-
随着我国快速城市化的进程,由人类活动导致的城市土壤重金属污染对人类自身健康所造成的威胁,愈发的引起了人们的关注[1-2]。对我国城市土壤而言,由工矿企业、生活垃圾以及交通活动所排放的重金属污染物在土壤中长期累积,已经对我国部分城市的人类健康造成危害[3-4]。高新技术工业普遍被认为污染物排放较少,但长期与工作场地的接触是否会导致产业工人存在显著的健康风险,在不同类型工业企业中工作的产业工人所受的风险是否存在差异,这些问题值得进行研究。同时,在位于城市边缘地区的高新技术工业开发区中工作的产业工人所接触到的土壤重金属污染物,是否主要来源于工业活动亦值得进行探讨。这一系列结果将有助于为产业工人提供科学的安全防护信息,为当地的重金属污染治理提供线索。
目前,土壤重金属污染的评价方法中,潜在生态风险评价法、人类健康风险评价法以及内梅罗污染指数法,在实践中得到了广泛的应用,能够较为科学的从生态风险、健康风险以及污染水平几个方面对土壤重金属污染物所造成的风险进行综合评价[5-8]。在相关研究中土壤重金属污染物的来源则是另一个受到重点关注的问题,主成分分析法、PMF法等在研究这一问题上得到了较好的应用[9-10]。在以往的研究中,李有文等在我国西北工业城市所开展的研究表明,工矿企业、交通活动对土壤重金属污染贡献较为突出,且工业区与生活区中人类健康风险明显高于其他功能区[11]。一项针对煤矿能源开发区的研究指出,煤矿与运煤公路是重金属污染物的监管重点,建议减少人类在这类污染环境中的暴露时间[12]。Zhuo等测定了山东省内15个开发区中多种土壤重金属污染物含量,结果表明,这些开发区中的居民均存在显著的致癌或非致癌健康风险,且19%的监测点存在中等水平的生态风险[13]。开发区作为城市周边最年轻的建设用地,往往聚集了大量产业工人在这里生活和工作,同时,高新技术开发区的污染程度、健康风险是否与上述开发区相似,高新技术工业是否等同于低污染工业,同样值得关注。
以往的研究普遍关注于由土壤重金属污染物所造成的成人与儿童的健康风险,以城市为对象的研究表明儿童的致癌和非致癌风险要比成人更为明显[14-15]。但对城市中特定人群在特定场地中的健康风险评价,除以幼儿园等为对象的研究外,则较少有关注[16]。长沙国家高新技术产业开发区作为我国中部地区重要的经济引擎以及高新技术立区的代表之一,集中了大量的产业工人,而我国劳动法的相关规定决定了工人的主要活动和停留场所并非工业场所而是居住场所,因此,根据活动时间,分场地计算健康风险将更加合理。
本文基于主成分/绝对主成分模型解析污染物来源,并定量地分析各污染源对重金属污染物的贡献,这些结果能够为具有相同或相似工业结构的高新技术工业开发区提供重金属污染物的治理依据,并向在开发区人口结构中占重要地位的产业工人提供及时的风险提示。
典型高新技术产业开发区土壤重金属污染物来源及生态风险和产业工人健康风险评价
Source identification of soil heavy metal pollutants with the assessment of ecological risk and industrial workers health risk
-
摘要: 测定了长沙国家高新技术产业开发区中居住用地和5类工业用地土壤中As、Cd、Cr、Cu、Co、Ni、Pb和Zn的浓度,运用主成分分析法对这些污染物的来源进行解析,并运用绝对主成分—多元线性回归模型(APCS-MLR)定量分析各个来源对重金属污染物的贡献。采用内梅罗指数法、潜在生态风险评价法和人类健康风险评价模型分别对污染程度、潜在生态风险和产业工人健康风险进行了评价,并以法定工作时间为依据比较了产业工人在工作和居住期间所受的健康风险状况。结果表明,对产业工人健康风险贡献最显著的As和Cr均主要来源于复合工业因子,解释了总方差的24.79%,该因子中还包括Cu;以Cd和Co为代表的电子工业因子解释了总方差的23.21%;除Cd外,单因素方差分析表明,这些工业特征元素在通用设备制造工业用地中的浓度显著高于其他用地;而以Pb和Zn为代表的交通因子解释了总方差的30.40%,表明交通因素同样是一个不能忽视的重要来源。潜在生态风险评价表明,由于Cd的高毒性与高浓度,6类用地中的潜在生态风险,除电子电器制造工业为很强风险外(≥160),其他用地包括居住用地均达到了极强风险水平(≥320);同时Cd同样导致了内梅罗污染指数在所有用地中均达到了极强污染水平(>3)。产业工人健康风险评价结果表明:该开发区中的产业工人非致癌风险弱(<1),但致癌风险高达8.72×10-4,这主要由Cr和As元素通过摄入途径进入人体导致;尽管产业工人的工作时间远小于在居住场地中的停留时间,但工业场地仍是工人健康风险的主要来源,且在不同类型工业企业就职的产业工人间所受的健康风险差异小。Abstract: The soil heavy metal pollutant concentrations for five types of industrial use lands with one type of residential use land were determined in the High-tech Industrial Development Zone, Changsha, China, including As、Cd、Cr、Cu、Co、Ni、Pb and Zn. Their source were analyzed by principal component method, thereby, APCS—MLR was used to quantitatively analyze the contributions ratio of heavy metal elements from each pollution source. The method of potential ecological risk assessment, the Nemerow pollution degree and the health risk of industrial workers were