强化高锰酸钾氧化体系中自由基的产生与利用研究进展

张静, 张宏龙, 王定祥, 崔福义. 强化高锰酸钾氧化体系中自由基的产生与利用研究进展[J]. 环境化学, 2021, (2): 487-496. doi: 10.7524/j.issn.0254-6108.2020062603
引用本文: 张静, 张宏龙, 王定祥, 崔福义. 强化高锰酸钾氧化体系中自由基的产生与利用研究进展[J]. 环境化学, 2021, (2): 487-496. doi: 10.7524/j.issn.0254-6108.2020062603
ZHANG Jing, ZHANG Honglong, WANG Dingxiang, CUI Fuyi. Generation and utilization of radicals during enhanced permanganate oxidation: A review[J]. Environmental Chemistry, 2021, (2): 487-496. doi: 10.7524/j.issn.0254-6108.2020062603
Citation: ZHANG Jing, ZHANG Honglong, WANG Dingxiang, CUI Fuyi. Generation and utilization of radicals during enhanced permanganate oxidation: A review[J]. Environmental Chemistry, 2021, (2): 487-496. doi: 10.7524/j.issn.0254-6108.2020062603

强化高锰酸钾氧化体系中自由基的产生与利用研究进展

    通讯作者: 张静, E-mail: zhangjing2018@cqu.edu.cn
  • 基金项目:

    国家重点研发计划(2019YFD1100101)和国家自然科学基金(51878095)资助.

Generation and utilization of radicals during enhanced permanganate oxidation: A review

    Corresponding author: ZHANG Jing, zhangjing2018@cqu.edu.cn
  • Fund Project: Supported by the National Key Research and Development Project (2019YFD1100101) and National Natural Science Foundation of China (51878095).
  • 摘要: 高锰酸钾在水处理行业中的应用已趋于成熟,但与臭氧、芬顿及其他高级氧化技术相比,高锰酸钾与难降解有机污染物的反应速率较低,需要与其它方法联用来强化自身的氧化能力.近年来随着对强化高锰酸钾氧化机理研究的不断深入,人们发现该体系中产生的自由基对有机污染物的降解有显著的促进作用.为此本文综述了强化高锰酸钾氧化体系中各类无机与有机自由基的产生路径和促进有机污染物降解的机制,提出了后续的研究展望,以期为强化高锰酸钾氧化技术的进一步推广提供理论依据.
  • 加载中
  • [1] 许可, 贲伟伟, 强志民. 高锰酸钾氧化降解水中微量有机污染物的研究进展[J]. 环境化学, 2017, 36(1):16-26.

    XU K, BEN W W, QIANG Z M. Oxidative degradation of micro-organic pollutants by potassium permanganate in water:A review[J]. Environmental Chemistry, 2017, 36(1):16-26(in Chinese).

    [2] JIANG X, SONG D, WANG D, et al. Eliminating imidacloprid and its toxicity by permanganate via highly selective partial oxidation[J]. Ecotoxicol Environ Saf, 2020, 191:110234.
    [3] LIU Z, LIN Y L, CHU W H, et al. Comparison of different disinfection processes for controlling disinfection by-product formation in rainwater[J]. J Hazard Mater, 2020, 385:121618.
    [4] HU L, MARTIN H M, STRATHMANN T J. Oxidation kinetics of antibiotics during water treatment with potassium permanganate[J]. Environ Sci Technol, 2010, 44(16):6416-6422.
    [5] 张静. Ru催化KMnO4氧化去除水中新兴微污染物的效能与机理[D]. 哈尔滨:哈尔滨工业大学, 2014. ZHANG J. Ru-catalyzed permanganate oxidation of emerging micropollutants in water[D]. Harbin:Harbin Institute of Technology, 2014(in Chinese).
    [6] HU Y B, LO S L, LI Y F, et al. Autocatalytic degradation of perfluorooctanoic acid in a permanganate-ultrasonic system[J]. Water Res, 2018, 140:148-157.
    [7] 张静, 朱亮. 强化高锰酸钾氧化去除水中有机污染物的技术综述[J]. 水资源保护, 2015, 31(6):62-66.

    ZHANG J, ZHU L. Review on the catalytic permanganate oxidation of organic pollutants[J]. Water Resources Protection, 2015, 31(6):62-66(in Chinese).

