有机磷酸酯阻燃剂降解方法的研究进展
Research progress on degradation methods of organophosphorus flame retardants
-
摘要: 有机磷阻燃剂(OPFRs)已取代溴代阻燃剂广泛应用于各行业,并很容易通过挥发、磨损等方式进入各环境介质中.目前,已在水体、土壤等环境介质中检测到了OPFRs的存在.本文总结了目前已有的OPFRs在环境中的降解方式,据其原理主要可分为化学法和生物法,化学法主要包含Fenton/类Fenton氧化法、紫外-双氧水法(UV/H2O2)、光催化法、过硫酸盐活化法和水解光解等,能够产生大量具有强氧化性的自由基(·OH、SO4·-等)破坏烃链使其降解.但该方法容易受到实际水体中的复杂成分影响,导致效果降低.生物法则是利用不同的细菌将OPFRs作为碳源或磷源在生长过程中将其消耗或和微生物体内的特异性酶发生酶促反应从而降解.通过总结归纳目前OPFRs的降解方法,了解现有方法存在的优点和缺点,为高效去除OPFRs提供理论基础.Abstract: Organophosphorus flame retardants (OPFRs) have replaced brominated flame retardants and are widely used in various industries. They can easily enter environment through volatilization or abrasion. At present, OPFRs has been detected in environmental media such as water and soil. This review summarized the existing degradation methods of OPFRs in the environment, including chemical and biological methods. The chemical methods mainly include Fenton oxidation, ultraviolet-hydrogen peroxide (UV/H2O2), photocatalysis, sulfate radical oxidation and hydrolysis, photolysis, etc. which can produce active free radicals (·OH, SO4·-, etc.) to destroy the hydrocarbon chain and cause its degradation. However, this method is susceptible to the influence of complex components in the natural water, which resulting in reduced effectiveness. The biological methods use different microorganisms to consume OPFRs as carbon or phosphorus sources during the growth process or to degrade them by enzymatic reaction with specific enzymes in the microorganism. This paper summarized the current degradation methods of OPFRs and understanding the advantages and disadvantages of existing methods, which can provide a theoretical basis for the efficient removal of OPFRs.
-
-
[1] MARKLUND A, ANDERSSON B, HAGLUND P. Screening of organophosphorus compounds and their distribution in various indoor environments[J]. Chemosphere, 2003, 53(9):1137-1146. [2] 顾杰, 顾爱华, 石利利, 等. 有机磷酸酯环境分布及神经毒性研究进展[J]. 环境与健康杂志, 2018, 35(3):277-281. GU J, GU A H, SHI L L, et al. Progress in research on the environmental distribution and neurotoxicity of organophosphates[J]. Journal of Environment and Health, 2018, 35(3):277-281(in Chinese).
[3] 张月. 国内外阻燃剂市场分析[J]. 精细与专用化学品, 2014, 22(8):20-24. ZHANG Y. Market analysis of flame retardants at home and abroad[J]. Fine and Special Chemicals, 2014, 22(8):20-24(in Chinese).
[4] 欧育湘. 我国有机磷阻燃剂产业的分析与展望[J]. 化工进展, 2011, 30(1):210-215. OU Y X. Analysis and prospect of organic phosphorus flame retardant industry in China[J]. Progress in Chemical Industry, 2011, 30(1):210-215(in Chinese).
[5] VAN DER VEEN I, DE BOER J. Phosphorus flame retardants:Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10):1119-1153. [6] 高立红, 厉文辉, 史亚利,等. 有机磷酸酯阻燃剂分析方法及其污染现状研究进展[J]. 环境化学, 2014, 33(10):1750-1761. GAO L H, LI W H, SHI Y L, et al. Research progress on analysis methods and pollution status of organic phosphate flame retardants[J]. Environmental Chemistry, 2014, 33(10):1750-1761(in Chinese).