assessed. Among of them, the results of assessment for worker were compared according to the weekly working hours which was ruled by the China Labor Law. These result indicated that Cr and As were most affected by comprehensive industrial component (which occupied 24.79% of the total variances) and these elements also were the most important source for worker health risk, while it component included Cu, which had a high loading on it. Cd and Co were the representative elements for electric industrial component (which occupied 23.21% of the total variances). These elements were detected significantly high concentration in the general equipment industry than other lands, except Cd. Moreover, the traffic component which explained 30.40% of the total variance, indicated the traffic emission was another critical factor in this high-tech industrial development zone, Pb and Zn were the representative elements of this component. The results of potential ecological risk assessment indicated that the risk reached Extremely strong level (≥320) in these types of use lands, except electric industrial land, it reached Quiet strong level (≥160), due to the high toxicity and high concentration of Cd, and it element was the mainly reason of that the mean Nemerow indexes were reached 7.17 and 9.51 in resident land and industrial land. The results of worker’s health risk indicated that the non-carcinogenic risk of industrial workers was low (<1), while the carcinogenic risk was remarkable and it reached 8.72×10-4. This was principally because Cr and As accumulated in human’s body by the intake pathway. Though the stay time of workers in resident lands were significantly higher than in industrial lands, but the working place still was the most important source of worker’s health risk whether carcinogenic or non-carcinogenic. Besides that, the health risk differences of industrial workers between five type industries were similarly.
-
Key words:
- industrial worker /
- soil heavy metal /
- health risk /
- APCS-MLR /
- source apportionment
-
表 1 潜在生态风险分级表
Table 1. Classification standard of potential ecological risk assessment method
污染等级Level 轻微污染Slight 轻度污染Moderate 中度污染Strong 高度污染Quiet strong 严重污染 Extremely strong Ej Ej≤40 40<Ej≤80 80<Ej≤160 160<Ej≤320 320<Ej RI RI≤150 150<RI≤300 300<RI≤600 600<RI 表 2 健康风险评价参数表
Table 2. Parameter of health risk assessment
参数Parameter 居住期间 Home time 工作期间Working time 致癌Carcinogenic 非致癌 Non-carcinogenic 致癌Carcinogenic 非致癌 Non-carcinogenic ABS(皮肤吸收因子) 0.01 0.001 0.1 0.001 AT(平均暴露时间) 12468.61 d 4083.25 d 6234.69 d 2041.75 d EF(暴露频率) 163.33 d·a−1 81.67 d·a−1 BW(平均体重) 61.82 kg ED(暴露年限) 25 a PEF(颗粒物释放因子) 1.36×109 m2·kg−1 R摄取(灰尘摄食速率) 100 mg·d−1 R吸入(呼吸速率) 14.5 m3·d−1 SA(皮肤接触面积) 5700 cm2 SL(皮肤黏附因子) 0.2 mg·cm−2 表 3 土壤重金属元素的非致癌参考剂量和致癌风险斜率系数
