-
农业土壤重金属污染日益受到重视。农业土壤重金属被作物吸收后可通过食物链进入人体,造成人体健康风险[1]。目前,我国有约17%的农业土壤受到重金属累积的影响[2]。农业土壤重金属累积主要来源于矿物开采、肥料、废水、农药、污水灌溉、污泥、工业排放、农用化学品等[3-5]。
设施农业是我国农业重要组成部分,全国设施蔬菜播种面积6000万hm2,产量约3亿t,占蔬菜总产量的38%。为追求经济效益,设施菜地通常具有高复种指数、高肥料投入、高耕作频率等特点,这些可能造成设施菜地土壤重金属累积[6]。孟敏等[7]指出,我国南部、北部和西北部的41.7%、54.5%和11.1%的设施农业土壤存在Cd超标现象。一些研究已评估我国各地设施农田土壤重金属污染现状,如河北省青县、定州、永年和藁城的大棚土壤Cd和Cr超过其背景值的比例为100%和40.7%[8],山东省设施农田土壤Cd污染水平为无污染到中等污染[9],而东部土壤则受Cu、Pb和Zn的中度污染、以及Cd的重污染[10]。研究认为设施农田重金属主要来源于大量施用的农用化学品、化肥、有机肥和粪肥等[11-14]。
农用土壤重金属有效态含量受土壤理化性质、土壤质地、营养物质、气候等多种因素影响[15]。设施菜地的粪肥、有机肥和化肥的大量施用既可影响土壤重金属的累积,也可影响重金属有效态含量和移动性。因此,本文选择唐山市为研究区,评估设施菜地土壤重金属Cd、Cu、Ni、Pb和Zn的累积现状及有效态含量,并分析土壤重金属累积和有效态受土壤pH、种植年限、土壤总氮和总磷等因素的影响特征,以期为降低研究区设施菜地土壤重金属累积风险的农业措施提供科学依据。
唐山市设施菜地土壤重金属累积与有效态含量的影响特征
Factors impact on accumulation and availability of heavy metals in greenhouse vegetable soil from Tangshan City
-
摘要: 设施菜地重金属累积日益突出,本文评估了唐山市设施菜地土壤重金属累积并分析其有效态影响因素。结果表明土壤Cd、Cu、Ni、Pb和Zn总量均值分别为0.20、51.98、20.85、20.93、120.15 mg·kg−1,有效态含量均值分别为0.065、7.92、0.62、0.57、11.29 mg·kg−1。地累积指数表明Cd、Cu和Zn污染的土壤样点比例分别为92.5%、68.7%和50.8%,且Cd、Cu和Zn的主要来源为粪肥和化肥输入,而Ni和Pb则为自然源。设施菜地土壤重金属累积量与肥料输入和种植年限呈正比,而pH越低土壤重金属有效态含量会增加、化肥施用增加可提高重金属有效态含量。土壤总磷与Cu和Zn的地累积指数关系表明,Cu和Zn的来源可能受磷肥施用的影响更大。另外,化肥和粪肥施用量差异可能是导致重金属累积空间差异的重要因素。Abstract: Heavy metal accumulation in greenhouse vegetable soils is becoming increasingly prominent. The present study assessed the accumulation levels of heavy metals in greenhouse vegetable soils from Tangshan city. The factors impacted on the availability of heavy metals were also analyzed. The results indicated that the mean total concentrations of Cd, Cu, Ni, Pb and Zn in soils were 0.20, 51.98, 20.85, 20.93, and 120.15 mg·kg−1, and the mean available contents of the metals were 0.065, 7.92, 0.62, 0.57, and 11.29 mg·kg−1, respectively. The
$ {I}_{geo} $ suggested that about 92.5%, 68.7% and 50.8% of the soil samples were contaminated by Cd, Cu and Zn. Cd, Cu and Zn accumulated in greenhouse vegetable soil were mainly derived from the application of manure and chemical fertilizers, while Ni and Pb were originated from natural sources. The accumulation levels of heavy metals in greenhouse vegetable soils were positively associated with fertilizer input and planting years. However, lower soil pH and higher chemical fertilizer input usually increased the available concentrations of heavy metals. The relationships between total phosphorus and the$ {I}_{geo} $ of Cu and Zn in soil indicated that Cu and Zn in greenhouse vegetable soils might be more seriously influenced by phosphate fertilizers. In addition, the differences of manure and chemical fertilizer input might affect the spatial variations of heavy metals in greenhouse vegetable soils.-
Key words:
- greenhouse vegetable /
- soil /
- heavy metal /
- availability /
- geo-accumulation index
-
表 1 土壤重金属总量与有效态含量(mg·kg-1)
Table 1. Total and available concentration of heavy metals in soil (mg·kg-1)
元素
Element有效态含量
Available concentration总量
Total concentration背景值
The background value均值
Mean value范围
Range均值
Mean value范围
