抗生素菌渣处理技术研究进展

陈冠益, 刘环博, 李健, 颜蓓蓓, 董磊. 抗生素菌渣处理技术研究进展[J]. 环境化学, 2021, (2): 459-473. doi: 10.7524/j.issn.0254-6108.2020061302
引用本文: 陈冠益, 刘环博, 李健, 颜蓓蓓, 董磊. 抗生素菌渣处理技术研究进展[J]. 环境化学, 2021, (2): 459-473. doi: 10.7524/j.issn.0254-6108.2020061302
CHEN Guanyi, LIU Huanbo, LI Jian, YAN Beibei, DONG Lei. Treatment of antibiotic mycelial fermentation residue: The critical review[J]. Environmental Chemistry, 2021, (2): 459-473. doi: 10.7524/j.issn.0254-6108.2020061302
Citation: CHEN Guanyi, LIU Huanbo, LI Jian, YAN Beibei, DONG Lei. Treatment of antibiotic mycelial fermentation residue: The critical review[J]. Environmental Chemistry, 2021, (2): 459-473. doi: 10.7524/j.issn.0254-6108.2020061302

抗生素菌渣处理技术研究进展

    通讯作者: 颜蓓蓓, E-mail: yanbeibei@tju.edu.cn
  • 基金项目:

    国家重点研发计划(2016YFE0201800),国家自然科学基金(51676138,51878557)和天津市科技计划项目(18YFJLCG00090,18YFHBZC00020)资助.

Treatment of antibiotic mycelial fermentation residue: The critical review

    Corresponding author: YAN Beibei, yanbeibei@tju.edu.cn
  • Fund Project: Supported by the National Key R & D Program of China(2016YFE0201800), National Natural Science Foundation of China(51676138, 51878557)and Tianjin Science and Technology Project(18YFJLCG00090, 18YFHBZC00020).
  • 摘要: 抗生素菌渣是制药企业在生产抗生素类药物时,由微生物发酵产生的固体废弃物.作为国家规定的危险废物,其产量大、含水率高、含氮、硫量高、残留抗生素的特点,使其具有巨大的环境危害性.抗生素菌渣的科学、无害处理是医药固废领域的热点难题.本文系统阐述了抗生素菌渣的类型、性质和危害,详细综述了目前主流的各类热化学处理技术和非热化学处理技术,重点对包括焚烧技术、水热技术和热解气化技术等在内的热化学处理技术进行了系统归纳,汇总分析其技术特点、环境影响、应用瓶颈及研究进展.同时,对抗生素菌渣处理的未来发展提出若干建议和展望,提出烘焙技术消除其生物危险性的处理理念,建立健全相关安全标准与法律规范,以更好地降低抗生素菌渣潜在的环境风险并实现资源利用,解决抗生素类药物生产工艺的后顾之忧,促进我国制药行业持续健康发展.
  • 加载中
  • [1] 李再兴, 田宝阔, 左剑恶, 等. 抗生素菌渣处理处置技术进展[J]. 环境工程, 2012, 30(2):72-75.

    LI Z X, TIAN B K, ZUO J E, et al. Progress in treatment and disposal technology of antibiotic bacterial residues[J]. Environmental Engineering, 2012, 30(2):72-75(in Chinese).

    [2] 袁梓涵, 尹杰, 尹艳山, 等. 造纸污泥热化学处理的研究进展[J]. 中国造纸学报, 2019, 34(2):60-65.

    YUAN Z H, YIN J, YIN Y S, et al. Research progress in thermochemical conversion of paper sludge[J]. Transaction of China Pulp and Paper, 2019, 34(2):60-65(in Chinese).

    [3] 安淼, 袁国安, 夏旻. 废弃物热化学处理方法的多角度对比分析[J]. 环境与可持续发展, 2018, 43(4):151-154.

    AN M, YUAN G A, XIA M. Comparison of thermochemical technologies for waste treatment[J]. Environment and Sustainable Development, 2018, 43(4):151-154(in Chinese).

