微塑料在哺乳动物的暴露途径、毒性效应和毒性机制浅述

王英雪, 徐熳, 王立新, 崔建升. 微塑料在哺乳动物的暴露途径、毒性效应和毒性机制浅述[J]. 环境化学, 2021, (1): 41-54. doi: 10.7524/j.issn.0254-6108.2020053002
引用本文: 王英雪, 徐熳, 王立新, 崔建升. 微塑料在哺乳动物的暴露途径、毒性效应和毒性机制浅述[J]. 环境化学, 2021, (1): 41-54. doi: 10.7524/j.issn.0254-6108.2020053002
WANG Yingxue, XU Man, WANG Lixin, CUI Jiansheng. The exposure routes, organ damage and related mechanism of the microplastics on the mammal[J]. Environmental Chemistry, 2021, (1): 41-54. doi: 10.7524/j.issn.0254-6108.2020053002
Citation: WANG Yingxue, XU Man, WANG Lixin, CUI Jiansheng. The exposure routes, organ damage and related mechanism of the microplastics on the mammal[J]. Environmental Chemistry, 2021, (1): 41-54. doi: 10.7524/j.issn.0254-6108.2020053002

微塑料在哺乳动物的暴露途径、毒性效应和毒性机制浅述

    通讯作者: 王立新, E-mail: lixinwang2007@126.com 崔建升, E-mail: cui1603@163.com
  • 基金项目:

    河北省高等学校青年拔尖人才项目(BJ2019033)资助.

The exposure routes, organ damage and related mechanism of the microplastics on the mammal

    Corresponding authors: WANG Lixin, lixinwang2007@126.com ;  CUI Jiansheng, cui1603@163.com
  • Fund Project: Supported by the Program for the Top Young—Aged Talents of Higher Learning Institutions of Hebei (BJ2019033).
  • 摘要: 微塑料广泛存在于大气、土壤和水体环境中,其对人体的危害正受到广泛关注.本文阐述了当前对微塑料在哺乳动物的暴露途径、毒性作用和毒性机制的认识.空气-呼吸系统、食物/饮水-消化系统以及洗漱/护肤产品-皮肤等都是目前最常见的微塑料人体暴露途径,其中消化系统暴露是最主要的方式.目前的研究显示肠道、肝脏和肾脏是主要的微塑料富集部位,可引发肠道菌群失调、肠道功能紊乱以及肝脏脂质代谢紊乱,而对其它组织器官和系统如肺部、肾脏、神经系统、生殖系统等产生的毒性效应尚需更多研究的开展.当前研究显示微塑料的毒性机制主要包括氧化应激和炎症反应,深入的分子机制仍需进一步探讨.本文对微塑料毒性研究的综述将有助于系统认识微塑料的健康危害,为进一步开展微塑料的风险评估提供支持.
  • 加载中
  • [1] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838.
    [2] KLAINE S J, KOELMANS A A, HORNE N, et al. Paradigms to assess the environmental impact of manufactured nanomaterials[J]. Environmental Toxicology and Chemistry, 2012, 31(1):3-14.
    [3] BARNES D K A, GALGANI F, THOMPSON R C, et al. Accumulation and fragmentation of plastic debris in global environments[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2009, 364(1526):1985-1998.
    [4] AMARAL-ZETTLER L, ZETTLER E, SLIKAS B, et al. The biogeography of the plastisphere:Implications for policy[J]. Frontiers in Ecology and the Environment, 2015, 13(10):541-546.
    [5] XIE X, DENG T, DUAN J, et al. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway[J]. Ecotoxicology and Environmental Safety, 2020, 190:110133.
    [6] SHARMA S, CHATTERJEE S. Microplastic pollution, a threat to marine ecosystem and human health:A short review[J]. Environmental Science and Pollution Research, 2017, 24(27):21530-21547.
    [7] LASSEN C, HANSEN S F, MAGNUSSON K, et al. Microplastics:Occurrence, effects and sources of releases to the environment in Denmark[R]. 2015.
    [8] COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment:A review[J]. Marine Pollution Bulletin, 2011, 12(62):2588-2597.
    [9] WAGNER M, SCHERER C, ALVAREZ-MUÑOZ D, et al. Microplastics in freshwater ecosystems:What we know and what we need to know[J]. Environmental Sciences Europe, 2014, 26(1):1-9.
    [10] 屈沙沙, 朱会卷, 刘锋平, 等. 微塑料吸附行为及对生物影响的研究进展[J]. 环境卫生学杂志, 2017, 7(1):75-78.