RangeCd 0.065 (27.78%) 0.01—1.03 (1.76%—65.72%) 0.20 0.04—1.77 0.056 Cu 7.92 (13.75%) 0.65—49.12 (4.80%—33.84%) 51.98 8.75—187.81 21.0 Ni 0.62 (3.04%) 0.01—1.79 (0.12%—7.90%) 20.85 4.59—37.00 28.7 Pb 0.57 (2.22%) 0.01—10.92 (0.04%—17.10%) 20.93 13.59—63.89 20.5 Zn 11.29 (8.94%) 0.82—46.34 (1.02%—20.83%) 120.15 37.81—285.99 71.9 表 2 土壤重金属与影响因素相关性
Table 2. The correlation between soil heavy metals and influencing factors
TN TP pH PY DF HF 土壤重金属地累积指数
Geo-accumulation Index of soil heavy metalICd 0.142 0.099 0.186 0.508** −0.085 −0.140 ICu 0.058 0.346** −0.018 0.422** −0.174 −0.137 INi 0.053 −0.160 0.179 0.141 0.020 0.089 IPb 0.079 −0.068 0.131 0.093 −0.012 −0.013 IZn 0.055 0.402** −0.083 0.447** −0.138 −0.068 土壤重金属有效态含量百分比
Percentage of available concentration of soil heavy metalPCd −0.026 −0.094 −0.079 −0.008 0.329** 0.312* PCu −0.046 0.043 −0.191 0.042 0.269* 0.217 PNi 0.035 0.289* −0.384** 0.131 0.323** 0.256* PPb 0.153 −0.242* 0.186 −0.125 0.256* 0.203 PZn 0.058 0.056 −0.181 0.109 0.278* 0.245* * P<0.05,**P<0.01. 表 3 土壤重金属总量主成分分析结果
Table 3. Results of principal component analysis of total heavy metals in soil
主成分Principal component PC1 PC2 PC3 TN 0.140 0.092 0.771 TP 0.638 −0.355 0.414 Cd 0.442 0.238 −0.513 Cu 0.926 0.097 −0.030 Pb 0.050 0.780 0.123 Ni 0.065 0.811 −0.174 Zn 0.951 0.131 0.008 贡献率Contribution rate/% 34.27 20.93 15.11 累积贡献率 Accumulative contribution rate/% 34.27 55.20 70.31 -
[1] KUMAR S, PRASAD S, YADAV KK, et al. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches: A review [J]. Environmental Research, 2019, 179: 108792. doi: 10.1016/j.envres.2019.108792 [2] CHEN R, DE S, YE C, et al. China’s soil pollution: farms on the frontline [J]. Science, 2014, 344: 691. [3] JING F, CHEN X, YANG Z, et al. Heavy metals status, transport mechanisms, sources, and factors affecting their mobility in Chinese agricultural soils [J]. Environmental Earth Science, 2018, 77: 104. doi: 10.1007/s12665-018-7299-4 [4] WEI B, YANG L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China [J]. Microchemical Journal, 2010, 94(2): 99-107. doi: 10.1016/j.microc.2009.09.014 [5] ZHANG J, WANG Y, LIU J, et al. Multivariate and geostatistical analyses of the sources and spatial distribution of heavy metals in agricultural soil in Gongzhuling, Northeast China [J]. Journal of Soils Sediment, 2016, 16: 634-644. doi: 10.1007/s11368-015-1225-0 [6] GAO X, PENG Y, ZHOU Y, et al. Effects of magnesium ferrite biochar on the cadmium passivation in acidic soil and bioavailability for packoi (Brassica chinensis L.) [J]. Journal of Environmental Management, 2019, 251: 109610. doi: 10.1016/j.jenvman.2019.109610 [7] 孟敏, 杨林生, 韦炳干, 等. 我国设施农田土壤重金属污染评价与空间分布特征 [J]. 生态与农村环境学报, 2018, 34(11): 1019-1026. doi: 10.11934/j.issn.1673-4831.2018.11.009 MENG M, YANG L S, WEI B G, et al. Contamination assessment and spatial distribution of heavy metals in greenhouse soils in China [J]. Journal of Ecology and Rural Environmental, 2018, 34(11): 1019-1026(in Chinese). doi: 10.11934/j.issn.1673-4831.2018.11.009
[8] 孙硕, 李菊梅, 马义兵, 等. 河北省蔬菜大棚土壤及蔬菜中重金属累积分析 [J]. 农业资源与环境学报, 2019, 36(2): 236-244. SUN S, LI J M, MA Y B, et al. Accumulation of heavy metals in soil and vegetables of greenhouses in Hebei Province, China [J]. Journal of Agricultural Resources and Environment, 2019, 36(2): 236-244(in Chinese).
