-
土壤重金属污染是人类面临的重要环境问题之一,已影响到农产品质量安全和农田生态系统健康[1],进而危害到人类健康。所以,土壤重金属污染评价、源解析及治理的研究越来越多。研究者采用单因子污染指数法[2]、内梅罗综合污染指数法[3]、潜在生态风险指数法[4]以及2018年制定的针对农用地和企业用地的污染物风险管控标准[5]对土壤环境质量进行评估,受重金属污染的风险水平评判不再局限于简单的含量特征描述,而是从某种重金属元素污染研究过渡到重金属复合污染研究,尤其在近年土壤污染风险评价中,更强调了不同重金属元素的毒性[6]、研究地的土壤重金属背景值与实测值,使得土壤重金属污染等级评价更趋科学,为受重金属污染土壤的防控及治理提供了科学依据。
在探究土壤重金属污染特征及其影响因素时,研究者发现土壤重金属来源主要受工业[7]、农业[8]及其成土母质[9]等诸多因素影响。段淑辉等[10]利用UNIMX模型对农田重金属污染源解析发现,土壤表层Zn、Cu均主要来源于施肥和灌溉等农业活动。沈洪艳等[11]对湖南某典型流域农用地土壤重金属的污染源解析显示,流域农田土壤中Cd、As、Pb污染受工业生产活动、交通运输、农业活动的综合影响,Hg、Cr主要来源于成土母质等自然因素。大多数研究针对特定区域土壤重金属污染评价及来源解析,比如采矿区[12-13]、某流域[14-15]、重点污染企业[16]、农产品产地[17]、公园[18]等周边土壤重金属污染评价及来源探究。然而在不同的环境体系中不同重金属元素含量会受到多种因素的影响[19],进而导致不同区域重金属污染具有一定差异性,其中农田土壤重金属污染差异尤为明显[20-22]。因此研究金属采选与冶炼企业周边农田土壤重金属污染特征及来源解析对了解土壤重金属富集规律和防治重金属污染有重要意义。
本研究以湖南30家典型有色金属采选与冶炼企业周边表层土壤为研究对象,采用单因子污染指数法、内梅罗综合污染指数法及《农用地土壤污染风险管控标准》(GB15618-2018)评价重金属污染程度,应用潜在生态风险指数法评价重金属的潜在生态风险,利用主成分分析法与相关性法对污染区重金属来源进行解析。以期为湖南典型有色金属采选与冶炼企业周边土壤重金属污染控制及其治理提供科学依据。
湖南典型金属冶炼与采选行业企业周边土壤重金属污染评价及源解析
Evaluation and source analysis of heavy metal pollution in the soil around typical metal smelting and mining enterprises in Hunan Province
-
摘要: 为了解湖南省典型金属冶炼与采选行业周边土壤重金属污染现状。以30家金属冶炼与采选行业周边表层土壤为研究对象,采用单因子污染指数、内梅罗污染指数、潜在生态风险指数及《农用地土壤污染风险管控标准》(GB15618-2018)评价了土壤镉(Cd)、汞(Hg)、砷(As)、铅(Pb)、铬(Cr6+)、铜(Cu)、镍(Ni)、锌(Zn)污染状况,结合主成分分析法与相关性法探究了土壤重金属的来源。结果表明,污染区样品中Cd、Hg、As、Cu、Pb、Cr、Zn、Ni均值分别为3.22、0.985、65.63、67.43、165.53、94.07、328、43.9 mg·kg−1,为对照点样品中对应重金属元素均值的2.01、3.66、1.89、1.98、1.98、1.14、1.58、1.39倍;旱地重金属单因子污染指数(Pi)大小依次为Cd>As>Pb>Zn>Cu>Ni>Cr>Hg,水田重金属Pi大小依次为Cd>Hg>Pb>As>Zn>Ni>Cu>Cr,荒草地重金属Pi大小依次为Cd>Zn>As>Pb>Cu>Cr>Ni>Hg,而林地重金属Pi大小顺序与旱地一致;内梅罗综合污染指数结果显示,水田、旱地、荒草地、林地受重金属重度污染比例分别为44.4%、48.1%、52.4%、31.6%;综合潜在生态风险指数评价结果发现,旱地、水田、荒草地、林地处于强度及以上风险等级比例为83.3%、74%、71.4%、47.4%;农用地风险管控标准评价结果显示,在污染区93个土壤样品中,优先保护类、安全利用类和严格管控类样品比例分别为10.8%、50.5%、38.7%。源解析结果表明,污染区土壤中Cd、As、Pb、Zn、Cu的污染可能受到工业活动、交通运输和农业活动的综合影响,Cr的污染可能来源于成土母质,Hg和Ni的污染可能受工业活动影响。研究结果表明,应加强湖南典型金属冶炼与采选行业周边土壤中Cd、Hg、As、Pb、Zn的治理与控制。Abstract: In order to understand the current situation of heavy metal pollution in soil around typical metal smelting and mining industry in Hunan Province, 30 enterprises in the metal smelting and mining industry were selected as the research objects in this study, single factor pollution index, Nemeiro pollution index, potential ecological risk index and “Agricultural Land Soil Pollution