    QU S S, ZHU H J, LIU F P, et al. Research progress of microplastics adsorption behavior and its impact on biology[J]. Journal of Environmental Hygiene, 2017, 7(1):75-78(in Chinese).

    [11] ZHAN Z, WANG J, PENG J, et al. Sorption of 3,3',4,4'-tetrachlorobiphenyl by microplastics:A case study of polypropylene[J]. Marine Pollution Bulletin, 2016, 110(1):559-563.
    [12] HARTMANN N B, RIST S, BODIN J, et al. Microplastics as vectors for environmental contaminants:Exploring sorption, desorption, and transfer to biota[J]. Integrated Environmental Assessment and Management, 2017, 13(3):488-493.
    [13] TALSNESS C E, ANDRADE A J M, KURIYAMA S N, et al. Components of plastic:Experimental studies in animals and relevance for human health[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2009, 364(1526):2079-2096.
    [14] BROWN D M, WILSON M R, MACNEE W, et al. Size-dependent proinflammatory effects of ultrafine polystyrene particles:A role for surface area and oxidative stress in the enhanced activity of ultrafines[J]. Toxicology and Applied Pharmacology, 2001, 175(3):191-199.
    [15] BROWNE MARK A, NIVEN STEWART J, GALLOWAY TAMARA S, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity[J]. Current Biology, 2013, 23(23):2388-2392.
    [16] 中华人民共和国生态环境部. 2018年中国海洋生态环境状况公报[R]. 2019. Ministry of Ecology and Environment, PRC. Bulletin of the State of China's Marine Ecology and Environment 2018[R]. 2019

    (in Chinese).

    [17] LUO T, ZHANG Y, WANG C, et al. Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring[J]. Environmental Pollution, 2019, 255:113122.
    [18] BARBOZA L G A, DICK VETHAAK A, LAVORANTE B R B O, et al. Marine microplastic debris:An emerging issue for food security, food safety and human health[J]. Marine Pollution Bulletin, 2018, 133:336-348.
    [19] CARBERY M, O'CONNOR W, PALANISAMI T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health[J]. Environment International, 2018, 115:400-409.
    [20] LI J, QU X, SU L, et al. Microplastics in mussels along the coastal waters of China[J]. Environmental Pollution, 2016, 214:177-184.
    [21] LI J, YANG D, LI L, et al. Microplastics in commercial bivalves from China[J]. Environmental Pollution, 2015, 207:190-195.
    [22] 杨婧婧, 徐笠, 陆安祥, 等. 环境中微(纳米)塑料的来源及毒理学研究进展[J]. 环境化学, 2018, 37(3):383-396.

    YANG J J, XU L, LU A X, et al. Sources of micro (nanometer) plastics in the environment and advances in toxicology research[J]. Environmental Chemistry, 2018, 37(3):383-396(in Chinese).

    [23] MARTIN P, LENKA C, KATERINA N, et al. Occurrence of microplastics in raw and treated drinking water[J]. The Science of the total environment, 2018, 643:1644-1651.
    [24] 李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料[J]. 科学通报, 2019, 64(9):928-934.

    LI L Q, ZHOU Q, YIN N, et al. Absorption and accumulation of microplastics in edible vegetables[J]. Chinese Science Bulletin, 2019, 64(9):928-934(in Chinese).