[7] LI J, YU N Y, ZHANG B B, et al. Occurrence of organophosphate flame retardants in drinking water from China[J]. Water Research, 2014, 54:53-61. [8] 王晓伟, 刘景富, 阴永光. 有机磷酸酯阻燃剂污染现状与研究进展[J]. 化学进展, 2010, 22(10):1983-1992. WANG X W, LIU J F, YIN Y G. Pollution status and research progress of organic phosphate flame retardants[J]. Progress in Chemistry, 2010, 22(10):1983-1992(in Chinese).
[9] 秦宏兵, 范苓, 顾海东. 固相萃取-气相色谱/质谱法测定水中6种有机磷酸酯类阻燃剂和增塑剂[J]. 分析科学学报, 2014, 30(2):259-262. QIN H B, FAN L, GU H D. Solid phase extraction-gas chromatography/mass spectrometry for the determination of six organophosphate flame retardants and plasticizers in water[J]. Journal of Analytical Science, 2014, 30(2):259-262(in Chinese).
[10] WANG R M, TANG J H, XIE Z Y, et al. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, North China[J]. Environmental Pollution, 2015, 198:172-178. [11] HE J H, LI J F, MA L Y, et al. Large-scale distribution of organophosphate esters (flame retardants and plasticizers) in soil from residential area across China:Implications for current level[J]. Science of the Total Environment, 2019, 697, 133997. [12] WANG Y, YAO Y M, LI W H, et al. A nationwide survey of 19 organophosphate esters in soils from China:Spatial distribution and hazard assessment[J]. Science of the Total Environment, 2019, 671:528-535. [13] 邓旭, 印红玲, 何婉玲, 等. 有机磷酸酯在成都市市/郊区剖面土壤及农作物中的分布及迁移[J]. 环境化学, 2019, 38(3):241-247. DENG X, YIN H L, HE W L, et al. Distribution and migration of organophosphates in soil and crops in the city/suburban profile of Chengdu[J]. Environmental Chemistry, 2019, 38(3):241-247(in Chinese).
[14] 刘琴, 印红玲, 李蝶, 等. 室内灰尘中有机磷酸酯的分布及其健康风险[J]. 中国环境科学, 2017, 37(8):2831-2839. LIU Q, YIN H L, LI D, et al. Distribution of organophosphates in indoor dust and their health risks[J]. Chinese Environmental Science, 2017, 37(8):2831-2839(in Chinese).
[15] 徐怀洲, 王智志, 张圣虎, 等. 有机磷酸酯类阻燃剂毒性效应研究进展[J]. 生态毒理学报, 2018, 13(3):19-30. XU H Z, WANG Z Z, ZHANG S H, et al. Research progress on the toxicity effects of organic phosphate flame retardants[J]. Journal of Ecotoxicology, 2018, 13(3):19-30(in Chinese).
[16] 皮天星, 蔡磊明, 蒋金花, 等. 新型阻燃剂TCPP对斑马鱼的毒性研究[J]. 生态毒理学报, 2016, 11(2):247-256. PI T X, CAI L M, JIANG J H, et al. Study on the toxicity of a new flame retardant TCPP to zebrafish[J]. Journal of Ecotoxicology, 2016, 11(2):247-256(in Chinese).
[17] CRISTALE J, VAZQUEZ A G, BARATA C, et al. Priority and emerging flame retardants in rivers:Occurrence in water and sediment, Daphnia magna toxicity and risk assessment[J]. Environment International, 2013, 59:232-243. [18] LIU X, JI K, CHOI K. Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish[J]. Aquatic Toxicology, 2012, 114:173-181. [19] HOU R, XU Y, WANG Z. Review of OPFRs in animals and humans:Absorption, bioaccumulation, metabolism, and internal exposure research[J]. Chemosphere, 2016, 153:78-90. [20] WEI G L, LI D Q, ZHUO M N, et al. Organophosphorus flame retardants and plasticizers:Sources, occurrence, toxicity and human exposure[J]. Environmental Pollution, 2015, 196:29-46. [21] WIEGAND H L, ORTHS C T, KERPEN K, et al. Investigation of the iron-peroxo complex in the fenton reaction:kinetic indication, decay kinetics, and hydroxyl radical yields[J]. Environmental Science & Technology, 2017, 51(24):14321-14329. [22] 刘祖发, 丁波, 刘珍珍, 等. Fenton试剂氧化降解水体有机磷酸酯的动力学研究[J]. 亚热带资源与环境学报, 2016, 11(1):1-8. LIU Z F, DING B, LIU Z Z, et al. Kinetics of oxidative degradation of organophosphates in water by Fenton reagent[J]. Journal of Subtropical Resources and Environment, 2016, 11(1):1-8(in Chinese).