Risk Control Standards” (GB15618-2018) were used to comprehensively evaluate the polution status of the soil cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), chromium (Cr), copper (Cu), nickel (Ni), zinc (Zn), and the main components method and the correlation method are also used to explore the sources of heavy metal pollution. The results showed that: The average values of Cd, Hg, As, Cu, Pb, Cr, Zn, and Ni in the samples in the contaminated area were 3.22, 0.985, 65.63, 67.43, 165.53, 94.07, 328, 43.9 mg·kg−1, it is 2.01, 3.66, 1.89, 1.98, 1.98, 1.14, 1.58, 1.39 times of the mean value of the corresponding heavy metal elements in the control point samples; The single factor pollution index (Pi) of heavy metals is Cd>As>Pb>Zn>Cu>Ni>Cr>Hg in dry land, Cd>Hg>Pb>As>Zn>Ni>Cu>Cr in paddy fields, Cd>Zn>As>Pb>Cu>Cr>Ni>Hg in wild grassland, and the order of the heavy metal Pi in woodland is the same as that of dry land. Results of Nemeiro Comprehensive Pollution Index show that the proportion of heavy metal pollution in paddy field, dry land, wasteland and woodland is 44.4%, 48.1%, 52.4%, and 31.6% respectively. The comprehensive evaluation results of the potential ecological risk index showed that the risk levels of dryland, paddy field, wasteland and forestland were 83.3%, 74%, 71.4% and 47.4% in intensity or above. The results of the risk control standard evaluation of agricultural land found that among the 93 soil samples in the contaminated areas, the proportion of samples in the priority protection category, safe use category and strict control category was 10.8%, 50.5% and 38.7% respectively. The results of source analysis showed that Cd, As, Pb, Zn, Cu in the contaminated soil may be influenced by agricultural activities, industrial activities and transportation, Cr may come from the control of the parent material of the soil, and Hg and Ni may be affected by industrial activities. The results show that the pollution control of heavy metals in the soil around the typical metal smelting and mining industry in Hunan Province should focus on strengthening the control and treatment of pollution sources of Cd, Hg, As, Pb and Zn.
-
表 1 湖南省典型金属采选与冶炼行业企业周边土壤样品采集一览表
Table 1. Collection list of soil samples around typical metal mining and smelting enterprises in Hunan Province