[9] SUN K, WEN D, YANG N, et al. Heavy metal and soil nutrient accumulation and ecological risk assessment of vegetable fields in representative facilities in Shandong Province, China [J]. Environmental Monitoring and Assessment, 2019, 191: 240. doi: 10.1007/s10661-019-7396-1 [10] YANG L, HUANG B, HU W, et al. Assessment and source identification of trace metals in the soils of greenhouse vegetable production in eastern China [J]. Ecotoxicology and Environmental Safety, 2013, 97: 204-209. doi: 10.1016/j.ecoenv.2013.08.002 [11] BAI L Y, ZENG X B, SU S M, et al. Heavy metal accumulation and source analysis in greenhouse soils of Wuwei District, Gansu Province, China [J]. Environmental Science and Pollution Research, 2015, 22: 5359-5369. doi: 10.1007/s11356-014-3763-1 [12] JARM A , RM B , RB C ,et al. Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain) [J]. Geoderma, 2013, 200/201: 180-188. doi: 10.1016/j.geoderma.2013.02.014 [13] SUNGUR A, SOYLAK M, ÖZCAN H. Chemical fractionation, mobility and environmental impacts of heavy metals in greenhouse soils from Çanakkale, Turkey [J]. Environmental Earth Science, 2016, 75: 334. doi: 10.1007/s12665-016-5268-3 [14] TIAN K, HU W, XING Z, et al. Determination and evaluation of heavy metals in soils under two different greenhouse vegetable production systems in eastern China [J]. Chemosphere, 2016, 165: 55-563. [15] NANNONI F, PROTANO G. Chemical and biological methods to evaluate the availability of heavy metals in soils of the Siena urban area (Italy) [J]. Science of the Total Environment, 2016, 568: 1-10. doi: 10.1016/j.scitotenv.2016.05.208 [16] MULLER G. Index of geo-accumulation in sediments of the Rhine River [J]. Geojournal, 1969, 2: 108-118. [17] 中国环境监测总站(CNEMC). 中国土壤背景值[M]. 北京: 环境科学出版社, 1990. CNEMC (China National Environmental Monitoring Centre). The background values of Chinese soils[M]. Beijing: Environmental Science Press of China, 1990(in Chinese).