Table 3. Non-carcinogenic RfD and carcinogenic SF for soil heavy metal elements
元素Elements RfD/ (mg·kg·d−1) SF /(kg·d·mg−1) 摄入Ing 吸入Inh 接触Derm 摄入Ing 吸入Inh 接触Derm As 3.00×10−4 3.00×10−4 3.00×10−4 1.5 1.51 3.66 Cd 1.00×10−3 1.00×10−5 1.00×10−5 6.3 6.3 − Cr 3.00×10−3 2.68×10−5 6.00×10−5 5 42 − Co 2.00×10−2 5.71×10−6 1.60×10−2 − 0.016 9.8 Cu 4.00×10−2 4.00×10−2 1.20×10−3 − − − Ni 2.00×10−2 2.06×10−2 5.40×10−3 − 0.84 − Pb 3.50×10−3 3.52×10−3 5.25×10−4 − − 0.0085 Zn 3.00×10−1 3.00×10−1 6.00×10−2 − − − 表 4 工业与居住用地土壤中重金属污染物浓度描述性分析 (mg·kg−1)
Table 4. Descriptiveness analysis of soil heavy metal pollutant concentrations between resident lands and industrial lands (mg·kg−1)
指标
Item元素
Element均值
Mean标准差
SD.变异系数
CV/%最小值
Minimum最大值
Maximum背景值
Background单因子污染
指数Pi内梅罗污染
指数PN工业用地 As 19.56 4.91 25.11 9.27 35.67 15.70 1.24 9.51 Cd 1.654 0.937 56.60 0.427 5.025 0.126 13.13 Cr 170.29 36.18 21.24 113.37 274.82 71.40 2.39 Co 23.71 18.32 77.26 7.74 96.22 14.60 1.62 Cu 33.41 9.44 28.25 16.88 67.72 27.30 1.22 Ni 22.27 6.40 28.76 11.47 40.90 31.90 0.70 Pb 49.04 20.32 41.44 28.75 133.74 29.70 1.65 Zn 135.60 34.31 25.30 74.17 245.18 94.40 1.44 居住用地 As 15.31 3.422 22.35 6.28 19.81 15.70 0.98 7.17 Cd 1.243 0.307 24.75 0.394 1.602 0.126 9.87 Cr 134.09 14.37 10.71 107.42 161.32 71.40 1.88 Co 14.40 4.42 30.71 9.07 24.50 14.60 0.99 Cu 27.58 3.77 13.68 21.31 37.62 27.30 1.01 Ni 14.87 2.071 13.92 11.54 19.83 31.90 0.47 Pb 56.03 14.68 26.21 36.96 101.46 29.70 1.89 Zn 149.47 28.04 18.75 105.28 213.28 94.40 1.58 表 5 各类用地中8种重金属元素含量及其差异 (Mean±SD.)
Table 5. Concentrations and differences of eight metal elements in different use lands
类型 Type As Cd Cr Co Cu Ni Pb Zn EI 19.92±2.71ab 1.04±0.28b 151.09±20.00ab 16.55±3.052ab 35.5±3.40ab 19.7±2.03cd 48.72±6.697a 127.65±26.30ab MPI 19.22±4.58ab 1.83±1.55a 175.24±24.72a 28.60±11.52a 28.3±3.96ab 28.0±6.85a 51.77±11.21a 140.43±18.40ab PMI 18.94±4.11ab 1.89±0.41a 177.30±32.36a 16.51±4.239ab 30.0±7.94ab 25.0±4.33ab 44.68±7.758a 139.27±16.36ab GEI 21.97±5.31a 1.73±0.73ab 181.20±37.88a 24.73±9.72a 36.3±8.19a 21.3±5.51bc 49.24±19.78a 154.84±30.22a MI 17.86±5.01ab 1.63±1.04ab 163.53±41.51ab 25.27±6.84a 33.1±12.3ab 21.0±7.26bc 49.26±27.79a 120.22±40.56b RL 15.31±3.42b 1.24±0.30b 134.09±14.37b 14.40±4.423b 27.5±3.77b 14.8±2.07d 56.03±14.68a 149.47±28.04ab 注:同一列中相同字母表示差异不显著,不同字母表示差异显著(P<0.05). 表 6 重金属元素浓度的相关性分析
Table 6. Correlation analysis of concentrations between various heavy metal elements.