[23] 周月英, 徐珲, 刘祖发. 水体中有机磷酸酯Fenton、电-Fenton的降解特性[J]. 科学技术与工程, 2018, 18(2):186-192. ZHOU Y Y, XU H, LIU Z F. Degradation characteristics of organic phosphate fenton and electro-fenton in water[J]. Science Technology and Engineering, 2018, 18(2):186-192(in Chinese).
[24] AMBASHTA R D, REPO E, SILLANPÄÄ M. Degradation of tributyl phosphate using nanopowders of iron and iron-nickel under the influence of a static magnetic field[J]. Industrial & Engineering Chemistry Research, 2011, 50(21):11771-11777. [25] DU L Z, WANG X L, WU J F. Degradation of tri(2-chloroethyl)phosphate by a microwave enhanced heterogeneous Fenton process using iron oxide containing waste[J]. RSC Advances, 2018, 8(32):18139-18145. [26] LIU B M, LIU Z X, YU P, et al. Enhanced removal of tris(2-chloroethyl)phosphate using a resin-based nanocomposite hydrated iron oxide through a Fenton-like process:Capacity evaluation and pathways[J]. Water Research, 2020, 175:115655. [27] POCOSTALES J P, SEIN M M, KNOLLE W, et al. Degradation of ozone-refractory organic phosphates in wastewater by ozone and ozone/hydrogen peroxide (peroxone):The role of ozone consumption by dissolved organic matter[J]. Environmental Science & Technology, 2010, 44(21):8248-8253. [28] YUAN X, LACORTE S, CRISTALE J, et al. Removal of organophosphate esters from municipal secondary effluent by ozone and UV/H2O2 treatments[J]. Separation and Purification Technology, 2015, 156:1028-1034. [29] CRISTALE J, RAMOS D D, DANTAS R F, et al. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?[J]. Environmental Research, 2016, 144:11-18. [30] RUAN X C, JIN X, YANG Z Y, et al. Photodegradation of Tri(Chloropropyl) Phosphate Solution by UV/O3[J]. Water, Air, & Soil Pollution, 2014, 225(8):2085. [31] 李伟伟, 许可, 董慧峪, 等. UV/H2O2技术对上海青草沙水源水砂滤后溴酸根和三卤甲烷的生成控制[J]. 环境化学, 2016, 35(4):615-622. LI W W, XU K, DONG H Y, et al. UV/H2O2 technology controls the formation of bromate and trihalomethanes after the filtration of Shanghai Qingcaosha water source sands[J]. Environmental Chemistry, 2016, 35(4):615-622(in Chinese).