[18] 贾丽, 乔玉辉, 陈清, 等. 我国设施菜田土壤重金属含量特征与影响因素 [J]. 农业环境科学学报, 2020, 39(2): 263-274. doi: 10.11654/jaes.2019-1027 JIA L, QIAO Y H, CHEN Q, et al. Characteristics and affecting factors of heavy metals content in greenhouse vegetable soils in China [J]. Journal of Agro-Environment Science, 2020, 39(2): 263-274(in Chinese). doi: 10.11654/jaes.2019-1027
[19] XU L, LU A X, WANG J H, et al. Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China [J]. Ecotoxicology and Environmental Safety, 2015, 122: 214-220. doi: 10.1016/j.ecoenv.2015.07.025 [20] 沃惜慧, 杨丽娟, 曹庭悦, 等. 长期定位施肥下设施土壤重金属积累及生态风险的研究 [J]. 农业环境科学学报, 2019, 38(10): 2319-2327. doi: 10.11654/jaes.2019-0293 WO X H, YANG L J, CAO T Y, et al. Accumulation and ecological risk of heavy metals in greenhouse soil under long-term fertilization [J]. Journal of Agro-Environment Science, 2019, 38(10): 2319-2327(in Chinese). doi: 10.11654/jaes.2019-0293
[21] 任顺荣, 邵玉翠, 高宝岩. 长期定位施肥对土壤重金属含量的影响 [J]. 水土保持学报, 2005, 9(4): 96-99. doi: 10.3321/j.issn:1009-2242.2005.04.023 REN S R, SHAO Y C, GAO B Y. Effects of long-termlocated fertilization on heavy-metal content of soil [J]. Journal of Soil and Water Conservation, 2005, 9(4): 96-99(in Chinese). doi: 10.3321/j.issn:1009-2242.2005.04.023
[22] 王美, 李书田. 肥料重金属含量状况及施肥对土壤和作物重金属富集的影响 [J]. 植物营养与肥料学报, 2014, 20(2): 466-480. doi: 10.11674/zwyf.2014.0224 WANG M, LI S T. Heavy metals in fertilizers and effect of the fertilization on heavy metal accumulation in soils and crops [J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 466-480(in Chinese). doi: 10.11674/zwyf.2014.0224
[23] CHEN Z, TIAN T, GAO L, et al. Nutrients, heavy metals and phthalate acid esters in solar greenhouse soils in Round-Bohai Bay-Region, China: Impacts of cultivation year and biogeography [J]. Environmental Science and Pollution Research, 2016, 23: 13076-13087. doi: 10.1007/s11356-016-6462-2 [24] WANG J, MI W K, SONG P P, et al. Cultivation ages effect on soil physicochemical properties and heavy metal accumulation in greenhouse soils [J]. Chinese Geographical Science, 2018, 28(4): 717-726. doi: 10.1007/s11769-018-0980-4 [25] 梁蕾, 李季, 杨合法, 等. 长期温室菜地土壤重金属累积状况及污染评价 [J]. 环境化学, 2018, 37(7): 1515-1524. doi: 10.7524/j.issn.0254-6108.2017120501 LIANG L, LI J, YANG H F, et al. Soil heavy metal accumulation and risk assessment in a long-term vegetable-growing greenhouse [J]. Environmental Chemistry, 2018, 37(7): 1515-1524(in Chinese). doi: 10.7524/j.issn.0254-6108.2017120501
[26] RAMOS-MIRAS J J, ROCA-PEREZ L, GUZMAN-PALOMINO M, et al. Background levels and baseline values of available heavy metals in Mediterranean greenhouse soils (Spain) [J]. Journal of Geochemical Exploration, 2011, 110: 186-192. doi: 10.1016/j.gexplo.2011.05.009 [27] ZENG F, ALI S, ZHANG H, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants [J]. Environmental Pollution, 2011, 159: 84-91. doi: 10.1016/j.envpol.2010.09.019 [28] KIM R, YOON J, KIM T, et al. Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review [J]. Environmental Geochemistry and Health, 2015, 37: 1041-1061. doi: 10.1007/s10653-015-9695-y [29] SHAHID M, DUMAT C, KHALID S, et al. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system [J]. Reviews of Environmental Contamination and Toxicology, 2017, 241: 73-137. [30] SUNFUR A, SOYLAK M, OZCAN H. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability [J]. Chemical Speciation Bioavailability, 2014, 26(4): 219-230. doi: 10.3184/095422914X14147781158674 [31] ZHOU S, LIU J, XU M, et al. Accumulation, availability, and uptake of heavy metals in a red soil after 22-year fertilization and cropping [J]. Environmental Science and Pollution Research, 2015, 22: 15154-15163. doi: 10.1007/s11356-015-4745-7 [32] GRANT C, FLATEN D, TENUTA M, et al. The effect of rate and Cd concentration of repeated phosphate fertilizer applications on seed Cd concentration varies with crop type and environment [J]. Plant Soil, 2013, 372: 221-233. doi: 10.1007/s11104-013-1691-3 [33] SESHADRI B, BOLAN NS, CHOPPALA G, et al. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil [J]. Chemosphere, 2017, 184: 197-206. doi: 10.1016/j.chemosphere.2017.05.172 [34] WIERZBOWSKA J, KOVACIK P, SIENKIEWICZ S, et al. Determination of heavy metals and their availability to plants in soil fertilized with different waste substances [J]. Environmental Monitoring and Assessment, 2018, 190: 567. doi: 10.1007/s10661-018-6941-7