    [4] 苏毅, 朱惠春, 张金亮, 等. 城市垃圾热化学转化处理技术进展与应用[J]. 工业锅炉, 2015(1):7-14. SU Y, ZHU H C, ZHANG J L, et al. Progress and application of thermochemical treatment technology for municiple solid waste[J]. Industrial Boilers, 2015

    (1):7-14(in Chinese).

    [5] BEN Y J, FU C X, HU M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment:A review[J]. Environmental Research, 2019, 169:483-493.
    [6] 贡丽鹏, 郭斌, 任爱玲, 等. 抗生素菌渣理化特性[J]. 河北科技大学学报, 2012, 33(2):190-196.

    GONG L P, GUO B, REN A L, et al. Physical and chemical properties of antibiotics bacterial residue[J]. Journal of University of Science and Technology, 2012, 33(2):190-196(in Chinese).

    [7] 李海源.水稻秸秆营养穴盘微波热风联合干燥工艺研究[D]. 大庆:黑龙江八一农垦大学, 2019. LI H Y. Study on microwave hot air combined drying technology of rice straw nutrition plug plate[D]. Daqing:Heilongjiang Bayi Agricultural University, 2019(in Chinese).
    [8] 侯善策.堆肥物料含水率在线检测系统的优化及试验验证[D]. 大庆:黑龙江八一农垦大学, 2018. HOU S C. Optimization and experimental verification of on-line detection system for moisture content of compost materials[D]. Daqing:Heilongjiang Bayi Agricultural University, 2018(in Chinese).
    [9] 田纯焱.畜禽粪便好氧堆肥处理及高效复合肥肥效的研究[D]. 武汉:华中农业大学, 2011. TIAN C Y. Study on aerobic composting of livestock and poultry manure and fertilizer efficiency of high-efficiency compound fertilizer[D]. Wuhan:Huazhong Agricultural University, 2011(in Chinese).
    [10] 邹书娟, 王一迪, 张均雅, 等. 抗生素菌渣理化性质分析[J]. 环境科学与技术, 2018, 41(S1):47-52.

    ZOU S J, WANG Y D, ZHANG J Y, et al. Analysis of physical and chemical properties of antibiotic bacterial residue[J]. Environmental Science & Technology, 2018, 41(S1):47-52(in Chinese).

    [11] 冯丽慧, 邢奕, 杨鹏宇. 抗生素菌渣热解及气态污染物排放特性的研究[J]. 安全与环境工程, 2018, 25(4):89-96.

    FENG L G, XING Y, YANG P Y. Characteristics of pyrolysis and gaseous pollutant emissions of antibiotic bacterial residue[J]. Safety and Environmental Engineering, 2018, 25(4):89-96(in Chinese).

    [12] 刘朝霞, 牛文娟, 楚合营, 等. 秸秆热解工艺优化与生物炭理化特性分析[J]. 农业工程学报, 2018, 34(5):196-203.

    LIU C X, NIU W J, CHU H Y, et al. Process optimization for straws pyrolysis and analysis of biochar physiochemical properties[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5):196-203(in Chinese).

    [13] 蔡鹏瑶, 黄光群, 韩鲁佳. 不同畜禽粪便的热解特性及反应动力学[J]. 中国农业大学学报, 2012, 17(5):112-117.

    CAI P Y, HUANG G Q, HAN L J. Characteristics and kinetics of pyrolysis for animal manures[J]. Journal of China Agricultural University, 2012, 17(5):112-117(in Chinese).

    [14] 詹昊, 林均衡, 黄艳琴, 等. 抗生素菌渣热解N官能团变化特征及其与NOx前驱物关系研究[J]. 燃料化学学报, 2017, 45(10):1219-1229.

    ZHAN H, LIN J H, HUANG Y Q, et al. Evolution of nitrogen functionalities and their relation to NOx precursors during pyrolysis of antibiotic mycelia wastes[J].Journal of Fuel Chemistry and Technology, 2017, 45(10):1219-1229(in Chinese).