[32] RUAN X C, AI R, JIN X, et al. Photodegradation of tri (2-chloroethyl) phosphate in aqueous solution by UV/H2O2[J]. Water, Air, & Soil Pollution, 2012, 224(1):1406. [33] LIU J, YE J S, CHEN Y F, et al. UV-driven hydroxyl radical oxidation of tris(2-chloroethyl) phosphate:Intermediate products and residual toxicity[J]. Chemosphere, 2018, 190:225-233. [34] JI. Q Y, HE H, GAO Z Q, et al. UV/H2O2 oxidation of tri(2-chloroethyl) phosphate:Intermediate products, degradation pathway and toxicity evaluation[J]. Journal of Environmental Sciences, 2020, 98:55-61. [35] ROCHA O R S D, DANTAS R F, NASCIMENTO JúNIOR W J, et al. Organophosphate esters removal by UV/H2O2 process monitored by 31p nuclear magnetic resonance spectroscopy[J]. Brazilian Journal of Chemical Engineering, 2018, 35(2):521-530. [36] HE H, JI Q Y, GAO Z Q, et al. Degradation of tri(2-chloroisopropyl) phosphate by the UV/H2O2 system:Kinetics, mechanisms and toxicity evaluation[J]. Chemosphere, 2019, 236:124388. [37] YU X L, YIN H, PENG H, et al. Degradation mechanism, intermediates and toxicology assessment of tris-(2-chloroisopropyl) phosphate using ultraviolet activated hydrogen peroxide[J]. Chemosphere, 2020, 241:124991. [38] LIN J, HU H, GAO N, et al. Fabrication of GO@MIL-101(Fe) for enhanced visible-light photocatalysis degradation of organophosphorus contaminant[J]. Journal of Water Process Engineering, 2020, 368:273-284. [39] HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1):69-96. [40] YU X L, YIN H, YE J S, et al. Degradation of tris-(2-chloroisopropyl) phosphate via UV/TiO2 photocatalysis:Kinetic, pathway, and security risk assessment of degradation intermediates using proteomic analyses[J]. Chemical Engineering Journal, 2019, 374:263-273. [41] TANG T, LU G N, WANG W J, et al. Photocatalytic removal of organic phosphate esters by TiO2:Effect of inorganic ions and humic acid[J]. Chemosphere, 2018, 206:26-32. [42] ANTONOPOULOU M, KARAGIANNI P, KONSTANTINOU I K. Kinetic and mechanistic study of photocatalytic degradation of flame retardant Tris (1-chloro-2-propyl) phosphate (TCPP)[J]. Applied Catalysis B:Environmental, 2016, 192:152-160. [43] YE J S, LIU J, LI C S, et al. Heterogeneous photocatalysis of tris(2-chloroethyl) phosphate by UV/TiO2:Degradation products and impacts on bacterial proteome[J]. Water Research, 2017, 124:29-38. [44] ABDULLAH A M, O'SHEA K E. TiO2 photocatalytic degradation of the flame retardant tris (2-chloroethyl) phosphate (TCEP) in aqueous solution:A detailed kinetic and mechanistic study[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 377, 130-137. [45] HE H, WANG X H, CHENG C, et al. Degradation of organophosphorus flame retardant tri(chloro-propyl)phosphate (TCPP) by (001) crystal plane of TiO2 photocatalysts[J]. Environmental Technology, 2019, 99(4):1-11. [46] ANTONOPOULOU M, GIANNAKAS A, BAIRAMIS F, et al. Degradation of organophosphorus flame retardant tris (1-chloro-2-propyl) phosphate (TCPP) by visible light N,S-codoped TiO2 photocatalysts[J]. Chemical Engineering Journal, 2017, 318:231-239. [47] 于洪涛, 全燮. 纳米异质结光催化材料在环境污染控制领域的研究进展[J]. 化学进展, 2009, 21(Z1):406-419. YU H T, QUAN X. Research progress of nano-heterojunction photocatalytic materials in the field of environmental pollution control[J]. Progress in Chemistry, 2009, 21(Z1):406-419(in Chinese).
