-
随着工业的迅速发展,工业活动对周边环境的污染日渐加重,尤其是造成了农用地土壤中的重金属元素逐渐累积形成污染,通过食物链对人体健康造成了威胁。2018年8月,生态环境部发布的《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618—2018)[1]开始实施,初步针对Cd、Hg、As、Pb、Cr、Cu、Zn、Ni、BAP、六六六、DDT等污染物提出了对应的风险管控阈值,给农用地土壤重金属污染评价提供了一个可行的标准,对农用地重金属污染的定量评价变得更精确、合理。目前,国内外针对乐安河流域重金属污染的研究多集中在水体[2-6]、沉积物[4-7]和水生动植物[3,8-9],少有对流域内土壤重金属污染的评价;现有研究表明,乐安河流域内的土壤存在一定程度的重金属污染,其中整体的Cd污染最为普遍[10],部分地区的Cu、Pb污染也较为明显[11],这主要与各有色金属矿的开采、冶炼和排污密切关联。李娇等[12]运用PFM模型及地统计法对乐安河上中游的土壤重金属来源进行了解析,提出有色金属矿采选和冶炼企业是研究区内重金属污染的主要来源,但并未将流域内的其他类型的企业和设施纳入分析。
本文测定了乐安河流域农用地表层土壤中8中重金属元素的含量,并运用潜在生态指数法评价了其污染状况,在此基础上通过主成分分析和单因素方差分析对流域内农用地表层土壤重金属元素的来源进行了探讨,可将污染来源精确到研究区内的各类企业和设施,为该流域土壤重金属污染防治提供了参考。
乐安河流域农用地表层土壤重金属污染评价及来源分析
Evaluation and source analysis of heavy metal pollution of surface soil in agricultural land of Le’an River basin
-
摘要: 为探究乐安河流域农用地土壤重金属污染状况及污染来源,采用潜在生态风险指数法对流域内的Cd、Hg、As、Pb、Cr、Cu、Zn、Ni等8种重金属元素含量进行评价,并通过主成分分析及单因素方差分析来判断8种重金属污染的来源。结果表明,研究区内Cd含量超筛选值的点位占比为63.32%,污染情况较为严重,Cu含量超筛选值的点位占比为15.16%,存在轻微污染,其余6种元素超筛选值点位占比均小于4%,基本无污染;研究区内的Cd属于强生态危害,Hg属于中等生态危害,其余6种元素均属于轻微生态危害。8种元素综合后属于中等生态危害;研究区内农用地表层土壤中8种重金属元素的全部信息可由3个主成分来反映,所代表的实际意义按贡献率排序分别是有色金属冶炼活动、有色金属矿采选、工业活动产生的废水;研究区内Cd、Pb污染的主要来源为有色金属冶炼活动;Hg污染的主要来源为污水处理厂的工业废水处理活动;As污染的主要来源为土砂石和有色金属矿产的采选活动;Cr、Ni污染的主要来源为生活垃圾填埋焚烧和有色金属矿采选活动;各企业和设施周边的Cu、Zn含量无明显差别,故暂无法将Cu、Zn的主要来源具体到某一类企业或设施。Abstract: In order to investigate the status and sources of heavy metal contamination in agricultural land in the Le’an River Basin, the Potential Ecological Risk Index was applied to evaluate the content of 8 kinds of heavy metal elements, i.e. Cd, Hg, As, Pb, Cr, Cu, Zn and Ni, in the Basin, and the sources of such 8 kinds of heavy metal contamination were judged by means of Principal Component Analysis and one-way ANOVA. The results showed that in the study area, the percentage of sites with Cd content exceeding the risk screening values was 63.32% with more serious contamination, the percentage of sites with Cu content exceeding the risk screening values was 15.16% with minor contamination, and the percentage of sites of other 6 elements exceeding risk screening values was less than 4% basically without contamination. In the study area, Cd brought strong ecological hazards, Hg brought moderate ecological hazards and the other 6 elements all brought minor ecological hazards. Upon comprehensive evaluation, such 8 elements were considered to bring moderate ecological hazards. The full information on such 8 heavy metal elements in the agricultural land surface soil in the study area could be reflected by 3 principal components, and the physical significance represented was ranked in order of contribution by the contamination on the agricultural land surface soil from non-ferrous metal smelting, non-ferrous metal ore mining and selection and industrial wastewater, respectively. And in the area, the main sources of Cd and Pb contamination were non-ferrous metal smelting activities, the main sources of Hg contamination were industrial wastewater treatment activities of sewage treatment plants, the main sources of As contamination were soil, sand and gravel and the ore mining and selection activities of non-ferrous metal minerals, the main sources of Cr and Ni contamination were domestic landfill incineration and non-ferrous metal ore mining and selection activities, and the content of Cu and Zn in the vicinity of enterprises and facilities did not differ significantly, so it was temporarily impossible to specify the main sources of Cu and Zn to a particular type of enterprise or facility.