    [25] LIEBEZEIT G, LIEBEZEIT E. Synthetic particles as contaminants in German beers[J]. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2014, 9(31):1574-1578.
    [26] LIEBEZEIT G, LIEBEZEIT E. Non-pollen particulates in honey and sugar[J]. Food Additives & Contaminants:Part A, 2013, 30(12):2136-2140.
    [27] YANG D, SHI H, LI L, et al. microplastic pollution in table salts from China[J]. Environmental Science & Technology, 2015, 49(22):13622-13627.
    [28] PRATA J C, DA COSTA J P, LOPES I, et al. Environmental exposure to microplastics:An overview on possible human health effects[J]. Sci Total Environ, 2020, 702:134455.
    [29] BROWNE M A, CRUMP P, NIVEN S J, et al. Accumulation of microplastic on shorelines woldwide:Sources and sinks[J]. Environmental Science & Technology, 2011, 45(21):9175-9179.
    [30] DRIS R, GASPERI J, SAAD M, et al. Synthetic fibers in atmospheric fallout:A source of microplastics in the environment?[J]. Marine Pollution Bulletin, 2016, 104(1):290-293.
    [31] RIST S, CARNEY ALMROTH B, HARTMANN N, et al. A critical perspective on early communications concerning human health aspects of microplastics[J]. The Science of the total environment, 2018, 626:720-726.
    [32] PRATA J C. Airborne microplastics:Consequences to human health?[J]. Environmental Pollution, 2018, 234:115-126.
    [33] VIANELLO A, JENSEN R L, LIU L, et al. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin[J]. Scientific Reports, 2019, 9(1):8670.
    [34] GASPERI J, WRIGHT S L, DRIS R, et al. Microplastics in air:Are we breathing it in?[J]. Current Opinion in Environmental Science & Health, 2018, 1:1-5.
    [35] 张思梦, 查金, 孟伟, 等. 环境中的微塑料及其对人体健康的影响[J]. 中国塑料, 2019, 33(4):81-88.

    ZHANG S M, CHA J, MENG W, et al. Microplastics in the environment and its impact on human health[J]. China Plastics, 2019, 33(4):81-88(in Chinese).