[48] KONSTAS P S, HELA D, GIANNAKAS A, et al. Photocatalytic degradation of organophosphate flame retardant TBEP:Kinetics and identification of transformation products by orbitrap mass spectrometry[J]. International Journal of Environmental Analytical Chemistry, 2019, 99(4):297-309. [49] YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs)[J]. Environmental Science & Technology, 2014, 48(4):2344-2351. [50] 连文洁. 黄铁矿活化过硫酸盐降解有机磷酸酯的性能及机理研究[D]. 广州:华南理工大学, 2019. LIAN W J. Study on the performance and mechanism of pyrite activated persulfate to degrade organic phosphate[D]. Guangzhou:South China University of Technology, 2019(in Chinese). [51] SONG Q Y, FENG Y P, LIU G G, et al. Degradation of the flame retardant triphenyl phosphate by ferrous ion-activated hydrogen peroxide and persulfate:Kinetics, pathways, and mechanisms[J]. Chemical Engineering Journal, 2019, 361:929-936. [52] LIAN W J, YI X Y, HUANG K B, et al. Degradation of tris(2-chloroethyl) phosphate (TCEP) in aqueous solution by using pyrite activating persulfate to produce radicals[J]. Ecotoxicology and Environmental Safety, 2019, 174:667-674. [53] SONG Q Y, FENG Y P, WANG Z, et al. Degradation of triphenyl phosphate (TPhP) by CoFe2O4-activated peroxymonosulfate oxidation process:Kinetics, pathways, and mechanisms[J]. Science of The Total Environment, 2019, 681:331-338. [54] OU H S, LIU J, YE J S, et al. Degradation of tris(2-chloroethyl) phosphate by ultraviolet-persulfate:Kinetics, pathway and intermediate impact on proteome of Escherichia coli[J]. Chemical Engineering Journal, 2017, 308:386-395. [55] XU X X, CHEN J, QU R J, et al. Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate:Kinetics, water matrix effects, degradation products and reaction pathways[J]. Chemosphere, 2017, 185:833-843. [56] YU X L, YIN H, PENG H, et al. Oxidation degradation of tris-(2-chloroisopropyl) phosphate by ultraviolet driven sulfate radical:Mechanisms and toxicology assessment of degradation intermediates using flow cytometry analyses[J]. Science of The Total Environment, 2019, 687:732-740. [57] HU H, ZHANG H X, CHEN Y, et al. Enhanced photocatalysis degradation of organophosphorus flame retardant using MIL-101(Fe)/persulfate:Effect of irradiation wavelength and real water matrixes[J]. Chemical Engineering Journal, 2019, 368:273-284. [58] FANG Y, KIM E, STRATHMANN T J. Mineral- and base-catalyzed hydrolysis of organophosphate flame retardants:potential major fate-controlling sink in soil and aquatic environments[J]. Environmental Science & Technology, 2018, 52(4):1997-2006. [59] SU G Y, LETCHER R J, YU H X. Organophosphate flame retardants and plasticizers in aqueous solution:pH-dependent hydrolysis, kinetics, and pathways[J]. Environmental Science & Technology, 2016, 50(15):8103-8111. [60] CRISTALE J, DANTAS R F, DE LUCA A, et al. Role of oxygen and DOM in sunlight induced photodegradation of organophosphorous flame retardants in river water[J]. Journal of Hazardous Materials, 2017, 323:242-249. [61] SUN S B, JIANG J Q, ZHAO H X, et al. Photochemical reaction of tricresyl phosphate (TCP) in aqueous solution:Influencing factors and photolysis products[J]. Chemosphere, 2020, 241:124971. [62] CHEN Y J, YE J S, CHEN Y, et al. Degradation kinetics, mechanism and toxicology of tris(2-chloroethyl) phosphate with 185 nm vacuum ultraviolet[J]. Chemical Engineering Journal, 2019, 356:98-106. [63] KAWAGOSHI Y, NAKAMURA S, FUKUNAGA I. Degradation of organophosphoric esters in leachate from a sea-based solid waste disposal site[J]. Chemosphere, 2002, 48(2):219-225. [64] LIANG K, LIU J F. Understanding the distribution, degradation and fate of organophosphate esters in an advanced municipal sewage treatment plant based on mass flow and mass balance analysis[J]. Science of The Total Environment, 2016, 544:262-270. [65] 庞龙, 张肖静, 庞榕, 等. 城市污水处理工艺对有机磷酸酯类化合物的去除[J]. 河南师范大学学报(自然科学版), 2016, 44(3):98-103. PANG L, ZHANG X J, PANG R, et al. Removal of organic phosphate compounds by municipal wastewater treatment process[J]. Journal of Henan Normal University (Natural Science Edition), 2016, 44(3):98-103(in Chinese). [66] ZENG X Y, LIU Z Y, HE L X, et al. The occurrence and removal of organophosphate ester flame retardants/plasticizers in a municipal wastewater treatment plant in the Pearl River Delta, China[J]. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering, 2015, 50(12):1291-1297. [67] JURGENS S S, HELMUS R, WAAIJERS S L, et al. Mineralisation and primary biodegradation of aromatic organophosphorus flame retardants in activated sludge[J]. Chemosphere, 2014, 111:238-242. [68] 徐亮, 胡琼璞, 刘静,等. 上海城市污泥中有机磷酸酯阻燃剂/增塑剂分布的初步研究[J]. 环境化学, 2018, 37(8):1699-1705. XU L, HU Q P, LIU J, et al. Preliminary study on the distribution of organophosphate flame retardants/plasticizers in urban sludge in Shanghai[J]. Environmental Chemistry, 2018, 37(8):1699-1705(in Chinese).