旱地Dry land 林地Paddy field 水田Forest land 荒草地Wild grass ground 污染点
Pollution
point对照点
Control
point污染点
Pollution
point对照点
Control
point污染点
Pollution
point对照点
Control
point污染点
Pollution
point对照点
Control
point东安新龙矿业 3 — 2 1 1 — — — 湘东钨业 1 — 1 — — — 2 — 博隆矿业 2 — — — 1 1 1 1 湘潭锰矿红旗 1 — — — — 1 5 — 五矿铁合金 2 — — — — 1 1 — 衡阳远景钨业 — — — — 4 1 — — 水口山有色金属 3 — — — — — 1 — 邵阳市鼎盛矿业 2 1 — — 1 — — — 湖南三立集团 3 1 — — — — — — 花垣民乐锰矿区 — — — — 3 — — 1 保靖县锌业 3 — — — — 1 — — 星月颜料有限公司 3 1 — — — — — — 新邵云翔矿业 — — — 1 3 — — — 永州福嘉有色金属 — 1 — — — — 3 — 新邵辰州锑业 4 — — — — — — — 鑫海锌品 — 1 2 — — — 1 — 湖南新龙矿业 — — 3 1 — — — — 临湘湘岳矿业 1 1 — — 2 — — — 证大予捷矿业 — — 1 — 1 1 2 — 桃江县九通锑业 — 1 2 — — — 1 — 安化渣滓溪矿业 3 — — 1 — — — — 冷水江锡矿山 9 — — — — — 1 — 湖南安圣电池 1 1 — — 2 — — — 溆浦江龙锰业 3 1 — — — — — — 郴州云湘矿治 2 1 1 — — — — — 柿竹园有色金属 3 — — 1 — — — — 金旺铋业股份 — 1 1 — — — — — 宝山有色金属 1 1 1 — — — 1 — 金石矿业 3 — — — — — 1 — 辰州矿业 1 1 5 — — — — — 表 2 土壤污染指数分级标准
Table 2. Classification criteria for soil pollution index
等级
Level单项污染指数评价(Pi)
Evaluation of individual pollution index内梅罗综合污染指数评价(PN)
Evaluation of the Nemero composite indexⅠ Pi≤1.0 无污染 PN≤0.7 安全 Ⅱ 1.0<Pi≤2.0 轻度污染 0.7<PN≤1.0 警戒限 Ⅲ 2.0<Pi≤3.0 中度污染 1.0<PN≤2.0 轻度污染 Ⅳ 3.0<Pi 重度污染 2.0<PN≤3.0 中度污染 Ⅴ PN>3.0 重度污染 表 3 土壤污染潜在生态风险指数分级标准
Table 3. Classification criteria of potential ecological risk index for soil pollution
潜在风险等级
Potential risk rating轻微
Low中度
Medium强度
Strong很强
Stronger极强
The strongest$ {E}_{f}^{i} $ <40$ {E}_{f}^{i} $ 40≤ <80$ {E}_{f}^{i} $ 80≤ <160$ {E}_{f}^{i} $ 160≤ <320$ {E}_{f}^{i} $ ≥320$ {E}_{f}^{i} $ $ \mathrm{R}\mathrm{I} $ <150$ \mathrm{R}\mathrm{I} $ 150≤ <300$ \mathrm{R}\mathrm{I} $ 300≤ <600$ \mathrm{R}\mathrm{I} $ 600≤ <1200$ \mathrm{R}\mathrm{I} $ ≥1200$ \mathrm{R}\mathrm{I} $ 表 4 农用地土壤重金属污染风险管控评价标准[28](mg·kg-1)
Table 4. Evaluation criteria of soil heavy metal Pollution risk control in agricultural land
监测指标Monitoring indicators Cd Hg As Pb Cr Cu Ni Zn 风险筛选值 pH≤5.5 水田 0.3 0.5 30 80 250 150 60 200 其它 0.3 1.3 40 70 150 50 5.5<pH≤6.5 水田 0.4 0.5 30 100 250 150 70 200 其它 0.3 1.8 40 90 150 50 6.5<pH≤7.5 水田 0.6 0.6 25 140 300 200 100 250 其它 0.3 2.4 30 120 200 100 pH>7.5 果园 0.8 1.0 20 240 350 250 190 300 其它 0.6 3.4 25 170 250 150 风险管制值 pH≤5.5 1.5 2.0 200 400 800 — — — 5.5<pH≤6.5 2.0 2.5 150 500 850 — — — 6.5<pH≤7.5 3.0 4.0 120 700 1000 — — — pH>7.5 4.0 6.0 100 1000 1300 — — — 注:优先保护类、安全利用类、严格管控类分别用A、B、C表示.