-
Key words:
- Le'an River basin /
- heavy metal pollution /
- potential ecological risk index /
- PCA
-
表 1
及RI分级标准$E_r^i$ Table 1. grading standard of
and RI$E_r^i$ $E_r^i$ 生态风险程度Degree of ecological risk RI 生态风险程度Degree of ecological risk ≤40 轻微生态危害 ≤150 轻微生态危害 40—79 中等生态危害 150—299 中等生态危害 80—159 强生态危害 300—600 强生态危害 160—320 很强生态危害 >600 极强生态危害 >320 极强生态危害 表 2 8种重金属元素的含量统计(mg·kg−1)
Table 2. Content statistics of eight elements
元素
Elements最小值
Minimum value中位值
Median value最大值
Maximum value平均值
Mean筛选值
Filter value背景值
Background valuesCd 0.04 0.28 11.50 0.44 0.30 0.10 Hg 0.03 0.11 1.06 0.13 0.50 0.08 As 2.16 9.92 168.00 12.21 30 10.40 Pb 11.50 39.60 364.00 44.52 80 32.10 Cr 24.50 69.15 521.00 72.50 250 48 Cu 13.40 35.81 956.00 48.86 50 20.80 Zn 42.90 101.00 528.00 106.86 200 69 Ni 11.20 27.05 93.10 28.56 60 19 表 3 八种元素潜在生态风险评价结果统计
Table 3. Statistics on potential ecological risk assessment results of eight elements
元素
Elements$E_r^i$ 生态风险程度
Degree of ecological riskRI 生态风险程度
Degree of ecological riskCd 132 强生态危害 234.99 中等生态危害 Hg 65.20 中等生态危害 As 11.70 轻微生态危害 Pb 6.95 轻微生态危害 Cr 3.02 轻微生态危害 Cu 7.05 轻微生态危害 Zn 1.55 轻微生态危害 Ni 7.52 轻微生态危害 表 4 主成分分析主要计算结果
Table 4. The main calculation results of PCA
主成分
Principal
components特征值
Eigenvalues贡献率
Contribution
rate累计贡献率
Cumulative
contribution rateCd Hg As Pb Cr Cu Zn Ni 第一主成分 3.672 45.90% 45.90% 0.605 0.406 0.81 0.75 0.406 0.815 0.868 0.583 第二主成分 1.593 19.92% 65.82% −0.486 −0.074 −0.013 −0.4 0.793 −0.159 0.018 0.733 第三主成分 1.169 14.60% 80.42% −0.496 0.674 0.359 −0.419 −0.248 0.279 0.017 −0.155 表 5 各重金属元素间Person相关系数
Table 5. Person correlation coefficients of Heavy metal elements
元素Elements Cd Hg As Pb Cr Cu Zn Ni Cd 1 Hg 0.110* 1 As 0.285** 0.426** 1 Pb 0.816** 0.119** 0.468** 1 Cr 0.047 0.039 0.229** 0.112* 1 Cu 0.357** 0.309** 0.780** 0.487** 0.121** 1 Zn 0.427** 0.294** 0.593** 0.598** 0.261** 0.728** 1 Ni 0.084 0.103* 0.384** 0.207** 0.762** 0.270** 0.540** 1 * 表示在0.05 水平(双侧)上显著相关;** 表示在0.01 水平(双侧)上显著相关.