元素Elements As Cd Cr Co Cu Ni Pb Zn As 1 Cd 0.092 1 Cr 0.664** 0.135 1 Co −0.20 0.429** −0.01 1 Cu 0.134 0.150 0.365** 0.487** 1 Ni 0.135 0.354** 0.444** 0.559** 0.483** 1 Pb −0.50** −0.14 −0.32** 0.284* 0.235* 0.066 1 Zn −0.45** −0.06 −0.28* 0.338** 0.304** 0.127 0.765** 1 **显著正相关. 表 7 旋转后的因子载荷表
Table 7. Rotated loading of heavy metal elements in different factors
元素Elements 成份 Components PC1 PC2 PC3 As −0.552 0.678 −0.112 Cd −0.258 −0.033 0.852 Cr −0.297 0.866 0.046 Co 0.393 0.105 0.792 Cu 0.441 0.664 0.313 Ni 0.163 0.547 0.619 Pb 0.896 −0.116 −0.010 Zn 0.890 −0.059 0.073 表 8 污染源对各重金属元素的贡献率
Table 8. Contribution ratio of three components for each heavy metal elements.
因子Component 元素贡献率Elements contributions/% As Cd Cr Co Cu Ni Pb Zn 交通源 — — — — — — 85.99 154.74 复合工业源 83.38 — 102.31 — 87.54 — — — 电子工业源 — 189.26 — 89.85 — 62.04 — — 未识别来源 16.62 −89.26 −2.31 10.15 12.46 37.96 14.01 −54.74 表 9 各类用地中的潜在生态风险
Table 9. Table 8 Potential ecological risk of different elements in various types of land uses.
用地类型Types As(Ej) Cd(Ej) Cr(Ej) Co(Ej) Cu(Ej) Ni(Ej) Pb(Ej) Zn(Ej) RI EI 12.69 249.30 4.23 5.66 6.51 3.09 8.20 1.35 291.06 MPI 12.24 437.59 4.90 9.79 5.18 4.39 8.71 1.48 484.32 PMI 12.06 450.18 4.96 5.65 5.51 3.93 7.52 1.47 491.32 GEI 13.99 412.19 5.07 8.46 6.65 3.34 8.29 1.64 459.66 MI 11.37 389.72 4.58 8.65 6.07 3.29 8.29 1.27 433.27 RL 9.75 296.01 3.75 4.93 5.05 2.33 9.43 1.58 332.85 -
[1] XIA X H, CHEN X, LIU R M. Heavy metals in urban soils with various types of land use in Beijing, China [J]. Journal of Hazardous Materials, 2011, 186(2-3): 2043-2050. doi: 10.1016/j.jhazmat.2010.12.104 [2] WU S, PENG S Q, ZHANG X X, et al. Levels and health risk assessments of heavy metals in urban soils in Dongguan [J]. China. Journal of Geochemical Exploration, 2015, 148: 71-78. doi: 10.1016/j.gexplo.2014.08.009 [3] 李科, 丁晴晴, 傅珊. 太原市土壤重金属污染空间分布及评价 [J]. 环境化学, 2015, 34(4): 772-778. doi: 10.7524/j.issn.0254-6108.2015.04.2014081902 LI K, DING Q Q, FU S. Spatial distribution and assessment of heavy metals from the soil of different functional areas in Taiyuan City [J]. Environmental Chemistry, 2015, 34(4): 772-778(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.04.2014081902
[4] KANG T, WEN Y, ZHE X. Determination and evaluation of heavy metals in soils under two different greenhouse vegetable production systems in eastern China [J]. Chemosphere, 2016, 165: 555-563. doi: 10.1016/j.chemosphere.2016.09.012 [5] 范刘丹, 王明仕, 宋党育, 等. 部分中国城市公园重金属生态风险及健康风险评价 [J]. 环境化学, 2019, 38(4): 793-804. doi: 10.7524/j.issn.0254-6108.2018061701 FAN L D, WANG M S, SONG D Y, et al. Ecological risk assessment and health risk assessment of heavy metals in some China urban parks [J]. Environmental Chemistry, 2019, 38(4): 793-804(in Chinese). doi: 10.7524/j.issn.0254-6108.2018061701
[6] 谷阳光, 高富代. 我国省会城市土壤重金属含量分布与健康风险评价 [J]. 环境化学, 2017, 36(1): 62-71. doi: 10.7524/j.issn.0254-6108.2017.01.2016051705 GU Y G, GAO F D. Spatial distribution and health risk assessment of heavy metals in provincial capital cities, China [J]. Environmental Chemistry, 2017, 36(1): 62-71(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.01.2016051705
[7] 纪冬丽, 曾琬晴, 张新波, 等. 天津近郊农田土壤重金属风险评价及空间主成分分析 [J]. 环境化学, 2019, 38(9): 1955-1965. doi: 10.7524/j.issn.0254-6108.2018111201 JI D L, ZENG W Q, ZHANG X B et al. Ecological risk assessment and principal component analysis of heavy metals in suburban farmland soils of Tianjin [J]. Environmental Chemistry, 2019, 38(9): 1955-1965(in Chinese). doi: 10.7524/j.issn.0254-6108.2018111201
[8] 张军, 董洁, 梁青芳, 等. 宝鸡城区土壤重金属空间分布特征及生态风险评价 [J]. 干旱区资源与环境, 2018, 32(10): 100-106. ZHANG J, DONG J, LIANG Q F et al. Spatial distribution and risk assessment of heavy metals in urban soils of Baoji city [J]. Arid Land Resources and Environment, 2018, 32(10): 100-106(in Chinese).