    [15] 陈黎, 孔祥生, 刘秋新, 等. 抗生素菌渣生物炭的制备及特性[J]. 环境科学与技术, 2019, 42(6):128-133.

    CHEN L, KONG X S, LIU Q X, et al. Preparation and characteristics of biochars produced from antibiotic bacterial residues[J]. Environmental Science & Technology, 2019, 42(6):128-133(in Chinese).

    [16] 焦永刚, 马长捷, 李敏霞. 热解法处理抗生素发酵残渣的研究初探[J]. 工业安全与环保, 2011, 37(5):36-37.

    JIAO Y G, MA C J, LI M X. The study of antibiotic fermentation residue treatment by pyrolysis[J]. Industrial Safety and Environmental Protection, 2011, 37(5):36-37(in Chinese).

    [17] 平然, 任爱玲, 田书磊, 等. 两种抗生素菌渣经SEA-CBS技术处理后的肥料特性[J]. 环境科学研究, 2019, 32(11):1945-1951.

    PING R, REN A L, TIAN S L, et al. Fertilizer characteristics of two kinds of antibiotic bacterial residues treated by SEA-CBS technology[J]. Research of Environment Sciences, 2019, 32(11):1945-1951(in Chinese).

    [18] 陈黎, 孔祥生, 刘秋新, 等. 妥布霉素菌渣的理化性质及危害[J]. 环境科学与技术, 2019, 42(9):30-35.

    CHEN L, KONG X S, LIU Q X, et al. Physical and chemical properties and harm of tobramycin bacterial residues[J]. Environmental Science & Technology, 2019, 42(9):30-35(in Chinese).

    [19] 陈小娟.重金属危险废物的药剂稳定化及其机理研究[D]. 杭州:浙江工业大学, 2004. CHEN X J. Study on stabilization and mechanism of heavy metal hazardous waste[D]. Hangzhou:Zhejiang University of Technology, 2004(in Chinese).
    [20] 曹盼, 宋思奇, 刘惠玲. 氨基糖苷类抗生素菌渣残留检测方法与资源化研究进展[J]. 环境保护科学, 2018, 44(4):121-126.

    CAO P, SONG S Q, LIU H L. Research progress in residue detection methods and resource recovery of aminoglycoside antibiotic residue[J]. Environmental Protection Science, 2018, 44(4):121-126(in Chinese).

    [21] HERNANDO M D, MEZCUA M, FERNÁNDEZ-ALBA A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2):334-342.
    [22] WATKINSON A J, MURBY E J, KOLPIN D W, et al. The occurrence of antibiotics in an urban watershed:From wastewater to drinking water[J]. Science of the Total Environment, 2009, 407(8):2711-2723.
    [23] 史晓, 卜庆伟, 吴东奎, 等. 地表水中10种抗生素SPE-HPLC-MS/MS检测方法的建立[J]. 环境化学, 2020, 39(4):1075-1083.

    SHI X, BU Q W, WU D K, et al. Simultaneous determination of 10 antibiotic residues in surface water by SPE-HPLC-MS/MS[J]. Environmental Chemistry, 2020, 39(4):1075-1083(in Chinese).

    [24] LUO Y, XU L, RYSZ M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science & Technology, 2011, 45(5):1827-1833.
    [25] 宋淑敏, 张翔宇, 周佳虹, 等. 超高效液相色谱串联质谱法同时测定城市污水处理厂污泥中12种抗生素[J]. 环境化学, 2017, 36(09):1923-1931.

    SONG S M, ZHANG X Y, ZHOU J H, et al. Simultaneous determination of 12 antibiotics in sewage sludge by ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Environmental Chemistry, 2017, 36(9):1923-1931(in Chinese).