* indicates a significant correlation at the 0.05 level (both sides); ** indicates a significant correlation at the 0.01 level (both sides). -
[1] 于洋, 刘文清, 许人骥, 等. 典型地区农用地污染调查及风险管控标准探讨 [J]. 中国环境监测, 2019, 35(3): 1-7. YU Y, LIU W Q, XU R Q, et al. Investigation of agricultural land pollution in typical areas and discussion on risk control standards [J]. Environmental Monitoring in China, 2019, 35(3): 1-7(in Chinese).
[2] 弓晓峰, 陈春丽, 周文斌, 等. 鄱阳湖底泥中重金属污染现状评价 [J]. 环境科学, 2006, 27(4): 126-130. GONG X F, CHEN C L, ZHOU W B, et al. Assessment on heavy metal pollution in the sediment of Poyang Lake [J]. Environmental Science, 2006, 27(4): 126-130(in Chinese).
[3] 弓晓峰, 黄志中, 张静, 等. 鄱阳湖湿地重金属形态分布及植物富集研究 [J]. 环境科学研究, 2006, 19(3): 34-40. doi: 10.3321/j.issn:1001-6929.2006.03.009 GONG X F, HUANG Z Z, ZHANG J, et al. Study on the speciation distributing and the plants enrichment of heavy metal in the wetland of poyang lake [J]. Research of Environmental Sciences, 2006, 19(3): 34-40(in Chinese). doi: 10.3321/j.issn:1001-6929.2006.03.009
[4] 匡荟芬, 胡春华, 孙丽丽, 等. 鄱阳湖鱼类重金属积累特征及其健康风险评价 [J]. 南昌大学学报(理科版), 2018, 42(6): 578-583. KUANG Y F, HU C H, SUN L L, et al. Accumulation characteristics and health risk assessment of heavy metals in fish species from poyang lake [J]. Journal of Nanchang University(Natural Science), 2018, 42(6): 578-583(in Chinese).
[5] XIAO H Y, ZHOU W B, WU D S, et al. Heavy metal contamination in sediments and floodplain topsoils of the Lean River catchment, China [J]. Soil & Sediment Contamination, 2011, 20(7): 810-823. [6] 张莉, 袁丽娟, 张大文, 等. 鄱阳湖丰水期悬浮颗粒物重金属的空间分布格局 [J]. 环境化学, 2017, 36(10): 2219-2226. doi: 10.7524/j.issn.0254-6108.2017022208 ZHANG L, YUAN W J, ZHANG D W, et al. Spatial variation of heavy metals in suspended particulate matters of Poyang Lake [J]. Environmental Chemistry, 2017, 36(10): 2219-2226(in Chinese). doi: 10.7524/j.issn.0254-6108.2017022208
[7] 万金保, 闫伟伟, 谢婷. 鄱阳湖流域乐安河重金属污染水平 [J]. 湖泊科学, 2007, 19(4): 67-73. WAN J B, YAN W W, XIE T, et al. Research on heavy metals pollution status of Le'an River, Lake Poyang Basin [J]. Journal of Lake Sciences, 2007, 19(4): 67-73(in Chinese).