Note: priority protection, safe use and strict control are expressed in A、B、C.表 5 土壤样品中重金属含量特征(mg·kg-1)
Table 5. Characteristics of heavy metals in soil samples
土壤类型Soil type 项目Project Cd Hg As Cu Pb Cr Zn Ni 旱地(54个) 含量范围 0.015—44.050 0.063—3.21 3.9—1139.3 13.8—454.7 27—2953.6 16—708 79—1165 9.5—104.5 平均值 3.515 0.615 76.1 66.5 179.6 98 275 33.7 标准差 6.787 0.699 167.9 73.5 437.9 96 242 15.2 变异系数% 193 114 221 110 244 98 88 45 水田(18个) 含量范围 0.026—12.238 0.114—14.4 3.9—221 33.9—615.2 26.6—879.9 28—124 114—585 8.9—506.3 平均值 1.497 2.734 37.3 92.6 135.8 79 252 61.5 标准差 2.675 3.941 47.5 131.5 191.6 21 139 108.5 变异系数% 179 144 127 142 141 26 55 176 荒草地(21个) 含量范围 0.03—48.456 0.092—2.88 5—277.6 16—521.2 15.2—2712 41—552 41—10426 10.5—299.8 平均值 5.581 0.678 57.1 74.6 216.9 109 670 50.2 标准差 11.487 0.789 70.5 113.6 566.9 110 2187 59.7 变异系数% 206 116 123 152 261 101 326 119 林地(19个) 含量范围 0.014—10.120 0.096—3.62 8.3—713.6 16.2—101.4 19.5—603.4 37—123 58—629 9.4—404.5 平均值 1.408 0.721 72.2 38.3 96.9 79 175 49.2 标准差 2.627 0.917 154.5 24.6 153.3 22 148 85.2 变异系数% 187 127 214 64 158 28 85 173 污染区样品(112个) 含量范围 0.014—48.456 0.063—14.40 3.9—1139.3 13.8—615.2 15.2—2953.6 16—708 41—10426 8.9—506.3 平均值 3.221 0.985 65.6 67.4 165.5 94 329 43.9 标准差 7.168 1.892 138.4 90.3 405.1 84 980 63.4 变异系数% 223 192 210 130 244 89 298 144 对照点样品(25个) 含量范围 0.019—29.513 0.050—0.979 3.9—132 12.7—86.0 11.6—742.3 14—251 62—1897 5.7—67.8 平均值 1.602 0.269 34.6 33.9 83.2 82 207 31.5 标准差 5.717 0.189 35.3 16.1 142.1 44 354 13.3 变异系数% 350 70 102 49 170 54 171.8 42 背景值 0.142 0.09 12.8 25 30 58.3 84.2 27.8 表 6 土壤重金属单因子指数评价统计结果(mg·kg-1)
Table 6. Statistical results of single factor index evaluation of heavy metals in soil
元素
Elements旱地
Dry land水田
Paddy field荒草地
Wild grass ground林地
Forest landPi均
Pi Mean污染程度
Pollution levelPi均
Pi Mean污染程度
Pollution levelPi均
Pi Mean污染程度
Pollution levelPi均
Pi Mean污染程度
Pollution levelCd 11.23 重度污染 3.35 重度污染 14.25 重度污染 4.69 重度污染 Hg 0.3 无污染 2.89 中度污染 0.29 无污染 0.39 无污染 As 2.37 中度污染 1.33 轻度污染 1.93 轻度污染 1.88 轻度污染 Cu 0.95 无污染 0.57 无污染 0.78 无污染 0.64 无污染 Pb 1.94 轻度污染 1.55 轻度污染 1.52 轻度污染 0.94 无污染 Cr 0.55 无污染 0.29 无污染 0.55 无污染 0.49 无污染 Zn 1.20 轻度污染 1.16 轻度污染 2.34 中度污染 0.82 无污染 Ni 0.42 无污染 0.7 无污染 0.45 无污染 0.59 无污染 表 7 污染区土壤重金属含量的相关性
Table 7. Correlation of heavy metal content in soil in study area
元素Element Cd Hg As Cu Pb Cr Zn Ni Cd 1 Hg 0.040 1 As 0.223* -0.033 1 Cu 0.371** 0.064 0.282** 1 Pb 0.288** -0.004 0.459** 0.473** 1 Cr 0.014 0.017 0.008 0.080 0.166 1 Zn 0.424** 0.047 0.188* 0.271** 0.677** 0.222* 1 Ni 0.238* 0.152 0.014 0.130 0.209* 0.114 0.407** 1 表 8 污染区土壤重金属的主成分分析
Table 8. Principal component analysis of heavy metals in soil in study area
成分Components 初始特征值Initial eigenvalue 提取后特征值Eigenvalue extracted 交换后特征值Exchanging eigenvalues 特征值
Characteristic
value解释方差/%
Interpretation
variance累积/%
Cumulative特征值
Characteristic
value解释方差/%
Interpretation
variance累积/%
Cumulative特征值
Characteristic
value解释方差/%
Interpretation
variance累积/%