[9] CHEN L, WANG G, WU S, et al. Heavy metals in agricultural soils of the Lihe River Watershed, East China: Spatial distribution, ecological risk, and pollution source [J]. Environmental Research And Public Health, 2019, 16(12): 2094-2110. doi: 10.3390/ijerph16122094 [10] 黄华斌, 林承奇, 胡恭任, 等. 基于PMF模型的九龙江流域农田土壤重金属来源解析 [J]. 环境科学, 2020, 41(1): 430-437. HUANG H B, LIN C Q, HU G R, et al. Source appointment of heavy metals in agricultural soils of the Jiulong River basin based on positive matrix factorization [J]. Environmental Science, 2020, 41(1): 430-437(in Chinese).
[11] 李有文, 王晶, 巨天珍, 等. 白银市不同功能区土壤重金属污染特征及其健康风险评价 [J]. 生态学杂志, 2017, 36(5): 1408-1418. LI Y W, WANG J, JU T Z. Heavy metal pollution characteristics and human health risk assessment in soils from different functional areas of Baiyin, Gansu, China [J]. Chinese Journal of Ecology, 2017, 36(5): 1408-1418(in Chinese).
[12] 赵亚楠, 李小平, 杨涛, 等. 典型能源开发区灰尘金属元素的空间分布特征、来源与健康风险 [J]. 环境科学学报, 2018, 38(1): 350-362. ZHAO Y N, LI X P, YANG T. The spatial distribution characteristics, sources and health risks of trace elements in dust in typical energy development zones [J]. Acta Scientiae Circumstantiae, 2018, 38(1): 350-362(in Chinese).
[13] ZHUO H, FU S, LIU H, et al. Soil heavy metal contamination and health risk assessment associated with development zones in Shandong, China [J]. Environmental Science and Pollution Research, 2019, 26: 30016-30028. doi: 10.1007/s11356-019-05979-1 [14] 陈秀端, 卢新卫. 西安城市居民区土壤重金属健康风险评价 [J]. 土壤通报, 2017, 48(4): 961-968. CHEN X D, LU X W. Health Risk Assessment of Heavy Metal in the Urban Topsoil Collected from Residential Area in Xi'an City [J]. Chinese Journal of Soil Science, 2017, 48(4): 961-968(in Chinese).
[15] 陈勇, 张文新, 齐誉, 等. 石河子市区土壤微量汞空间分布及风险评价 [J]. 环境化学, 2017, 36(2): 430-438. doi: 10.7524/j.issn.0254-6108.2017.02.2016061206 CHEN Y, ZHANG W X, QI Y, et al. Spatial distributions and risk assessment of the trace mercury in soil of Shihezi City [J]. Environmental Chemistry, 2017, 36(2): 430-438(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.02.2016061206
[16] CHEN H, LU X, LI L Y. Spatial distribution and risk assessment of metals in dust based on samples from nursery and primary schools of Xi'an, China [J]. Atmospheric Environment, 2014, 88(MAY): 172-182. [17] RAJ D, CHOWDHURY A, MAITI SK. Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from the eastern part of a Jharia coal field, India [J]. Human and Ecological Risk Assessment, 2017, 23(4): 767-787. doi: 10.1080/10807039.2016.1278519 [18] XU Y, WU Y, HAN J, et al. The current status of heavy metal in lake sediments from China: Pollution and ecological risk assessment [J]. Ecology and Evolution, 2017, 7(14): 5454-5466. doi: 10.1002/ece3.3124 [19] MA L, YANG Z, LI L, et al. Source identification and risk assessment of heavy metal contaminations in urban soils of Changsha, a mine-impacted city in southern china [J]. Environmental Science and Pollution Research, 2016, 23(17): 17058-17066. doi: 10.1007/s11356-016-6890-z [20] DENG Y, JIANG L H, XU L F, et al. Spatial distribution and risk assessment of heavy metals in contaminated paddy fields - A case study in Xiangtan City, southern China [J]. Ecotoxicology and Environmental Safety, 2019, 171: 281-289. doi: 10.1016/j.ecoenv.2018.12.060 [21] MEN C, LIU R, XU F, et al. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China [J]. Science of the Total Environment, 2018, 612: 138-147. doi: 10.1016/j.scitotenv.2017.08.123 [22] GAO J, WANG L C. Ecological and human health risk assessments in the context of soil heavy metal pollution in a typical industrial area of Shanghai [J]. China Environmental Science and Pollution Research, 2018, 25: 27090-27105. doi: 10.1007/s11356-018-2705-8 [23] 杨刚, 伍钧, 孙百晔, 等. 雅安市耕地土壤重金属健康风险评价 [J]. 农业环境科学学报, 2010, 29(S1): 74-79. YANG G, WU J, SUN B H et al. Health Risk Assessment of Heavy Metals in Arable Soils of Ya’an [J]. Agro-Environment Science, 2010, 29(S1): 74-79(in Chinese).