    [26] CHEN W, GENG Y, HONG J L, et al. Life cycle assessment of antibiotic mycelial residues management in China[J]. Renewable and Sustainable Energy Reviews, 2017, 79:830-838.
    [27] SHAO J A, YAN R, CHEN H P, et al. Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry fourier transform infrared analysis[J]. Energy & Fuels, 2008, 22(1):38-45.
    [28] JIANG X G, FENG Y H, LV G J, et al. Bioferment residue:TG-FTIR study and cocombustion in a MSW incineration plant[J]. Environmental Science & Technology, 2012, 46(24):13539-13544.
    [29] ZHANG G Y, LIU H, GE Y X, et al. Gaseous emission and ash characteristics from combustion of high ash content antibiotic mycelial residue in fluidized bed and the impact of additional water vapor[J]. Fuel, 2017, 202:66-77.
    [30] 洪晨, 杨强, 王志强, 等. 抗生素菌渣与煤混合燃烧特性及其动力学分析[J]. 化工学报, 2017, 68(1):360-368.

    HONG C, YANG Q, WANG Z Q, et al. Co-combustion characteristics and kinetics analysis of antibiotic bacterial residue and coal[J]. CIESC Journal, 2017, 68(1):360-368(in Chinese).

    [31] CHAKRABORTY M, MIAO C, MCDONALD A, et al. Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology[J]. Fuel, 2012, 95:63-70.
    [32] SONG W H, WANG S Z, GUO Y, et al. Bio-oil production from hydrothermal liquefaction of waste Cyanophyta biomass:Influence of process variables and their interactions on the product distributions[J]. International Journal of Hydrogen Energy, 2017, 42(31):20361-20374.
    [33] WANG L P, LI A M, CHANG Y Z. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge[J]. Water Research, 2017, 112:72-82.
    [34] ZHUANG X Z, HUANG Y Q, SONG Y P, et al. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresource Technology, 2017, 245:463-470.
    [35] TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass:A review of subcritical water technologies[J]. Energy, 2011, 36(5):2328-2342.
    [36] MENG D W, JIANG Z L, KUNIO Y, et al. The effect of operation parameters on the hydrothermal drying treatment[J]. Renewable Energy, 2012, 42:90-94.
    [37] NEYENS E, BAEYENS J. A review of thermal sludge pre-treatment processes to improve dewaterability[J]. Journal of Hazardous Materials, 2003, 98(1):51-67.
    [38] ZHUANG X Z, ZHAN H, SONG Y P, et al. Reutilization potential of antibiotic wastes via hydrothermal liquefaction (HTL):Bio-oil and aqueous phase characteristics[J]. Journal of the Energy Institute, 2019, 92(5):1537-1547.
    [39] ZHANG G Y, MA D C, PENG C N, et al. Process characteristics of hydrothermal treatment of antibiotic residue for solid biofuel[J]. Chemical Engineering Journal, 2014, 252:230-238.
    [40] WANG M M, LIU H L, CHENG X M, et al. Hydrothermal treatment of lincomycin mycelial residues:Antibiotic resistance genes reduction and heavy metals immobilization[J]. Bioresource Technology, 2019, 271:143-149.
    [41] NEYENS E, BAEYENS J, DEWIL R, et al. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J]. Journal of Hazardous Materials, 2004, 106(2):83-92.
    [42] LI C X, ZHANG G Y, ZHANG Z K, et al. Hydrothermal pretreatment for biogas production from anaerobic digestion of antibiotic mycelial residue[J]. Chemical Engineering Journal, 2015, 279:530-537.
    [43] 尤占平, 郝长生, 焦永刚, 等. 两种抗生素菌渣热解及燃烧特性对比研究[J]. 工业安全与环保, 2016, 42(5):41-43.

    YOU Z P, HAO C S, JIAO Y G, et al. Pyrolysis and combustion characteristics comparison studies of two kinds of antibiotic residues[J]. Industrial Safety and Environmental Protection, 2016, 42(5):41-43(in Chinese).