Cumulative1 2.681 33.516 33.516 2.681 33.516 33.516 2.342 29.281 29.281 2 1.213 15.161 48.676 1.213 15.161 48.676 1.315 16.442 45.724 3 1.029 12.864 61.540 1.029 12.864 61.540 1.265 15.816 61.540 4 0.899 11.239 72.779 5 0.756 9.448 82.227 6 0.624 7.801 90.029 7 0.600 7.494 97.522 8 0.198 2.478 100 表 9 土壤重金属主成分分析成分矩阵
Table 9. Component matrix of heavy metals content in soils
元素Elements 初始因子载荷Component matrix 旋转后因子载荷Rotated component matrix F1 F2 F3 F1 F2 F3 Cd 0.623 −0.009 0.304 0.609 −0.008 0.331 Hg 0.095 0.527 0.553 −0.044 −0.181 0.747 As 0.510 −0.559 0.068 0.706 −0.101 −0.262 Cu 0.638 −0.235 0.198 0.701 −0.015 0.099 Pb 0.832 −0.187 −1.148 0.786 0.362 −0.002 Cr 0.259 0.339 −0.728 −0.057 0.839 −0.067 Zn 0.801 0.221 −0.165 0.577 0.543 0.301 Ni 0.465 0.606 0.086 0.160 0.377 0.651 -
[1] 张小敏, 张秀英, 钟太洋, 等. 中国农田土壤重金属富集状况及其空间分布研究 [J]. 环境科学, 2014, 35(2): 692-703. ZHANG X M, ZHANG X Y, ZHONG T Y, et al. Spatial distribution and accumulation of heavy metal in arable land soil of China [J]. Environmental Science, 2014, 35(2): 692-703(in Chinese).
[2] XU Z, MI W B, MI N, et al. Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial activities [J]. Environmental Science and Pollution Research International, 2020, 27(31): 38835-38848. doi: 10.1007/s11356-020-09877-9 [3] 柴磊, 王新, 马良, 等. 基于PMF模型的兰州耕地土壤重金属来源解析 [J]. 中国环境科学, 2020, 40(9): 3919-3929. doi: 10.3969/j.issn.1000-6923.2020.09.025 CHAI L, WANG X, MA L, et al. Sources appointment of heavy metals in cultivated soils of Lanzhou based on PMF models [J]. China Environmental Science, 2020, 40(9): 3919-3929(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.09.025
[4] WANG P, ZHANG L J, LIN X, et al. Spatial distribution, control factors and sources of heavy metal in the surface sediments of Fudu Estuary waters, East Liaodong Bay, China [J]. Marine Pollution Bulletin, 2020, 156: 111279. doi: 10.1016/j.marpolbul.2020.111279 [5] 王金霞, 罗乐, 陈玉成, 等. 三峡库区库尾典型农用地土壤重金属污染特征及潜在风险 [J]. 农业环境科学学报, 2018, 37(12): 2711-2717. doi: 10.11654/jaes.2018-0844 WANG J X, LUO L, CHEN Y C, et al. The characteristics and potential risk of heavy metals pollution in farmland soil of an agricultural land in the Three Gorges Reservoir area [J]. Journal of Agro-Environment Science, 2018, 37(12): 2711-2717(in Chinese). doi: 10.11654/jaes.2018-0844
[6] 陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策 [J]. 土壤学报, 2018, 55(2): 261-272. CHEN W P, YANG Y, XIE T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China [J]. Acta Pedologica Sinica, 2018, 55(2): 261-272(in Chinese).
[7] PAN Y J, DING L, XIE S Y, et al. Spatiotemporal simulation, early warning, and policy recommendations of the soil heavy metal environmental capacity of the agricultural land in a typical industrial city in China: Case of Zhongshan City [J]. Journal of Cleaner Production, 2021, 285: 124849. doi: 10.1016/j.jclepro.2020.124849 [8] 赵奕然, 谷建辉, 万卫, 等. 株洲城郊农田土壤重金属污染特征与Pb同位素示踪 [J]. 环境科学学报, 2020, 40(3): 1074-1084. ZHAO Y R, GU J H, WAN W, et al. The features of heavy metal contamination and possible sources from Pb isotopic evidence in farmland soils, Zhuzhou suburb [J]. Acta Scientiae Circumstantiae, 2020, 40(3): 1074-1084(in Chinese).