[8] 简敏菲, 游海, 倪才英. 鄱阳湖饶河段重金属污染水平与迁移特性 [J]. 湖泊科学, 2006, 18(2): 127-133. doi: 10.3321/j.issn:1003-5427.2006.02.005 JIAN M F, YOU H, NI C Y, et al. Characteristics of heavy metals contaminant status and migration in Raohe River of Lake Poyang [J]. Journal of Lake Sciences, 2006, 18(2): 127-133(in Chinese). doi: 10.3321/j.issn:1003-5427.2006.02.005
[9] 吕兰军. 鄱阳湖重金属污染现状调查与分析 [J]. 人民长江, 1994(4): 32-38. LV L J. Investigation and analysis of the current status of heavy metal pollution in Poyang Lake [J]. Yangtze River, 1994(4): 32-38(in Chinese).
[10] 高小琴. 乐安河兰村洲段土壤重金属污染状况分析 [J]. 安徽农业科学, 2006, 34(20): 5309-5310. doi: 10.3969/j.issn.0517-6611.2006.20.092 GAO X Q. Analvsis of the soil polluted with heavy metal in lancunzhou riverside of Lean Rriver [J]. Journal of Anhui Agricultural Sciences, 2006, 34(20): 5309-5310(in Chinese). doi: 10.3969/j.issn.0517-6611.2006.20.092
[11] 兰泽英, 刘洋. 乐安河流域土壤重金属含量高光谱间接反演模型及其空间分布特征研究 [J]. 地理与地理信息科学, 2015, 031(3): 26-31, cover 2. doi: 10.3969/j.issn.1672-0504.2015.03.006 LAN Z Y, LIU Y. Research on indirect hyperspectral estimating model and the spatial distribution characteristics of heavy metal contents in basin soil of Lean River [J]. Geography and Geo-information Science, 2015, 031(3): 26-31, cover 2(in Chinese). doi: 10.3969/j.issn.1672-0504.2015.03.006
[12] 李娇, 滕彦国, 吴劲, 等. 基于PMF模型及地统计法的乐安河中上游地区土壤重金属来源解析 [J]. 环境科学研究, 2019, 32(6): 984-992. LI J, TENG Y G, WU J, et al. Source apportionment of soil heavy metal in the middle and upper reaches of le’an river based on pmf model and geostatistics [J]. Research of Environmental Sciences, 2019, 32(6): 984-992(in Chinese).
[13] 邬军军, 刘毅, 李中华. 惠州市部分农村环境土壤重金属Pb、Cd、Cr污染状况的调查分析 [J]. 公共卫生与预防医学, 2018, 29(5): 39-42. WU J J, LIU Y, LI Z H. Investigation and analysis of heavy metal Pb, Cd and Cr pollution in some rural environmental soils in Huizhou city [J]. Journal of Public Health and Preventive Medicine, 2018, 29(5): 39-42(in Chinese).
[14] 罗治定, 陈庆芝, 金倩, 等. 预还原氢化物发生-原子荧光光谱法快速测定化探样品中的As、Sb、Bi、Hg [J]. 中国无机分析化学, 2018, 8(2): 17-21. doi: 10.3969/j.issn.2095-1035.2018.02.005 LUO Z D, CHEN Q Z, JIN Q, et al. Quick determination of As, Sb, Bi, Hg in geochemical samples by prereduction hydride generation-atomic fluorescence spectrometry [J]. Chinese Journal of Inorganic Analytical Chemistry | Chin J Inorg Anal Chem, 2018, 8(2): 17-21(in Chinese). doi: 10.3969/j.issn.2095-1035.2018.02.005
[15] 高捷, 盛成, 朱月琴, 等. 悬浮液进样-全反射X射线荧光光谱法测定食品中的多无机元素 [J]. 光谱学与光谱分析, 2020, 40(3): 945-949. GAO J, SHENG C, ZHU Y Q, et al. Inorganic multi-element analysis of foodstuff by means of low power total reflection X-Ray fluorescence spectrometry using suspension sampling [J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 945-949(in Chinese).