    [44] 洪晨, 王志强, 邢奕, 等. 热解温度对土霉素菌渣焦炭化学性质的影响[J]. 中国环境科学, 2017, 37(3):1058-1065.

    HONG C, WANG Z Q, XING Y, et al. Effect of temperature on chemical properties of chars in terramycin ferment residue paralysis process[J].China Environmental Science, 2017, 37(3):1058-1065(in Chinese).

    [45] LIU Y C, ZHU X D, WEI X C, et al. CO2 activation promotes available carbonate and phosphorus of antibiotic mycelial fermentation residue-derived biochar support for increased lead immobilization[J]. Chemical Engineering Journal, 2018, 334:1101-1107.
    [46] GUO J L, ZHENG L, LI F Z, et al. Thermal decomposition of antibiotic mycelial fermentation residues in Ar, air, and CO2-N2 atmospheres by TG-FTIR method[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(6):2053-2060.
    [47] MA D C, ZHANG G Y, AREEPRASERT C, et al. Characterization of NO emission in combustion of hydrothermally treated antibiotic mycelial residue[J]. Chemical Engineering Journal, 2016, 284:708-715.
    [48] ZHU X D, YANG S J, WANG L, et al. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology[J]. Environmental Pollution, 2016, 211:20-27.
    [49] CHEN H F, WANG Y, XU G W, et al. Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content[J]. Energies, 2012, 5(12):5418-5438.
    [50] DU Y Y, JIANG X G, LV G J, et al. Thermal behavior and kinetics of bio-ferment residue/coal blends during co-pyrolysis[J]. Energy Conversion and Management, 2014, 88:459-463.
    [51] 常加富, 张屹, 霍燕, 等. 抗生素菌渣气化燃烧试验研究[J]. 化工管理, 2019(28):98-99. CHANG J F, ZHANG Q, HUO Y, et al. Experimental study on pyrolysis fasification and combustion of antibiotic mycelial dregs[J]. Chemical Enterprise Management, 2019

    (28):98-99(in Chinese).

    [52] 辛善志, 黄芳, 刘晓烨, 等. 烘焙中药渣的热解与燃烧特性及其动力学分析[J]. 化工学报, 2019, 70(8):3142-3150.

    XIN S Z, HUANG F, LIU X Y, et al. Pyrolysis and combustion characteristics and kinetics of torrefied traditional Chinese medicine waste[J]. CIESC Journal, 2019, 70(8):3142-3150(in Chinese).

    [53] 张雨, 徐佳佳, 马中青, 等. 烘焙预处理对方竹热解产物特性的影响[J]. 浙江农林大学学报, 2019, 36(5):981-989.

    ZHANG Y, XU J J, MA Z Q, et al. Pretreatment on characteristics of pyrolysis products for small diameter sympodial bamboo with torrefaction[J]. Journal of Zhejiang A & F University, 2019, 36(5):981-989(in Chinese).

    [54] KIM H Y, YU S H, LEE M J, et al. Radiolysis of selected antibiotics and their toxic effects on various aquatic organisms[J]. Radiation Physics and Chemistry, 2009, 78(4):267-272.
    [55] CSAY T, RACZ G, TAKACS E, et al. Radiation induced degradation of pharmaceutical residues in water:Chloramphenicol[J]. Radiation Physics and Chemistry, 2012, 81(9):1489-1494.
    [56] SANCHEZ-POLO M, LOPEZ-PENALVER J, PRADOS-JOYA G, et al. Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment[J]. Water Research, 2009, 43(16):4028-4036.
    [57] 谢芳, 哈益明, 王锋, 等. γ射线辐照水溶液中氯霉素的降解研究[J]. 辐射研究与辐射工艺学报, 2008(3):151-156. XIE F, HA Y M, WANG F, et al. Studies on γ-irradiation-induced-degradation of chloramphenicol in aqueous solution[J]. Journal of Radiation Research and Radiation Processing, 2008

    (3):151-156(in Chinese).

