan wetlands, 186 water samples were collected from 20 sampling sites. The samples were analyzed by the three-dimensional fluorescence spectroscopy (EEM), the fluorescence regional integration (FRI), the parallel factor analysis (PARAFAC), and the Fluorescence index method, respectively. The results revealed that six types of components exist in the DOM, including the C1 component (tyrosine-like humus) with the largest ratio (41.21%), the C2 moiety (microbial humus) accounting for 15.54%, the C4 component (marine humus) with the proportion of 15.10%, the C3 (redshifted terrestrial humus, 10.30%) and C5 components (tryptophan-like humus, 10.69%), the C6 element (the mixture of tyrosine-like humus and terrestrial humus) with the lowest ratio of 7.20%. It is observed that the component of DOM was dominated by protein. Moreover, the combination of spatial distribution and principal component analysis indicated that there were significant disparities in different research regions of Yinchuan wetlands, which was mainly affected by the development level of the wetlands, the water supplies from the lake, as well as the land use type. The feature analysis of fluorescence spectra pointed out that the source of DOM in the surface waters of Yinchuan wetlands was a complex of terrigenous-authigenic mode, and the authigenic component was predominant with a major proportion of new DOM.
-
表 1 三维荧光光谱相关参数描述
Table 1. Description of fluorescence spectrum parameters
光谱参数
Fluorescence parameter参数定义
Parameter definition参数相关描述
Parameter description荧光指数(FI) Ex=370 nm时,Em=470 nm与
520 nm处的荧光强度比值;作为物质来源的指示指标,对荧光组分及指标的生态定义中指出
FI>1.8以自生源为主,FI<1.2以陆源输入为主[9]。腐殖化指数(HIX) Ex=254 nm时,435—480 nm间的
荧光峰值与300—345 nm之间的
荧光峰值积分之商反映水体DOM的腐殖化程度,其值小于3表明DOM呈微弱腐殖化
特征且有重要的近期自生源,3—6则表示DOM呈强腐殖质特征,
具有微弱的新进自生源,大于6表明DOM呈强腐殖质特征
和重要的陆源贡献[9]。自生源指数(BIX) Ex=310 nm时,Em在380 nm和
430 nm处荧光强度的比值;反映水体DOM自生源贡献,其值在0.6—0.8表明自生源贡献较少
主要为陆源输入,大于1时主要为生物或细菌等来源,0.8—1.0则
表明DOM来源介于两者之间[10]。Fn280 Ex=280 nm时,Em在340—
360 nm间最大的荧光强度;代表类蛋白质物质相对浓度水平[10]。 Fn355 Ex=355 nm时,Em在440—
470 nm间最大的荧光强度;代表类腐殖质物质相对浓度水平[10]。 表 2 银川湿地水体样品DOM的荧光组分特征
Table 2. Characteristics of fluorescent components in DOM of Yinchuan Wetland water
组分
ComponentsEx/nm
Em/nm 类型
TypeOpenFluor匹配数目
Matches同类研究比较/nm
Comparison of similar studiesC1 275 300 类酪氨酸
(类蛋白质物质)11 270/380[18];284,270/302[23] C2 260/275/290/360 425 微生物腐殖质
(类腐殖质物质)2 260,360/422[20];355/424[21] C3 270/375 480 红移的陆地腐殖质
(类腐殖质物质)57 <275,370/475[24];260/365,476[22] C4 310 405 海洋腐殖质