[16] 高巍. 火焰原子吸收分光光度法测定矿石中的铜、铅、锌、钴、镍的含量 [J]. 世界有色金属, 2019(4): 182-183. doi: 10.3969/j.issn.1002-5065.2019.04.105 GAO W. Determination of copper, lead, zinc, cobalt and nickel in ore by flame atomic absorption spectrophotometry [J]. World Nonferrous Metal, 2019(4): 182-183(in Chinese). doi: 10.3969/j.issn.1002-5065.2019.04.105
[17] 储金宇, 张金萍, 周晓红, 等. 镇江市古运河河岸沉积物重金属分布特征及潜在生态风险评价 [J]. 环境化学, 2015, 34(4): 763-771. doi: 10.7524/j.issn.0254-6108.2015.04.2014091805 CHU J Y, ZHANG J P, ZHOU X H, et al. Distribution characteristics and ecological risk evaluation of heavy metals in riverside sediments of Zhenjiang Canal [J]. Environmental Chemistry, 2015, 34(4): 763-771(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.04.2014091805
[18] 何纪力, 徐光炎. 江西省土壤环境背景值研究[M]. 北京: 中国环境科学出版社, 2006: 34. HE J L, XU G Y. Research on soil environmental background value of jiangxi province[M]. Beijing: China Environmental Press, 2006: 34(in Chinese).
[19] HAKANSON L. An ecological risk index for aquatic pollution control: a sediment ecological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [20] 纪冬丽, 曾琬晴, 张新波, 等. 天津近郊农田土壤重金属风险评价及空间主成分分析 [J]. 环境化学, 2019, 38(9): 1955-1965. doi: 10.7524/j.issn.0254-6108.2018111201 JI D L, ZENG W Q, ZHANG X B, et al. Ecological risk assessment and principal component analysis of heavy metals in suburban farmland soils of Tianjin [J]. Environmental Chemistry, 2019, 38(9): 1955-1965(in Chinese). doi: 10.7524/j.issn.0254-6108.2018111201
[21] 孔畅, 杨林生, 李海蓉, 等. 内蒙古某饮水型砷中毒病区人群体内砷蓄积与砷代谢的年内变化特征 [J]. 环境化学, 2018, 37(11): 2335-2341. doi: 10.7524/j.issn.0254-6108.2018011505 KONG C, YANG L S, LI H R, et al. Annual variations of arsenic accumulation and metabolism in the inhabitants of drinking-water type endemic arsenism area, Inner Mongolia [J]. Environmental Chemistry, 2018, 37(11): 2335-2341(in Chinese). doi: 10.7524/j.issn.0254-6108.2018011505
[22] 李玉, 俞志明, 宋秀贤. 运用主成分分析(PCA)评价海洋沉积物中重金属污染来源 [J]. 环境科学, 2006, 27(1): 139-1430. LI Y, YU Z M, SONG X X. Application of principal component analysis(pca) for the estimation of source of heavy metal contamination in marine sediments [J]. Environmental science, 2006, 27(1): 139-1430(in Chinese).
[23] 陆金, 赵兴青. 铜陵狮子山矿区土壤重金属污染特征及生态风险评价 [J]. 环境化学, 2017, 36(9): 1958-1967. doi: 10.7524/j.issn.0254-6108.2017010304 LU J, ZHAO X Q. Characteristics and ecological soil by heavy metals in risk assessment of polluted Shizishan, Tongling [J]. Environmental Chemistry, 2017, 36(9): 1958-1967(in Chinese). doi: 10.7524/j.issn.0254-6108.2017010304
[24] 雷凌明, 喻大松, 陈玉鹏, 等. 陕西泾惠渠灌区土壤重金属空间分布特征及来源 [J]. 农业工程学报, 2014, 30(6): 88-96. doi: 10.3969/j.issn.1002-6819.2014.06.011 LEI L M, YU D S, CHEN Y P, et al. Spatial distribution and sources of heavy metals in soils of Jinghui Irrigated Area of Shaanxi, China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(6): 88-96(in Chinese). doi: 10.3969/j.issn.1002-6819.2014.06.011