    [58] 邓良斌, 颜武华. 一种基于无害化处理的抗生素菌渣固体发酵装置的开发[J]. 福建轻纺, 2019(5):26-30. DENG L B, YAN W H. Development of a solid fermentation device for antibiotic bacteria residue based on harmless treatment[J]. The Light & Textile Industries of Fujian, 2019

    (5):26-30(in Chinese).

    [59] 李路平, 李俊玲, 杜黎君. 制药行业下脚料生产有机肥的质量评价[J]. 河南科技学院学报, 2009, 37(3):29-31.

    LI L P, LI J L, DU L J. Quality evaluation and prospect analysis of production organic fertilizer by spent material in pharmaceutical industry in Xinjiang[J]. Journal of Henan Institute of Science and Technology, 2009, 37(3):29-31(in Chinese).

    [60] 郑佳伦, 刘超翔, 刘琳, 等.畜禽养殖业主要废弃物处理工艺消除抗生素研究进展[J]. 环境化学, 2017, 36(1):37-47.

    DENG J L, LIU C X, LIU L, et al. Removal of antibiotics in waste and wastewater treatment facilities of animal breeding industry:A review[J]. Environmental Chemistry, 2017, 36(1):37-47(in Chinese).

    [61] 苏建文, 王俊超, 许尚营, 等. 红霉素菌渣厌氧消化实验研究[J]. 中国沼气, 2013, 31(5):25-28.

    SU J W, WANG J C, XU S Y, et al. Anaerobic digestion of bacterial residues from erythromycin production[J]. China Biogas, 2013, 31(5):25-28(in Chinese).

    [62] 孙效新, 黄栋, 李建民, 等. 抗生素废菌渣液厌氧生物处理试验研究[J]. 中国沼气, 1990(3):11-14. SUN X X, HUANG D, LI J M, et al. Study on the treatment of sewage of antibiotic mycelium by anaerobic digestion[J]. China Biogas, 1990

    (3):11-14(in Chinese).

    [63] 李士兰, 何辰庆. 以卡娜霉素制药废渣和酒槽为原料制取沼气发酵条件的研究[J]. 微生物学杂志, 1988(2):11-15. LI S L, HE C Q.A study of biogas formation of distillers's grains and residue of kanamycin fermentation[J]. Journal of Microbiology, 1988

    (2):11-15(in Chinese).

    [64] 何品晶, 管冬兴, 吴铎, 等. 氨氮和林可霉素对有机物厌氧消化的抑制效应[J]. 化工学报, 2011, 62(5):1389-1394.

    HE P J, GUAN D X, WU D, et al. Inhibitory effect of ammonia and lincomycin on anaerobic digestion[J]. CIESC Journal, 2011, 62(5):1389-1394(in Chinese).

    [65] 徐颂, 吴铎, 吕凡, 等. 含固率和接种比对林可霉素菌渣厌氧消化的影响[J]. 中国环境科学, 2010, 30(3):362-368.

    XU S, WU D, LV F, et al. Influence of total solid content and ratio of inoculum to substrate on anaerobic digestion of lincomycin biowaste[J]. China Environmental Science, 2010, 30(3):362-368(in Chinese).

    [66] 李维华, 赵君, 车畅. 四环素类抗生素对堆肥腐熟度的影响[J]. 黑龙江医药, 2013, 26(2):244-246.

    LI W H, ZHAO J, CHE C. Influence of tetracycline for composting[J]. Heilongjiang Medicine Journal, 2013, 26(2):244-246(in Chinese).

    [67] 王桂珍, 李兆君, 张树清, 等. 土霉素在鸡粪好氧堆肥过程中的降解及其对相关参数的影响[J]. 环境科学, 2013, 34(2):795-803.

    WANG G Z, LI Z J, ZHANG S Q, et al. Degradation of oxytetracycline in chicken feces aerobic-composting and its effects on their related parameters[J]. Environmental Science, 2013, 34(2):795-803(in Chinese).

