-
人类社会的迅速发展带来了一系列的能源和环境问题,如水体污染,大气温室效应等,直接威胁到了人类的生存和健康。太阳能是一种取之不尽用之不竭的清洁能源,利用太阳能的半导体光催化技术因其操作简单、无二次污染、消耗能量低、反应条件温和等优点,在解决能源短缺和环境污染问题中得到了人们的广泛关注[1]。
常见光催化剂二氧化钛(TiO2)半导体的光催化性能自1972年被发现以来,人们在半导体光催化降解有机物和半导体光催化太阳能转化等方面展开了大量研究工作。然而,在应用过程中仍然存在诸多缺陷限制了半导体光催化剂的应用,以TiO2为例:(1)对太阳光的利用率较低,TiO2催化剂的禁带宽度约为3.2 eV,只能吸收少部分的紫外光,导致只有5%左右的太阳光可以被利用;(2)催化剂易失活,由于TiO2表面具有亲和性,光催化反应中的反应中产物会占据催化剂表面的活性中心,导致催化剂的活性降低,从而阻碍对污染物的降解和吸附;(3)负载技术不足,往往在考虑催化剂高催化活性的同时,忽略了对催化剂的回收,催化剂可重复利用率低[2]。在对传统半导体光催化剂的改良研究过程中,纳米技术的迅速发展,给研究者指明了新的方向[3]。
近年来,人们对纳米复合材料的理解和科学研究也取得了长足的进步。其中,以Au、Ag为代表的贵金属纳米粒子由于其高质量的物理和化学性质而被广泛用于催化氧化,生物医学工程,光电等行业[4]。贵金属纳米技术结构的优势是基于表面等离子体激元共振(SPR)与共振光子之间的强相互作用,来增强了等离子体纳米光催化剂的性能。2008年,日本专家学者Awaz等[5]首次明确定义了含有贵金属SPR效应的表面等离激元纳米光催化剂(Plasmonic Photocatalyst)的概念,开发并设计了具有可见光谱吸收特性的Ag /TiO2光催化材料,发现Ag纳米粒子的SPR显著提高了半导体材料光催化剂的活性,并在此基础上设计并制备了多种贵金属/半导体复合纳米催化剂。尽管等离激元光催化剂的可见光特异性和催化反应的效果较好,但是在具体应用中仍然存在相对昂贵和原理复杂等诸多问题。为了解决这些应用难题,世界各地的科研人员一直在对贵金属SPR特性研究的基础上,尝试开发出高效、可见光响应性高的复合等离激元光催化剂,并取得杰出的研究成果。
等离激元光催化研究进展
Recent advances on plasmon photocatalysis
-
摘要: 近年来,等离激元光催化剂因其优异的可见光吸收性和光催化活性,成为光催化治理环境、纳米材料合成和半导体优化等学科领域的研究热点和重点之一。本文在对纳米贵金属参与光催化过程的等离激元光催化剂机理和光催化活性提高机理等光催化原理进行分析的基础上,对等离激元光催化剂进行分类探讨并阐述了等离激元光催化剂的合成方法,按照光催化剂的组成将等离激元光催化剂分为Ag@AgX(X=Cl/Br/I)等离激元光催化剂、贵金属/半导体等离子光催化剂等,最后对等离激元光催化剂在环境净化和能源利用等领域的原理和应用(废水处理、光解水制氢、CO2还原、抗菌和空气净化等)进行综述,并对等离激元光催化剂未来发展进行展望。Abstract: In recent years, due to its excellent visible light absorption and photocatalytic activity, Plasmonic photocatalysts have become one of the research hotspots and emphases in the fields of photocatalytic environment treatment, nanomaterial synthesis and semiconductor optimization. In this paper, based on the analysis of photocatalytic principles such as the mechanism of plasmonic photocatalyst and the mechanism of improving photocatalytic activity in the photocatalytic process involving nanometer noble metals, discussed the classification of Plasmonic photocatalyst and described the synthesis method of Plasmonic photocatalyst, according to the composition of the photocatalyst, the plasma photocatalyst could be divided into Ag@AgX (X=Cl/Br/I) plasma photocatalyst and noble metal/semiconductor plasma photocatalyst. At last, the applications and theories of the photocatalyst in environmental purification and energy utilization (wastewater treatment, hydrogen production by photolysis, CO2 reduction, antibacterial and air purification, etc.) were reviewed and the future development of plasmon resonance photocatalyst was prospected.