    [36] GEISER M, SCHURCH S, GEHR P. Influence of surface chemistry and topography of particles on their immersion into the lung's surface-lining layer[J]. Journal of Applied Physiology, 2003, 94(5):1793-1801.
    [37] RUGE C A, KIRCH J, LEHR C M. Pulmonary drug delivery:From generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges[J]. The Lancet Respiratory Medicine, 2013, 1(5):402-413.
    [38] COX K, COVERNTON G, DAVIES H, et al. Human consumption of microplastics[J]. Environmental Science & Technology, 2019, 53:7068-7074.
    [39] VAN CAUWENBERGHE L, JANSSEN C R. Microplastics in bivalves cultured for human consumption[J]. Environmental Pollution, 2014, 193:65-70.
    [40] KARAMI A, GOLIESKARDI A, KEONG CHOO C, et al. The presence of microplastics in commercial salts from different countries[J]. Scientific Reports, 2017, 7(1):46173.
    [41] KOSUTH M, MASON S A, WATTENBERG E V. Anthropogenic contamination of tap water, beer, and sea salt[J]. Plos One, 2018, 13(4):1-18.
    [42] TONG H, JIANG Q, HU X, et al. Occurrence and identification of microplastics in tap water from China[J]. Chemosphere, 2020, 252:126493.
    [43] CATARINO A I, MACCHIA V, SANDERSON W G, et al. Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal[J]. Environmental Pollution, 2018, 237:675-684.
    [44] RIEUX A D, FIEVEZ V, THéATE I, et al. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells[J]. European Journal of Pharmaceutical Sciences, 2007, 30(5):380-391.
    [45] KULKARNI S A, FENG S S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery[J]. Pharmaceutical Research, 2013, 30(10):2512-2522.
    [46] WALCZAK A P, KRAMER E, HENDRIKSEN P J M, et al. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity[J]. Nanotoxicology, 2015, 9(4):453-461.
    [47] CARR K E, SMYTH S H, MCCULLOUGH M T, et al. Morphological aspects of interactions between microparticles and mammalian cells:Intestinal uptake and onward movement[J]. Progress in Histochemistry and Cytochemistry, 2012, 46(4):185-252.
    [48] SCHMIDT C, LAUTENSCHLAEGER C, COLLNOT E M, et al. Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa-A first in vivo study in human patients[J]. Journal of Controlled Release, 2013, 165(2):139-145.
    [49] BOUWMEESTER H, HOLLMAN P C H, PETERS R J B. Potential health impact of environmentally released micro- and nanoplastics in the human food production Chain:Experiences from nanotoxicology[J]. Environmental Science & Technology, 2015, 15(49):8932-8947.
    [50] VOLKHEIMER G. Hematogenous dissemination of ingested polyvinyl chloride particles[J]. Annals of the New York Academy of Sciences, 1975, 246(1):164-171.
    [51] REVEL M, CHTEL A, MOUNEYRAC C. Micro(nano)plastics:A threat to human health?[J]. Current Opinion in Environmental Science & Health, 2018, 1:17-23.
    [52] MOWAT A M. Anatomical basis of tolerance and immunity to intestinal antigens[J]. Nature Reviews Immunology, 2003, 3(4):331-341.
    [53] HüFFER T, WENIGER A-K, HOFMANN T. Data on sorption of organic compounds by aged polystyrene microplastic particles[J]. Data in Brief, 2018, 18:474-479.
    [54] ZITKO V, HANLON M. Another source of pollution by plastics:Skin cleaners with plastic scrubbers[J]. Marine Pollution Bulletin, 1991, 22(1):41-42.
    [55] LEI K, QIAO F, LIU Q, et al. Microplastics releasing from personal care and cosmetic products in China[J]. Marine Pollution Bulletin, 2017, 123(1):122-126.
    [56] GOUIN T, AVALOS J, BRUNNING I, et al. Use of micro-plastic beads in cosmetic products in Europe and their estimated emissions to the North Sea environment[J]. SOFW-Journal, 2015, 141:1-33.
    [57] TODD G, NICOLA R, RAINER L, et al. A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic[J]. Environmental Science & Technology, 2011, 45(4):1466-1472.
    [58] BOUCHER J, FRIOT D. Primary microplastics in the oceans:A global evaluation of sources[M]. Gland, Switzerland:IUCN, 2017.
    [59] HERNANDEZ L, YOUSEFI N, TUFENKJI N. Are there nanoplastics in your personal care products?[J]. Environmental Science & Technology Letters, 2017, 4(7):280-285.
    [60] WRIGHT S L, KELLY F J. Plastic and human health:A micro issue?[J]. Environmental Science & Technology, 2017, 51(12):6634-6647.
    [61] DENG Y, ZHANG Y, LEMOS B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure[J]. Scientific Reports, 2017, 7(1):46687.
    [62] YANG Y F, CHEN C Y, LU T H, et al. Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice[J]. Journal of Hazardous Materials, 2019, 366:703-713.
    [63] LU L, WAN Z, LUO T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J]. Science of The Total Environment, 2018, 631/632:449-458.
    [64] LUO T, WANG C, PAN Z, et al. Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring[J]. Environmental Science & Technology, 2019, 53(18):10978-10992.
    [65] DENG Y, ZHANG Y, QIAO R, et al. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus)[J]. Journal of Hazardous Materials, 2018, 357:348-354.
    [66] XU M, HALIMU G, ZHANG Q, et al. Internalization and toxicity:A preliminary study of effects of nanoplastic particles on human lung epithelial cell[J]. Science of the Total Environment, 2019, 694:133794.
    [67] LIM S L, NG C T, ZOU L, et al. Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells[J]. Nanotoxicology, 2019, 13(8):1117-1132.
    [68] SALVATI A, ÅBERG C, DOS SANTOS T, et al. Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules:toward models of uptake kinetics[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2011, 7(6):818-826.
    [69] XIA T, KOVOCHICH M, LIONG M, et al. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways[J]. ACS nano, 2008, 1(2):85-96.
    [70] DONG C D, CHEN C W, CHEN Y C, et al. Polystyrene microplastic particles:In vitro pulmonary toxicity assessment[J]. Journal of Hazardous Materials, 2020, 385:121575.
    [71] LI B, DING Y, CHENG X, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice[J]. Chemosphere, 2020, 244:125492.
    [72] FORTE M, IACHETTA G, TUSSELLINO M, et al. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells[J]. Toxicology in Vitro, 2016, 31:126-136.
    [73] WU B, WU X, LIU S, et al. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells[J]. Chemosphere, 2019, 221:333-341.
    [74] JIN Y, LU L, TU W, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. Science of the Total Environment, 2019, 649:308-317.
    [75] SCHIRINZI G F, PÉREZ-POMEDA I, SANCHÍS J, et al. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells[J]. Environmental Research, 2017, 159:579-587.
    [76] PRIETL B, MEINDL C, ROBLEGG E, et al. Nano-sized and micro-sized polystyrene particles affect phagocyte function[J]. Cell Biology and Toxicology, 2014, 30(1):1-16.