[9] YANG H R, WANG F E, YU J, et al. An improved weighted index for the assessment of heavy metal pollution in soils in Zhejiang, China [J]. Environmental Research, 2021, 192: 110246. doi: 10.1016/j.envres.2020.110246 [10] 段淑辉, 周志成, 刘勇军, 等. 湘中南农田土壤重金属污染特征及源解析 [J]. 中国农业科技导报, 2018, 20(6): 80-87. DUAN S H, ZHOU Z C, LIU Y J, et al. Distribution and source apportionment of soil heavy metals in central-south of Hunan Province [J]. Journal of Agricultural Science and Technology, 2018, 20(6): 80-87(in Chinese).
[11] 沈洪艳, 安冉, 师华定, 等. 湖南某典型流域农用地土壤重金属污染及影响因素 [J]. 环境科学研究, 2021, 34(3): 715-724. SHEN H Y, AN R, SHI H D, et al. Heavy metal pollution and its influencing factors in agricultural land in a typical watershed in Hunan Province [J]. Research of Environmental Sciences, 2021, 34(3): 715-724(in Chinese).
[12] 刘智峰, 呼世斌, 宋凤敏, 等. 陕西某铅锌冶炼区土壤重金属污染特征与形态分析 [J]. 农业环境科学学报, 2019, 38(4): 818-826. doi: 10.11654/jaes.2018-1097 LIU Z F, HU S B, SONG F M, et al. Pollution characteristics and speciation analysis of heavy metals in soils around a lead-zinc smelter area in Shaanxi Province, China [J]. Journal of Agro-Environment Science, 2019, 38(4): 818-826(in Chinese). doi: 10.11654/jaes.2018-1097
[13] SUN Z H, XIA D X, WANG P, et al. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China [J]. Science of the Total Environment, 2018, 639: 217-227. doi: 10.1016/j.scitotenv.2018.05.176 [14] 许友泽, 刘锦军, 成应向, 等. 湘江底泥重金属污染特征与生态风险评价 [J]. 环境化学, 2016, 35(1): 189-198. doi: 10.7524/j.issn.0254-6108.2016.01.2015072201 XU Y Z, LIU J J, CHENG Y X, et al. Characteristics and ecological risk assessment of heavy metals contamination in sediments of the Xiangjiang River [J]. Environmental Chemistry, 2016, 35(1): 189-198(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.01.2015072201
[15] 冯依涛, 阎秀兰, 佟雪娇, 等. 再生铝企业周边农田土壤与农作物重金属含量特征分析 [J]. 农业环境科学学报, 2020, 39(1): 87-96. doi: 10.11654/jaes.2019-0897 FENG Y T, YAN X L, TONG X J, et al. Analysis on characteristics of heavy metals content in farmland soils and crops around recycled aluminum enterprises [J]. Journal of Agro-Environment Science, 2020, 39(1): 87-96(in Chinese). doi: 10.11654/jaes.2019-0897
[16] 周艳, 陈樯, 邓绍坡, 等. 西南某铅锌矿区农田土壤重金属空间主成分分析及生态风险评价 [J]. 环境科学, 2018, 39(6): 2884-2892. ZHOU Y, CHEN Q, DENG S P, et al. Principal component analysis and ecological risk assessment of heavy metals in farmland soils around a Pb-Zn mine in southwestern China [J]. Environmental Science, 2018, 39(6): 2884-2892(in Chinese).
[17] NIU L L, YANG F X, XU C, et al. Status of metal accumulation in farmland soils across China: From distribution to risk assessment [J]. Environmental Pollution, 2013, 176: 55-62. doi: 10.1016/j.envpol.2013.01.019 [18] 贾锐鱼, 朱万勇, 李楠, 等. 西安市公园土壤及灰尘中重金属污染与生态风险评价 [J]. 水土保持研究, 2015, 22(5): 316-320. JIA R Y, ZHU W Y, LI N, et al. Heavy metal contents and ecological risk assessment of soils and dust in urban Parks of Xi'an city [J]. Research of Soil and Water Conservation, 2015, 22(5): 316-320(in Chinese).