-
Key words:
- surface plasmon resonance /
- photocatalysis /
- noble metal nanoparticles /
- visible light /
- application
-
图 1 TiO2光催化原理[8]
Figure 1. Photocatalytic mechanism of TiO2
图 3 等离激元光催化剂的应用原理[67]
Figure 3. Application principle of Plasmonic photocatalyst
表 1 等离激元光催化剂的合成方法、形貌及光催化特点
Table 1. Synthesis method, morphology and photocatalytic characteristics of plasmonic photocatalyst
光催化剂
Photocatalyst合成方法
Synthetic methods形貌
Morphology光催化特点
Photocatalytic characteristics参考文献
ReferenceAu/TiO2 改进浸渍法 颗粒 563 nm波长出现等离激元共振吸收峰 [25] Ag@AgCl/Bi2WO6 水热法和沉淀法 片层结构 420—700 nm波长出现等离激元共振吸收峰 [26] Ag@AgI/N、F-TNTs 水热法、沉积沉淀法和光还原法 纳米管结构 光响应从紫外光拓展到>450 nm可见光 [27] Ag@TiO2 常压水热法 纳米管结构 光响应红移40 nm [28] Au@Ag/TiO2 粉末-溶胶法 核壳结构 420 nm波长出现等离激元共振吸收峰 [29] Au@Pt 液相氢气还原法 核壳结构 Au到Pt电子转移增加了Pt表面活性氧 [30] 表 2 等离激元光催化剂的应用效果
Table 2. Application effect of Plasmonic photocatalyst
-
[1] JING L Q, ZHOU W, TIAN, G H, et al. Surface tuning for oxide-based nanomaterials as efficient photocatalysts [J]. Cheminform, 2013, 42(24): 9509-9549. [2] 杨传玺, 董文平, 乔光明, 等. 二氧化钛改性及应用研究进展 [J]. 化工新型材料, 2015, 43(10): 27-29. YANG C X, DONG W P, QIAO G M, et al. Research on TiO2 modification and application: A review [J]. New Chemical Materials, 2015, 43(10): 27-29(in Chinese).
[3] YANG C X, DONG W P, CUI G W, et al. Enhanced photocatalytic activity of PANI/TiO2 due to their photosensitization-synergetic effect [J]. Electrochimica Acta, 2017, 247: 486-495. doi: 10.1016/j.electacta.2017.07.037 [4] YANG C X, WANG X N, JI Y J, et al. Photocatalytic degradation of methylene blue with ZnO@C nanocomposites: Kinetics, mechanism, and the inhibition effect on monoamine oxidase A and B [J]. NanoImpact, 2019, 15: 100174. doi: 10.1016/j.impact.2019.100174 [5] AWAZU K, FUJIMAKI M, ROCKSTUHL C, et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide [J]. Journal of the American Chemical Society, 2008, 130(5): 1676-1680. doi: 10.1021/ja076503n [6] CHONG M N, JIN B, CHOW C, et al. Recent developments in photocatalytic water treatment technology: A review [J]. Water Research, 2010, 44(10): 2997-3027. doi: 10.1016/j.watres.2010.02.039 [7] 杨传玺, 董文平, 王炜亮, 等. 导电聚合物改性TiO2光催化剂合成及应用研究进展 [J]. 化工新型材料, 2015, 43(1): 226-228. YANG C X, DONG W P, WANG W L, et al. Research of synthesis and application of conducting polymer modified TiO2 photocatalyst: A review [J]. New Chemical Materials, 2015, 43(1): 226-228(in Chinese).
[8] GUO Q, ZHOU C, MA Z, et al, et al. Fundanment of TiO2 photocatalysis: Concepts,mechanisms, and challenges [J]. Advanced Materials, 2019, 31(50): 1901997. [9] 徐远国. 等离子体型光催化材料的制备及其降解环境污染物研究[D]. 镇江: 江苏大学, 2013. XU Y G. Preparation of the plasma-photocatalytic materials and their photocataytic activity in degradation of pollutant[D]. Zhenjiang: Jiangsu University, 2013(in Chinese).