    [77] HWANG J, CHOI D, HAN S, et al. An assessment of the toxicity of polypropylene microplastics in human derived cells[J]. Science of The Total Environment, 2019, 684:657-669.
    [78] BHATTACHARJEE S, ERSHOV D, ISLAM A, et al. Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles[J]. RSC Advances, 2014, 37(4):19321-19330.
    [79] YONG C Q Y, VALIYAVEETILL S, TANG B L. Toxicity of Microplastics and nanoplastics in mammalian systems[J]. International Journal of Environmental Research and Public Health, 2020, 17(5):1509.
    [80] KREMER A M, PAL T M, BOLEIJ J S, et al. Airway hyper-responsiveness and the prevalence of work-related symptoms in workers exposed to irritants[J]. American Journal of Industrial Medicine, 1994, 26(5):655-669.
    [81] BOAG A H, COLBY T V, FRAIRE A E, et al. The pathology of interstitial lung disease in nylon flock workers[J]. The American Journal of Surgical Pathology, 1999, 23(12):1539-1545.
    [82] ESCHENBACHER W L, KREISS K, LOUGHEED M D, et al. Nylon flock-associated interstitial lung disease[J]. American Journal of Respiratory and Critical Care Medicine, 1999, 159(6):2003-2008.
    [83] PIMENTEL J C, AVILA R, LOURENO A G. Respiratory disease caused by synthetic fibres:A new occupational disease[J]. Thorax, 1975, 30(2):204-219.
    [84] WARHEIT D B, HART G A, HESTERBERG T W, et al. Potential pulmonary effects of man-made organic fiber (MMOF) dusts[J]. Critical Reviews in Toxicology, 2001, 31(6):697-736.
    [85] LAW B D, BUNN W B, HESTERBERG T W. Solubility of polymeric organic fibers and manmade vitreous fibers in gambles solution[J]. Inhalation Toxicology, 1990, 2(4):321-339.
    [86] CHIU H W, XIA T, LEE Y H, et al. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress[J]. Nanoscale, 2015, 2(7):736-746.
    [87] STOCK V, FAHRENSON C, THUENEMANN A, et al. Impact of artificial digestion on the sizes and shapes of microplastic particles[J]. Food and Chemical Toxicology, 2020, 135:111010.
    [88] LIU S, WU X, GU W, et al. Influence of the digestive process on intestinal toxicity of polystyrene microplastics as determined by in vitro Caco-2 models[J]. Chemosphere, 2020, 256:127204.
    [89] BAKIR A, ROWLAND S J, THOMPSON R C. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions[J]. Environmental Pollution, 2014, 185:16-23.
    [90] MAGALHAES J G, TATTOLI I, GIRARDIN S E. The intestinal epithelial barrier:how to distinguish between the microbial flora and pathogens[J]. Semin Immunol, 2007, 19(2):106-115.
    [91] CRISTINA M, ANA G C, MARÍA V, et al. Cellular and molecular basis of intestinal barrier dysfunction in the irritable bowel syndrome[J]. Gut and Liver, 2012, 3(6):305-315.
    [92] POWELL J J, THOREE V, PELE L C. Dietary microparticles and their impact on tolerance and immune responsiveness of the gastrointestinal tract[J]. British Journal of Nutrition, 2007, 98(S1):S59-S63.
    [93] HANDY R D, HENRY T B, SCOWN T M, et al. Manufactured nanoparticles:their uptake and effects on fish-a mechanistic analysis[J]. Ecotoxicology, 2008, 17(5):396-409.
    [94] KAMADA N, SEO S U, CHEN G Y, et al. Role of the gut microbiota in immunity and inflammatory disease[J]. Nature Reviews. Immunology, 2013, 13(5):321-335.
    [95] UNDERWOOD M A. Intestinal dysbiosis:Novel mechanisms by which gut microbes trigger and prevent disease[J]. Preventive Medicine, 2014, 65:133-137.
    [96] OBRENOVICH M E, TIMA M, POLINKOVSKY A, et al. Targeted metabolomics analysis identifies intestinal microbiota-derived urinary biomarkers of colonization resistance in antibiotic-treated mice[J]. Antimicrobial Agents and Chemotherapy, 2017, 61(8):e00477-17.
    [97] EL AIDY S, VAN BAARLEN P, DERRIEN M, et al. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice[J]. Mucosal Immunology, 2012, 5(5):567-579.
    [98] CHANG X, XUE Y, LI J, et al. Potential health impact of environmental micro-and nanoplastics pollution[J]. Journal of Applied Toxicology, 2019, 40(1):4-15.
    [99] SELTENRICH N. New link in the food chain? Marine plastic pollution and seafood safety[J]. Environmental Health Perspectives, 2015, 123(2):34-41.
    [100] RAFIEE M, DARGAHI L, ESLAMI A, et al. Neurobehavioral assessment of rats exposed to pristine polystyrene nanoplastics upon oral exposure[J]. Chemosphere, 2018, 193(1):745-753.
    [101] MOHANKUMAR S M J, CAMPBELL A, BLOCK M, et al. Particulate matter, oxidative stress and neurotoxicity[J]. Neurotoxicology, 2008, 29(3):479-488.
    [102] LIU Y, LI W, LAO F, et al. Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes[J]. Biomaterials, 2011, 32(32):8291-8303.
    [103] WICK P, MALEK A, MANSER P, et al. Barrier capacity of human placenta for nanosized materials[J]. Environmental Health Perspectives 2010, 118(3):432-436.
    [104] YOO J W, DOSHI N, MITRAGOTRI S. Adaptive micro and nanoparticles:Temporal control over carrier properties to facilitate drug delivery[J]. Advanced Drug Delivery Reviews, 2011, 63(14):1247-1256.
    [105] TANAKA K, TAKADA H, YAMASHITA R, et al. Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics[J]. Marine Pollution Bulletin, 2013, 69(1):219-222.
    [106] LUSHER A, HOLLMAN P, MENDOZA J. Microplastics in fisheries and aquaculture:Status of knowledge on their occurrence and implications for aquatic organisms and food safety[M]. Rome, Italy:FAO Fisheries and Aquaculture Technical Paper,2017.
    [107] MONTI D M, GUARNIERI D, NAPOLITANO G, et al. Biocompatibility, uptake and endocytosis pathways of polystyrene nanoparticles in primary human renal epithelial cells[J]. Journal of Biotechnology, 2015, 193:3-10.
    [108] ZAGORSKI J, DEBELAK J, GELLAR M, et al. Chemokines accumulate in the lungs of rats with severe pulmonary embolism induced by polystyrene microspheres[J]. The Journal of Immunology, 2003, 171(10):5529-5536.
    [109] JONES A E, WATTS J A, DEBELAK J P, et al. Inhibition of prostaglandin synthesis during polystyrene microsphere-induced pulmonary embolism in the rat[J]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 2003, 284(6):1072-1081.
    [110] BRAUER A, CHURG M. Ambient Atmospheric Particles in the Airways of Human Lungs[J]. Ultrastructural Pathology, 2000, 24(6):353-361.
    [111] CANESI L, CIACCI C, BERGAMI E, et al. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus[J]. Marine Environmental Research, 2015, 111:34-40.
    [112] CHEN R, HU B, LIU Y, et al. Beyond PM2.5:The role of ultrafine particles on adverse health effects of air pollution[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2016, 1860(12):2844-2855.
  • 加载中
计量
  • 文章访问数:  5570
  • HTML全文浏览数:  5570
  • PDF下载数:  246
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-30