[19] 周萍, 文安邦, 史忠林, 等. 三峡库区不同土地利用土壤重金属分布特征与污染评价 [J]. 农业机械学报, 2017, 48(7): 207-213. doi: 10.6041/j.issn.1000-1298.2017.07.026 ZHOU P, WEN A B, SHI Z L, et al. Distribution characteristics and pollution evaluation of soil heavy metals of different land use types in Three Gorges reservoir region [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 207-213(in Chinese). doi: 10.6041/j.issn.1000-1298.2017.07.026
[20] 赵斌, 朱四喜, 李相兴, 等. 贵州草海不同土地利用方式表层土壤重金属污染现状评估 [J]. 环境化学, 2018, 37(10): 2219-2229. doi: 10.7524/j.issn.0254-6108.2018042603 ZHAO B, ZHU S X, LI X X, et al. Assessment of heavy metal pollution in the surface soils of different land use patterns in Caohai, Guizhou [J]. Environmental Chemistry, 2018, 37(10): 2219-2229(in Chinese). doi: 10.7524/j.issn.0254-6108.2018042603
[21] 李志涛, 王夏晖, 何俊, 等. 四川省江安县某硫铁矿区周边农田土壤重金属来源解析及污染评价 [J]. 农业环境科学学报, 2019, 38(6): 1272-1279. doi: 10.11654/jaes.2018-1076 LI Z T, WANG X H, HE J, et al. Source identification and pollution assessment of heavy metals in farmland soils around a pyrite mining area in Jiang'an County, Sichuan Province, China [J]. Journal of Agro-Environment Science, 2019, 38(6): 1272-1279(in Chinese). doi: 10.11654/jaes.2018-1076
[22] YANG Y, YANG X, HE M J, et al. Beyond mere pollution source identification: Determination of land covers emitting soil heavy metals by combining PCA/APCS, GeoDetector and GIS analysis [J]. CATENA, 2020, 185: 104297. doi: 10.1016/j.catena.2019.104297 [23] KANG Z M, WANG S L, QIN J H, et al. Pollution characteristics and ecological risk assessment of heavy metals in paddy fields of Fujian Province, China [J]. Scientific Reports, 2020, 10: 12244. doi: 10.1038/s41598-020-69165-x [24] 陈佳林, 李仁英, 谢晓金, 等. 南京市绿地土壤重金属分布特征及其污染评价[J/OL]. 环境科学: 1-12[2020-11-22]. https://doi.org/10.13227/j.hjkx.202005203. CHEN J L, LI R Y, XIE X J, et al.Distribution characteristics and pollution evaluation of heavy metals in greenbelt soils of Nanjing City[J/OL].Environmental Science: 1-12[2020-11-22]. http://doi.org/10.13227/j.hjkx.202005203 (in Chinese).
[25] 方晓波, 史坚, 廖欣峰, 等. 临安市雷竹林土壤重金属污染特征及生态风险评价 [J]. 应用生态学报, 2015, 26(6): 1883-1891. FANG X B, SHI J, LIAO X F, et al. Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin'an [J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1883-1891(in Chinese).
[26] 潘佑民. 湖南土壤背景值及研究方法[M]. 北京: 中国环境科学出版社, 1988. PAN Y M. [M]. Beijing: China Environment Science Press, 1988(in Chinese).
[27] 陈锦芳, 方宏达, 巫晶晶, 等. 基于PMF和Pb同位素的农田土壤中重金属分布及来源解析 [J]. 农业环境科学学报, 2019, 38(5): 1026-1035. doi: 10.11654/jaes.2018-1170 CHEN J F, FANG H D, WU J J, et al. Distribution and source apportionment of heavy metals in farmland soils using PMF and lead isotopic composition [J]. Journal of Agro-Environment Science, 2019, 38(5): 1026-1035(in Chinese). doi: 10.11654/jaes.2018-1170
[28] 生态环境部, 国家市场监督管理总局. 中华人民共和国国家标准: 土壤环境质量 农用地土壤污染风险管控标准 GB 15618—2018[S]. 北京: 中国标准出版社, 2018. Ministry of ecology and environment of the People′s Republic of China, . National Standard (Mandatory) of the People's Republic of China: Soil environmental quality Risk control standard for soil contamination of agricultural land.GB 15618—2018[S]. Beijing: Standards Press of China, 2018 (in Chinese).