[69] 卫昆. 磷酸三苯酯的微生物降解机制及其降解产物毒性研究[D]. 广州:华南理工大学, 2018. WEI K. Microbial degradation mechanism of triphenyl phosphate and its degradation product toxicity study[D]. Guangzhou:South China University of Technology, 2018(in Chinese). [70] BERNE C, MONTJARRET B, GUOUNTTI Y, et al. Tributyl phosphate degradation by Serratia odorifera[J]. Biotechnology Letters, 2004, 26(8):681-686. [71] KULKARNI S V, MARKAD V L, MELO J S, et al. Biodegradation of tributyl phosphate using Klebsiella pneumoniae sp. S3[J]. Applied Microbiology and Biotechnology, 2014, 98(2):919-929. [72] RANGU S S, MURALIDHARAN B, TRIPATHI S C, et al. Tributyl phosphate biodegradation to butanol and phosphate and utilization by a novel bacterial isolate, Sphingobium sp. strain RSMS[J]. Applied Microbiology and Biotechnology, 2014, 98(5):2289-2296. [73] 刘佳. 有机磷酸酯类阻燃剂化学氧化及微生物降解过程的机理研究[D]. 北京:北京科技大学, 2019. LIU J. Study on the mechanism of chemical oxidation and microbial degradation of organic phosphate flame retardants[D]. Beijing:University of Science and Technology Beijing, 2019(in Chinese). [74] TAKAHASHI S, SATAKE I, KONUMA I, et al. Isolation and identification of persistent chlorinated organophosphorus flame retardant-degrading bacteria[J]. Applied and Environmental Microbiology, 2010, 76(15):5292-5296. [75] TAKAHASHI S, MIURA K, ABE K, et al. Complete detoxification of tris(2-chloroethyl) phosphate by two bacterial strains:Sphingobium sp. strain TCM1 and Xanthobacter autotrophicus strain GJ10[J]. Journal of Bioscience and Bioengineering, 2012, 114(3):306-311. [76] TAKAHASHI S, OBANA Y, OKADA S, et al. Complete detoxification of tris(1,3-dichloro-2-propyl) phosphate by mixed two bacteria, Sphingobium sp. strain TCM1 and Arthrobacter sp. strain PY1[J]. Journal of Bioscience and Bioengineering, 2012, 113(1):79-83. [77] LIU Y, YIN H, WEI K, et al. Biodegradation of tricresyl phosphate isomers by Brevibacillus brevis:Degradation pathway and metabolic mechanism[J]. Chemosphere, 2019, 232:195-203. [78] WEI K, YIN H, PENG H, et al. Bioremediation of triphenyl phosphate in river water microcosms:Proteome alteration of Brevibacillus brevis and cytotoxicity assessments[J]. Science of The Total Environment, 2019, 649:563-570. [79] VILA-COSTA M, SEBASTIAN M, PIZARRO M, et al. Microbial consumption of organophosphate esters in seawater under phosphorus limited conditions[J]. Scientific Reports, 2019, 9(1):233. -

计量
- 文章访问数: 5668
- HTML全文浏览数: 5668
- PDF下载数: 185
- 施引文献: 0