(类腐殖质物质)4 315/410[21];<300/396[25] C5 275 340/355 类色氨酸
(类蛋白质物质)40 275/330[26];280/340[19] C6 255 305/400/505 酪氨酸样和
陆地腐殖质1 <250/436[27];250/30,540[26] 表 3 银川市湿地DOM荧光指数与国内外其他地区湿地的比较
Table 3. Comparison of characteristic parameters of fluorescent light in the wetland waters from the different regions
区域Regions FI HIX BIX 文献References 银川湿地 1.82—2.73(2.23) 0.38—6.32(1.85) 0.83—1.36(1.01) 本研究 太湖(长江三角洲) 1.65—2.50(1.93) 0.20—2.66(0.56) 0.84—1.48(1.12) [3] 天才湖(云贵高原) 1.51 4.25 — [29] 百花湖(西南高原) — 2.88—5.63 0.76—0.83 [30] 乌梁素海(内蒙古) 1.594—1.746 1.514—5.012 [31] 埃夫罗斯河(保加利亚、土耳其、希腊) — 0.75—9.7 0.57—0.9 [32] 弗罗里达沿海大沼泽(弗罗里达) 1.28—1.47 4.5—16.0 0.4—0.9 [33] 南卡罗来纳州沿海湿地(美国) 1.30—1.54 4.18—16.7 — [34] 南加州奥兰治县湿地(美国) 1.47—1.56 — 0.70—0.83 [35] 加利福尼亚南部盐沼(美国) — 0.8±0.3 0.6±0.2 [36] 注:“—”表示未报道。Note: “—” unreported. -
[1] SONG F, WU F, FENG W, et al. Fluorescence regional integration and differential fluorescence spectroscopy for analysis of structural characteristics and proton binding properties of fulvic acid sub-fractions [J]. Journal of Environmental Sciences, 2018, 74: 116-125. doi: 10.1016/j.jes.2018.02.015 [2] SEPP M, KOIV T, NOGES P, et al. Do organic matter metrics included in lake surveillance monitoring in europe provide a broad picture of brownification and enrichment with oxygen consuming substances? [J]. Science of The Total Environment , 2018, 610-611: 1288-1297. [3] WEIWEI L, XIN Y, KEQIANG S, et al. Unraveling the sources and fluorescence compositions of dissolved and particulate organic matter (DOM and POM) in lake Taihu, China [J]. Environmental Science and Pollution Research, 2019, 26(4): 4027-4040. doi: 10.1007/s11356-018-3873-2 [4] 沈烁, 王育来, 杨长明, 等. 南淝河不同排口表层沉积物DOM光谱特征 [J]. 中国环境科学, 2014, 34(9): 2351-2361. SHEN S, WANG Y L, YANG C M, et al. Spectral characteristic of dissolved organic matter (DOM) in the surface sediments from different discharging points along the nanfei river in hefei city, anhui province [J]. China Environmental Science, 2014, 34(9): 2351-2361(in Chinese).
[5] MASSICOTTE P, ASMALA E, STEDMON C, et al. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans [J]. Sci Total Environ, 2017, 609: 180-191. doi: 10.1016/j.scitotenv.2017.07.076 [6] 田大年, 党丽慧, 丁润梅, 等. 银川市湿地表层水中多环芳烃的分布、来源及生态风险评价 [J]. 环境科学, 2019, 40(7): 3068-3077. TIAN D N, DANG L H, DING R M, et al. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in the surface waters of the yinchuan wetlands [J]. Environmental Science, 2019, 40(7): 3068-3077(in Chinese).