[29] 李玉峰, 赵中秋, 祝培甜, 等. 基于土壤重金属污染风险管控的土壤质量评价: 以某县级市为例 [J]. 地学前缘, 2019, 26(6): 207-215. LI Y F, ZHAO Z Q, ZHU P T, et al. Soil quality assessment based on risk control of heavy metal pollution in soil: A case study of an industrial city in China [J]. Earth Science Frontiers, 2019, 26(6): 207-215(in Chinese).
[30] 甘国娟, 刘伟, 邱亚群, 等. 湘中某冶炼区农田土壤重金属污染及生态风险评价 [J]. 环境化学, 2013, 32(1): 132-138. doi: 10.7524/j.issn.0254-6108.2013.01.020 GAN G J, LIU W, QIU Y Q, et al. Heavy metal pollution and ecological risk assessment of the paddy soils in a smelting area in Central Hunan [J]. Environmental Chemistry, 2013, 32(1): 132-138(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.01.020
[31] 李岩. 典型工业聚集区土壤重金属污染特征及成因研究[D]. 北京: 中国地质大学(北京), 2020. LI Y.Study on the characteristics and causes of heavy metal pollution in typical industrial areas[D].Beijing: China University of Geosciences, 2020(in Chinese).
[32] 张晓文. 湖南某工业区土壤及水稻重金属污染源解析[D]. 北京: 中国农业科学院, 2019. ZHANG X W. Apportionment of heavy metal pollution sources of soil and rice in an industrial area of Hunan Province[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019(in Chinese).
[33] 穆莉, 王跃华, 徐亚平, 等. 湖南省某县稻田土壤重金属污染特征及来源解析 [J]. 农业环境科学学报, 2019, 38(3): 573-582. doi: 10.11654/jaes.2018-0791 MU L, WANG Y H, XU Y P, et al. Pollution characteristics and sources of heavy metals in paddy soils in a County of Hunan Province, China [J]. Journal of Agro-Environment Science, 2019, 38(3): 573-582(in Chinese). doi: 10.11654/jaes.2018-0791
[34] 魏迎辉, 李国琛, 王颜红, 等. PMF模型的影响因素考察: 以某铅锌矿周边农田土壤重金属源解析为例 [J]. 农业环境科学学报, 2018, 37(11): 2549-2559. doi: 10.11654/jaes.2018-0492 WEI Y H, LI G C, WANG Y H, et al. Investigating factors influencing the PMF model: A case study of source apportionment of heavy metals in farmland soils near a lead-zinc ore [J]. Journal of Agro-Environment Science, 2018, 37(11): 2549-2559(in Chinese). doi: 10.11654/jaes.2018-0492
[35] LIU L L, LIU Q Y, MA J, et al. Heavy metal(loid)s in the topsoil of urban Parks in Beijing, China: Concentrations, potential sources, and risk assessment [J]. Environmental Pollution, 2020, 260: 114083. doi: 10.1016/j.envpol.2020.114083 [36] 徐源, 师华定, 王超, 等. 湖南省郴州市苏仙区重点污染企业影响区的土壤重金属污染源解析[J/OL]. 环境科学研究: 1-13[2020-11-22].https://doi.org/10.13198/j.issn.1001-6929.2020.11.03. XU Y, SHI H D, WANG C, et al. Heavy metal pollution sources in soil affected by key pollution enterprises in Suxian district, Chenzhou City, Hunan Province[J/OL].Research of Environmental Sciences: 1-13[2020-11-22]. https://doi.org/10.13198/j.issn.1001-6929.2020.11.03 (in Chinese).
[37] 张连科, 李海鹏, 黄学敏, 等. 包头某铝厂周边土壤重金属的空间分布及来源解析 [J]. 环境科学, 2016, 37(3): 1139-1146. ZHANG L K, LI H P, HUANG X M, et al. Soil heavy metal spatial distribution and source analysis around an aluminum plant in Baotou [J]. Environmental Science, 2016, 37(3): 1139-1146(in Chinese).
[38] 陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展 [J]. 农业环境科学学报, 2019, 38(10): 2219-2238. doi: 10.11654/jaes.2018-1449 CHEN Y L, WENG L P, MA J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils [J]. Journal of Agro-Environment Science, 2019, 38(10): 2219-2238(in Chinese). doi: 10.11654/jaes.2018-1449
[39] WU J, LI J, TENG Y G, et al. A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks [J]. Journal of Hazardous Materials, 2020, 388: 121766. doi: 10.1016/j.jhazmat.2019.121766