    [8] CHEN J, QU R, PAN X, et al. Oxidative degradation of triclosan by potassium permanganate:Kinetics, degradation products, reaction mechanism, and toxicity evaluation[J]. Water Res, 2016, 103:215-223.
    [9] XU X, CHEN J, WANG S, et al. Degradation kinetics and transformation products of chlorophene by aqueous permanganate[J]. Water Res, 2018, 138:293-300.
    [10] JIANG J, GAO Y, PANG S Y, et al. Oxidation of bromophenols and formation of brominated polymeric products of concern during water treatment with potassium permanganate[J]. Environ Sci Technol, 2014, 48:10850-10858.
    [11] SHI Z, JIN C, ZHANG J, et al. Insight into mechanism of arsanilic acid degradation in permanganate-sulfite system:Role of reactive species[J]. Chem Eng J, 2019, 359:1463-1471.
    [12] GAO Y, ZHOU Y, PANG S Y, et al. New insights into the combination of permanganate and bisulfite as a novel advanced oxidation process:Importance of high valent manganese-oxo species and sulfate radical[J]. Environ Sci Technol, 2019, 53:3689-3696.
    [13] CHEN J, RAO D, DONG H, et al. The role of active manganese species and free radicals in permanganate/bisulfite process[J]. J Hazard Mater, 2020, 388:121735.
    [14] DONG H, DUAN S, LIU C, et al. Why does dissolved oxygen govern Mn(Ⅲ) formation and micro-pollutant abatement in the permanganate/bisulfite process?[J]. Chem Eng J, 2020, 391:123556.
    [15] SUN B, XIAO Z, DONG H, et al. Bisulfite triggers fast oxidation of organic pollutants by colloidal MnO2[J]. J Hazard Mater, 2019, 363:412-420.
    [16] WANG L, JIANG J, PANG S Y, et al. Further insights into the combination of permanganate and peroxymonosulfate as an advanced oxidation process for destruction of aqueous organic contaminants[J]. Chemosphere, 2019, 228:602-610.
    [17] CUI J, ZHANG L, XI B, et al. Chemical oxidation of benzene and trichloroethylene by a combination of peroxymonosulfate and permanganate linked by in-situ generated colloidal/amorphous MnO2[J]. Chem Eng J, 2017, 313:815-825.
    [18] 王晨, 陈瑞, 宋林, 等. 典型无机含氧酸自由基的特性[J]. 化学学报, 2019, 77(3):205-212.

    WANG C, CHEN R, SONG L, et al. Characteristics of some typical inorganic oxyacid free radicals[J]. Acta Chimica Sinica, 2019, 77(3):205-212(in Chinese).

    [19] 吴光锐, 王德军, 王永剑, 等. 过一硫酸盐的活化及其降解水中有机污染物机理的研究进展[J]. 化工环保, 2018, 38(5):505-513.

    WU G R, WANG D J, WANG Y J, et al. Research progresses on activation of peroxymonosulfate and its degradation mechanism to organic pollutants in aqueous solutions[J]. Environmental Protection of Chemical Industry, 2018, 38(5):505-513(in Chinese).

    [20] LIU C, ZHAO M, HE S, et al. Activation of permanganate with hydrogen sulfite for enhanced oxidation of a typical amino acid[J]. Environ Technol, 2019, 40(12):1605-1614.
    [21] 宋健. 高锰酸钾联合臭氧技术降解水中双酚A的研究[D]. 广州:广东工业大学, 2018. SONG J. Study on the degradation of bisphenol A in aqueous by potassium permanganate-ozone technique[D]. Guangzhou:Guangdong University of Technology, 2018(in Chinese).
    [22] QIU L, WANG W, WU J. Synergetic oxidation of nitrobenzene in ground water and its kinetics[C]. 2011 International Symposium on Water Resource and Environmental Protection, 2011:132-135.
    [23] LIANG J, NING X A, SUN J, et al. An integrated permanganate and ozone process for the treatment of textile dyeing wastewater:Efficiency and mechanism[J]. Journal of Cleaner Production, 2018, 204:12-19.
    [24] XU K, BEN W, LING W, et al. Impact of humic acid on the degradation of levofloxacin by aqueous permanganate:Kinetics and mechanism[J]. Water Res, 2017, 123:67-74.
    [25] ZHOU Y, JIANG J, GAO Y, et al. Activation of peroxymonosulfate by benzoquinone:A novel nonradical oxidation process[J]. Environ Sci Technol, 2015, 49(21):12941-12950.
    [26] HERNÁNDEZ MONTOYA V, ALVAREZ L H, MONTES MORÁN M A, et al. Reduction of quinone and non-quinone redox functional groups in different humic acid samples by Geobacter sulfurreducens[J]. Geoderma, 2012, 183-184:25-31.
    [27] XU K, DONG H, DONG H, et al. Quinone group enhances the degradation of levofloxacin by aqueous permanganate:Kinetics and mechanism[J]. Water Res, 2018, 143:109-116.
    [28] DENG J, TANG K, ZHU S, et al. Competitive degradation of steroid estrogens by potassium permanganate combined with ultrasound[J]. Int J Environ Res Public Health, 2015, 12(12):15434-15448.
    [29] 唐凯, 贾佳, 邓靖, 等. 超声及高锰酸钾-超声协同降解水中17β-雌二醇的影响因素分析[J]. 浙江大学学报(工学版), 2014, 48(6