微塑料在哺乳动物的暴露途径、毒性效应和毒性机制浅述

    通讯作者: 王立新, E-mail: lixinwang2007@126.com ;  崔建升, E-mail: cui1603@163.com
  • 1. 河北科技大学环境科学与工程学院, 河北省污染防治生物技术实验室, 石家庄, 050018;
  • 2. 河北省药用分子化学重点实验室, 石家庄, 050018
基金项目:

河北省高等学校青年拔尖人才项目(BJ2019033)资助.

摘要: 微塑料广泛存在于大气、土壤和水体环境中,其对人体的危害正受到广泛关注.本文阐述了当前对微塑料在哺乳动物的暴露途径、毒性作用和毒性机制的认识.空气-呼吸系统、食物/饮水-消化系统以及洗漱/护肤产品-皮肤等都是目前最常见的微塑料人体暴露途径,其中消化系统暴露是最主要的方式.目前的研究显示肠道、肝脏和肾脏是主要的微塑料富集部位,可引发肠道菌群失调、肠道功能紊乱以及肝脏脂质代谢紊乱,而对其它组织器官和系统如肺部、肾脏、神经系统、生殖系统等产生的毒性效应尚需更多研究的开展.当前研究显示微塑料的毒性机制主要包括氧化应激和炎症反应,深入的分子机制仍需进一步探讨.本文对微塑料毒性研究的综述将有助于系统认识微塑料的健康危害,为进一步开展微塑料的风险评估提供支持.

English Abstract

参考文献 (112)

目录

/

返回文章
返回