[7] 何彤慧, 王筱平, 高鹏. 银川平原湿地开发利用的历史经验 [J]. 宁夏农林科技, 2018, 59(7): 29-32, 43. doi: 10.3969/j.issn.1002-204x.2018.07.012 HE T H, WANG X P, GAO P. His torical experience of wetland development and utilization in yinchuan plain [J]. Ningxia Journal of Agri and Fores, 2018, 59(7): 29-32, 43(in Chinese). doi: 10.3969/j.issn.1002-204x.2018.07.012
[8] 谭鹏. 银川湿地保护与水资源可持续利用概述 [J]. 宁夏农林科技, 2016, 57(1): 51-52, 62. doi: 10.3969/j.issn.1002-204X.2016.01.020 TAN P. An overview of wetland protection and water resources sustainable utilization in Yinchuan [J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2016, 57(1): 51-52, 62(in Chinese). doi: 10.3969/j.issn.1002-204X.2016.01.020
[9] JASON B. FELLMAN, ERAN H, et al FELLMAN, ERAN H, et al. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review [J]. American Society of Limnology and Oceanography, 2010, 55(6): 2452-2462. doi: 10.4319/lo.2010.55.6.2452 [10] 周石磊, 孙悦, 张艺冉, 等. 雄安新区-白洋淀冬季冰封期水体溶解性有机物的空间分布、光谱特征及来源解析 [J]. 环境科学, 2020, 41(1): 213-223. ZHOU S L, SUN Y, ZHANG Y R, et al. Spatial distribution, spectral characteristics, and sources analysis of dissolved organic matter from baiyangdian Lake in Xiong’an New District during the winter freezing period [J]. Environmental Science, 2020, 41(1): 213-223(in Chinese).
[11] YAO Y, LI Y Z, GUO X J, et al. Changes and characteristics of dissolved organic matter in a constructed wetland system using fluorescence spectroscopy [J]. Environ Sci Pollut Res Int, 2016, 23(12): 12237-12245. doi: 10.1007/s11356-016-6435-5 [12] MURPHY K R, TIMKO S A, GONSIOR M, et al. Photochemistry illuminates ubiquitous organic matter fluorescence spectra [J]. Environ Sci Technol, 2018, 52(19): 11243-11250. doi: 10.1021/acs.est.8b02648 [13] SANCHEZ N P, SKERIOTIS A T, MILLER C M. A PARAFAC-based long-term assessment of DOM in a multi-coagulant drinking water treatment scheme [J]. Environ Sci Technol, 2014, 48(3): 1582-1591. doi: 10.1021/es4049384 [14] BRIDGEMAN J, BIEROZA M, B, AKER A. The application of fluorescence spectroscopy to organic matter characterisation in drinking water treatment [J]. Reviews in Environmental Science and Bio/Technology, 2011, 10(3): 277-290. doi: 10.1007/s11157-011-9243-x [15] SINGH S, J. D'SA E, M. SWENSON E. Chromophoric dissolved organic matter (CDOM) variability in barataria basin using excitation–emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) [J]. Science of the Total Environment, 2010, 408: 3211-3222. doi: 10.1016/j.scitotenv.2010.03.044 [16] CHEN H, LEI K, WANG X. Terrestrial humic substances in daliao river and its estuary: Optical signatures and photoreactivity to UVA light [J]. Environmental Science and Pollution Research, 2015, 23(7): 6459-6471. [17] EHNVALL B. Organic matter properties and their relation to phosphorus and nitrogen concentrations in swedish agricultural streams[D]. Uppsala: Sveriges lantbruksuniversitet, 2017. [18] PAINTER S C, LAPWORTH D J, WOODWARD E M S, et al. Terrestrial dissolved organic matter distribution in the north sea [J]. Sci Total Environ, 2018, 630: 630-647. doi: 10.1016/j.scitotenv.2018.02.237 [19] OSBURN C L, HANDSEL L T, MIKAN M P, et al. Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary [J]. Environ Sci Technol, 2012, 46(16): 8628-8636. doi: 10.1021/es3007723 [20] WILLIAMS C J, YAMASHITA Y, WILSON H F, et al. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems [J]. Limnology and Oceanography, 2010, 55(3): 1159-1171. doi: 10.4319/lo.2010.55.3.1159 [21] LAMBERT T, BOUILLON S, DARCHAMBEAU F, et al. Effects of human land use on the terrestrial and aquatic sources of fluvial organic matter in a temperate river basin (the Meuse River, Belgium) [J]. Biogeochemistry, 2017, 136(2): 191-211. doi: 10.1007/s10533-017-0387-9 [22] CHEN M, JUNG J, LEE Y K, et al. Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the chukchi sea of the arctic ocean [J]. Sci Total Environ, 2018, 639: 624-632. doi: 10.1016/j.scitotenv.2018.05.205 [23] CHEN M, KIM S H, JUNG H J, et al. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications [J]. Water Res, 2017, 121: 150-161. doi: 10.1016/j.watres.2017.05.022 [24] CATALA T S, RECHE I, FUENTES-LEMA A, et al. Turnover time of fluorescent dissolved organic matter in the dark global ocean [J]. Nat Commun, 2015, 6: 5986-5994. doi: 10.1038/ncomms6986 [25] SøNDERGAARD M, STEDMON C A, BORCH N H. Fate of terrigenous dissolved organic matter (DOM) in estuaries: Aggregation and bioavailability [J]. Ophelia, 2003, 57(3): 161-176. doi: 10.1080/00785236.2003.10409512 [26] ZHU W Z, YANG G P, ZHANG H H. Photochemical behavior of dissolved and colloidal organic matter in estuarine and oceanic waters [J]. Sci Total Environ, 2017, 607-608: 214-224. doi: 10.1016/j.scitotenv.2017.06.163 [27] CAWLEY K M, BUTLER K D, AIKEN G R, et al. Identifying fluorescent pulp mill effluent in the gulf of maine and its watershed [J]. Mar Pollut Bull, 2012, 64(8): 1678-1687. doi: 10.1016/j.marpolbul.2012.05.040 [28] ZHENG L, SONG Z, MENG P, et al. Seasonal characterization and identification of dissolved organic matter (DOM) in the Pearl River, China [J]. Environmental Science and Pollution Research, 2015, 23(8): 7462-7469. [29] DU Y, ZHANG Y, CHEN F, et al. Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC: An insight into the fate of allochthonous DOM in alpine lakes affected by climate change [J]. Sci Total Environ, 2016, 568: 216-225. doi: 10.1016/j.scitotenv.2016.06.036 [30] SONG F H, WU F C, FENG W Y, et al. Depth-dependent variations of dissolved organic matter composition and humification in a plateau lake using fluorescence spectroscopy [J]. Chemosphere, 2019, 225: 507-516. doi: 10.1016/j.chemosphere.2019.03.089 [31] GUO X J, LI Q, JIANG J Y, et al. Investigating spectral characteristics and spatial variability of dissolved organic matter leached from wetland in semi-arid region to differentiate its sources and fate [J]. Clean - Soil, Air, Water, 2014, 42(8): 1076-1082. doi: 10.1002/clen.201300412 [32] TZORTZIOU M, ZERI C, DIMITRIOU E, et al. Colored dissolved organic matter dynamics and anthropogenic influences in a major transboundary river and its coastal wetland [J]. Limnol Oceanogr, 2015, 60(4): 1222-1240. doi: 10.1002/lno.10092 [33] WAGNER S, JAFFE R, CAWLEY K, et al. Associations between the molecular and optical properties of dissolved organic matter in the florida everglades, a model coastal wetland System [J]. Front Chem, 2015(3): 66-80. [34] WANG J J, JIAO Y, RHEW R C, et al. Haloform formation in coastal wetlands along a salinity gradient at South Carolina, United States [J]. Environmental Chemistry, 2016, 13: 745-756. doi: 10.1071/EN15145 [35] CLARK C D, DE BRUYN W J, BRAHM B, et al. Optical properties of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) levels in constructed water treatment wetland systems in southern california, USA [J]. Chemosphere, 2020: 247:125906. doi: 10.1016/j.chemosphere.2020.125906 [36] BOWEN J C, CLARK C D, KELLER J K, et al. Optical properties of chromophoric dissolved organic matter (CDOM) in surface and pore waters adjacent to an oil well in a southern california salt marsh [J]. Mar Pollut Bull, 2017, 114(1): 157-168. doi: 10.1016/j.marpolbul.2016.08.071