    ):1132-1140. TANG K, JIA J, DENG J, et al. Influencing factors analysis of 17β-estradiol degradation in aqueous system by ultrasound and KMnO4 combined with ultrasound[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(6):1132-1140(in Chinese).

    [30] KUPPA R, MOHOLKAR V S. Physical features of ultrasound-enhanced heterogeneous permanganate oxidation[J]. Ultrason Sonochem, 2010, 17:123-131.
    [31] GUO K, ZHANG J, LI A, et al. Ultraviolet irradiation of permanganate enhanced the oxidation of micropollutants by producing HO· and reactive manganese species[J]. Environ Sci Technol Letters, 2018, 5:750-756.
    [32] HAYYAN M, HASHIM M A, ALNASHEF I M. Superoxide ion:Generation and chemical implications[J]. Chem Rev, 2016, 116(5):3029-3085.
    [33] SONG Y, JIANG J, MA J, et al. ABTS as an electron shuttle to enhance the oxidation kinetics of substituted phenols by aqueous permanganate[J]. Environ Sci Technol, 2015, 49(19):11764-11771.
    [34] LEE D G, BROWNRIDGE J R. Oxidation of hydrocarbons. Ⅳ. Kinetics and mechanism of the oxidative cleavage of cinnamic acid by acidic permanganate[J]. J Am Chem Soc, 1974, 96(17):5517-5523.
    [35] LEE D G, CHEN T. Reduction of manganate(VI) by mandelic acid and its significance for development of a general mechanism of oxidation of organic compounds by high-valent transition metal oxides[J]. J Am Chem Soc, 1993, 115:11231-11236.
    [36] LEE D G, SEBASTIÁN C F. The oxidation of phenol and chlorophenols by alkaline permanganate[J]. Can J Chem, 1981, 59:2776-2779.
    [37] LEE D G, CHEN T. Oxidation of hydrocarbons. 18. Mechanism of the reaction between permanganate and carbon-carbon double bonds[J]. J Am Chem Soc, 1989, 111(19):7534-7538.
    [38] GUNTEN U V. Ozonation of drinking water:Part I. Oxidation kinetics and product formation[J]. Water Res, 2003, 37:1443-1467.
    [39] REISZ E, LEITZKE A, JAROCKI A, et al. Permanganate formation in the reactions of ozone with Mn(Ⅱ):A mechanistic study[J]. Journal of Water Supply:Research and Technology-Aqua, 2008, 57(6):451-464.
    [40] G D. Some aspects of the chemistry of manganese (Ⅲ) in aqueous solution[J]. Coord Chem Rev, 1969, 4:199-224.
    [41] K K J, J M J. Kinetic behavior of Mn(Ⅲ) complexes of pyrophosphate, EDTA, and citrate[J]. Environ Sci Technol, 1998, 32:2916-2922.
    [42] JIANG J, PANG S Y, MA J, et al. Oxidation of phenolic endocrine disrupting chemicals by potassium permanganate in synthetic and real waters[J]. Environ Sci Technol, 2012, 46:1774-1781.
    [43] JIANG J, PANG S Y, MA J. Oxidation of triclosan by permanganate (Mn(Ⅶ)):Importance of ligands and in situ formed manganese oxides[J]. Environ Sci Technol, 2009, 43:8326-8331.
    [44] DU J, SUN B, ZHANG J, et al. Parabola-like shaped pH-rate profile for phenols oxidation by aqueous permanganate[J]. Environ Sci Technol, 2012, 46:8860-8867.
    [45] GALLI C, GENTILI P. Chemical messengers:mediated oxidations with the enzyme laccase[J]. J Phys Org Chem, 2004, 17:973-977.
    [46] SHI Z, JIN C, BAI R, et al. Enhanced transformation of emerging contaminants by permanganate in the presence of redox mediators[J]. Environ Sci Technol, 2020, 54:1909-1919.
    [47] HAN Q, WANG H, DONG W, et al. Degradation of bisphenol A by ferrate(Ⅵ) oxidation:Kinetics, products and toxicity assessment[J]. Chem Eng J, 2015, 262:34-40.
    [48] ZHANG J, SUN B, GUAN X. Oxidative removal of bisphenol A by permanganate:Kinetics, pathways and influences of co-existing chemicals[J]. Sep Purif Technol, 2013, 107:48-53.
    [49] PANG S Y, JIANG J, GAO Y, et al. Oxidation of flame retardant tetrabromobisphenol a by aqueous permanganate:reaction kinetics, brominated products, and pathways[J]. Environ Sci Technol, 2014, 48:615-623.
    [50] 庞素艳, 段杰斌, 江进, 等. KMnO4氧化降解阻燃剂四氯双酚A的动力学、氧化产物及反应路径[J]. 哈尔滨工业大学学报, 2018, 50(8):20-26.