    [68] RAMASWAMY J, PRASHER S O, PATEL R M, et al. The effect of composting on the degradation of a veterinary pharmaceutical[J]. Bioresource Technology, 2010, 101(7):2294-2299.
    [69] 张红娟, 郭夏丽, 王岩. 林可霉素菌渣与牛粪联合堆肥实验研究[J]. 环境工程学报, 2011, 5(1):231-234.

    ZHANG H J, GUO X L, WANG Y. Study on composting of lincomycin fermentation dregs and cattle manure[J]. Chinese Journal of Environmental Engineering, 2011, 5(1):231-234(in Chinese).

    [70] 何鲁波, 李新新, 黄周珍. 抗生素制药菌渣处理技术[J]. 畜牧兽医科学(电子版), 2019(6):53-54. HE L B, LI X X, HUANG Z Z. Antibiotic bacterium residue treatment technology[J]. Graziery Veterinary Science(Electronic Version), 2019(6):53-54(in Chinese).
    [71] 唐海峰, 王俊峰. 制红霉素废渣吸附水中Pb2+的试验研究[J]. 金属矿山, 2011(8):155-158. TANG H F, WANG J F. Experimental research on adsorption of Pb2

    + by erythromycin pharmaceutical waste residues[J]. Mental Mine, 2011(8):155-158(in Chinese).

    [72] 占金宝, 苏海佳. 青霉菌丝体分子印迹吸附膜对Cr(Ⅲ)的吸附性能[J]. 北京化工大学学报(自然科学版), 2010, 37(4):94-97. ZHAN J B, SU H J. Adsorption of Cr(Ⅲ) by a membrane molecularly imprinted with penicillium mycelium[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2010, 37(4):94-97(in Chinese).
    [73] 胡波, 苏海佳, 谭天伟. 改性菌丝体对Ni2+的吸附特性研究[J]. 环境污染治理技术与设备, 2003(10):23-26. HU B, SU H J, TAN T W. Study of adsorption property of modified mycelial biomass to Ni2

    +[J]. Technologies and Equipment for Environmental Pollution Control, 2003(10):23-26(in Chinese).

  • 加载中
计量
  • 文章访问数:  4816
  • HTML全文浏览数:  4816
  • PDF下载数:  115
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-06-13

抗生素菌渣处理技术研究进展

    通讯作者: 颜蓓蓓, E-mail: yanbeibei@tju.edu.cn
  • 1. 天津大学环境科学与工程学院, 天津, 300072;
  • 2. 天津市生物质废物利用重点实验室, 天津, 300350;
  • 3. 西藏大学理学院, 拉萨, 850012;
  • 4. 山东百川同创能源有限公司, 济南, 250101
基金项目:

国家重点研发计划(2016YFE0201800),国家自然科学基金(51676138,51878557)和天津市科技计划项目(18YFJLCG00090,18YFHBZC00020)资助.

摘要: 抗生素菌渣是制药企业在生产抗生素类药物时,由微生物发酵产生的固体废弃物.作为国家规定的危险废物,其产量大、含水率高、含氮、硫量高、残留抗生素的特点,使其具有巨大的环境危害性.抗生素菌渣的科学、无害处理是医药固废领域的热点难题.本文系统阐述了抗生素菌渣的类型、性质和危害,详细综述了目前主流的各类热化学处理技术和非热化学处理技术,重点对包括焚烧技术、水热技术和热解气化技术等在内的热化学处理技术进行了系统归纳,汇总分析其技术特点、环境影响、应用瓶颈及研究进展.同时,对抗生素菌渣处理的未来发展提出若干建议和展望,提出烘焙技术消除其生物危险性的处理理念,建立健全相关安全标准与法律规范,以更好地降低抗生素菌渣潜在的环境风险并实现资源利用,解决抗生素类药物生产工艺的后顾之忧,促进我国制药行业持续健康发展.

English Abstract

参考文献 (73)

目录

/

返回文章
返回