[24] 易文利, 董奇, 杨飞, 等. 陕西省宝鸡市不同功能区土壤重金属污染特征及健康风险评价 [J]. 环境与职业医学, 2018, 35(11): 1019-1024. YI W L, DONG Q, YANG F, et al. Pollution characteristics and health risk assessment of heavy metals in different urban functional areas of Baoji City, Shaanxi Province [J]. Environmental and Occupational Medicine, 2018, 35(11): 1019-1024(in Chinese).
[25] JING L, JUN L Y, YU L, et al. Quantitative contributions of the major sources of heavy metals in soils to ecosystem and human health risks: A case study of Yulin, China [J]. Ecotoxicology and Environmental Safety, 2018, 164: 261-269. doi: 10.1016/j.ecoenv.2018.08.030 [26] MEIE W, HAIZHEN Z. Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors [J]. International Journal of Environmental Research and Public Health, 2018, 15(6): 1064. doi: 10.3390/ijerph15061064 [27] LIN M, GUI H, WANG Y, et al. Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou, China [J]. Environmental Science and Pollution Research, 2016, 24(2): 1987-1998. [28] LUO J, QI S H, XIE X M, et al. The assessment of source attribution of soil pollution in a typical e-waste recycling town and its surrounding regions using the combined organic and inorganic dataset [J]. Environmental Science and Pollution Research, 2017, 24(3): 3131-3141. doi: 10.1007/s11356-016-8072-4 [29] JIN Q, GAO H, YUE B, et al. Heavy metal content of rural living solid waste and related source and distribution analysis [J]. Environmental Science, 2018, 39(9): 4385-4392. [30] 胡延彪, 李忠武, 黄金权, 等. 湘江长沙段洲滩菜园土壤重金属潜在生态风险评价 [J]. 安全与环境学报, 2016, 16(1): 354-358. HU Y B, LI Z W, HUANG J Q et al. Potential ecological risk assessment of heavy metal contaminants in the soils of the vegetable plants in Changsha section of Xiangjiang River [J]. Safety and Environment, 2016, 16(1): 354-358(in Chinese).
[31] 陈铂垚. 基于灰色系统理论的长沙高新区绿地树种选择研究[D]. 长沙: 中南林业科技大学, 2019. CHEN B Y, Choice of tree species of Changsha high-tech zone based on grey system theory[D]. Changsha: Central South University of Forestry and Technology, 2019.
[32] 石宁宁, 丁艳锋, 赵秀峰, 等. 某农药工业园区周边土壤重金属含量与风险评价 [J]. 应用生态学报, 2010, 21(7): 1835-1843. SHI N N, DING Y F, ZHAO X F et al. Heavy metals content and pollution risk assessment of cropland soils around a pesticide industrial park [J]. Chinese Journal of Applied Ecology, 2010, 21(7): 1835-1843(in Chinese).
[33] CHEN B Y, LIU K L, LIU Y L, et al. Source identification, spatial distribution pattern, risk assessment and influencing factors for soil heavy metal pollution in a high-tech industrial development zone in Central China [J]. Human and Ecological Risk Assessment, 2021, 27(2): 560-574. doi: 10.1080/10807039.2020.1739510