    PANG S Y, DUAN J B, JIANG J, et al. Degradation of flame retardant tetrachlorobisphenol A by potassium permanganate:Kinetics, oxidation products and reaction pathways[J]. Journal of Harbin Institute of Technology, 2018, 50(8):20-26(in Chinese).

    [51] KHAN A A P, MOHD A, BANO S, et al. Kinetic and mechanistic investigation of the oxidation of the antibacterial agent levofloxacin by permanganate in alkaline medium[J]. Transition Met Chem, 2010, 35:117-123.
    [52] FAWZY A, ASHOUR S S, MUSLEH M A. Base-catalyzed oxidation of l-asparagine by alkaline permanganate and the effect of alkali metal ion catalysts:a kinetic and mechanistic approach[J]. Reaction Kinetics, Mechanisms and Catalysis, 2014, 111:443-460.
    [53] FAWZY A, AHMED S A, ALTHAGAFI I I, et al. Kinetics and mechanistic study of permanganate oxidation of fluorenone hydrazone in alkaline medium[J]. Advances in Physical Chemistry, 2016, 2016(2/3):1-9.
    [54] KHAN A A P, KHAN A, ASIRI A M, et al. Study of the base-catalysed oxidation of the anti-bacterial and anti-protozoal agent metronidazole by permanganate ion in alkaline medium[J]. Res Chem Intermed, 2013, 40:1703-1714.
    [55] BILEHAL D, KULKARNI R, NANDIBEWOOR S. Comparative study of the chromium(Ⅲ) catalysed oxidation of l-leucine and l-isoleucine by alkaline permanganate:A kinetic and mechanistic approach[J]. J Mol Catal A:Chem, 2005, 232:21-28.
    [56] GAN L H, YAN Z R, MA Y F, et al. pH dependence of the binding interactions between humic acids and bisphenol A-A thermodynamic perspective[J]. Environ Pollut, 2019, 255:113292.
  • 加载中
计量
  • 文章访问数:  4263
  • HTML全文浏览数:  4263
  • PDF下载数:  99
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-06-26

强化高锰酸钾氧化体系中自由基的产生与利用研究进展

    通讯作者: 张静, E-mail: zhangjing2018@cqu.edu.cn
  • 1. 重庆大学环境与生态学院, 重庆, 400045;
  • 2. 重庆大学三峡库区生态环境教育部重点实验室, 重庆, 400045
基金项目:

国家重点研发计划(2019YFD1100101)和国家自然科学基金(51878095)资助.

摘要: 高锰酸钾在水处理行业中的应用已趋于成熟,但与臭氧、芬顿及其他高级氧化技术相比,高锰酸钾与难降解有机污染物的反应速率较低,需要与其它方法联用来强化自身的氧化能力.近年来随着对强化高锰酸钾氧化机理研究的不断深入,人们发现该体系中产生的自由基对有机污染物的降解有显著的促进作用.为此本文综述了强化高锰酸钾氧化体系中各类无机与有机自由基的产生路径和促进有机污染物降解的机制,提出了后续的研究展望,以期为强化高锰酸钾氧化技术的进一步推广提供理论依据.

English Abstract

参考文献 (56)

目录

/

返回文章
返回