[10] 杨传玺, 王炜亮, 董文平, 等. 可见光响应PANI/TiO2和PoPD/TiO2纳米材料的氧化机制及协同-光敏化作用 [J]. 环境化学, 2016, 35(1): 102-111. doi: 10.7524/j.issn.0254-6108.2016.01.2015091106 YANG C X, WANG W L, DONG W P, et al. Oxidation mechanism and synergistic photosensitization of PANI/TiO2 and PoPD/TiO2 nanometer materials in response to visible light [J]. Environmental Chemistry, 2016, 35(1): 102-111(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.01.2015091106
[11] ZHOU X, LIU G, YU J, et al. Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light [J]. Journal of Materials Chemistry, 2012, 22(40): 21337. doi: 10.1039/c2jm31902k [12] 周锋, 任向红, 刘建友, 等. 光催化降解水体有机污染物的研究进展 [J]. 材料工程, 2018, 46(10): 9-19. doi: 10.11868/j.issn.1001-4381.2017.000972 ZHOU F, REN X H, LIU J Y, et al. Development of photocatalytic degradation of organic pollution in water [J]. Journal of Materials Engineering, 2018, 46(10): 9-19(in Chinese). doi: 10.11868/j.issn.1001-4381.2017.000972
[13] LINK S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy [J]. Nature Materials, 2011, 10(12): 911. [14] YANG Y, LIU R, ZHANG G, et al. Preparation and photocatalytic properties of visible light driven Ag-AgCl-TiO2/palygorskite composite [J]. Journal of Alloys and Compounds, 2016, 657: 801-808. [15] 司东辉. 光化学沉积制备纳米颗粒及表面等离激元驱动催化反应研究[D]. 重庆: 重庆大学, 2017. SI D H. Study on preparation of nano particles by photochemical deposition and plasmon-driven surface catalysis[D]. Chongqing: Chongqing University, 2017(in Chinese).
[16] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展 [J]. 物理学报, 2019, 68(14): 118-132. ZHOU L, WANG Q Q. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis [J]. Acta Physica Sinica, 2019, 68(14): 118-132(in Chinese).
[17] HOU W, CRONIN S B. A review of surface plasmon resonance-enhanced photocatalysis [J]. Advanced Functional Materials, 2013, 23(13): 1612-1619. doi: 10.1002/adfm.201202148 [18] WANG P, HUANG B, DAI Y, et al. Plasmonic photocatalysts: Harvesting visible light with noble metal nanoparticles [J]. Physical Chemistry Chemical Physics, 2012, 14(28): 9813. doi: 10.1039/c2cp40823f [19] LIU L, OUYANG S, YE J. Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance [J]. Angewandte Chemie International Edition, 2013, 52(26): 6821-6825. [20] MEMARZADEH S, KIM J, AYTAC Y, et al. Surface plasmon assisted control of hot-electron relaxation time [J]. Optica, 2020, 7(6): 608-612. doi: 10.1364/OPTICA.385959 [21] LIO G E, FERRARO A, GIOCONDO M, et al. Color gamut behavior in epsilon near-zero nanocavities during propagation of gap surface plasmons [J]. Advanced Optical Materials, 2020, 8(17): 2000487. [22] HU J S, WANG H, LIU L, et al. Preparation of highly efficient Ag@AgBr plasmonic photocatalyst and its photocatalytic performance under visible light [J]. Journal of Molecular Catalysis, 2013, 27(5): 452-458. [23] 任鹏, 杨修春. 非金属纳米材料表面等离子体共振的研究进展 [J]. 硅酸盐学报, 2018, 46(10): 1383-1393. REN P, YANG X C. Research progress on surface plasmon resonance of nonmetallic nanomaterials [J]. Journal of the Chinese Ceramic Socirty, 2018, 46(10): 1383-1393(in Chinese).
[24] LOU Z, WANG Z, HUANG B, et al. Synthesis and activity of plasmonic photocatalysts [J]. ChemCatChem, 2014, 6(9): 2456-2476. doi: 10.1002/cctc.201402261 [25] 金灿. LED可见光下等离子激元型Au/TiO2光催化脱除甲醛[D]. 大连: 大连理工大学, 2017. JIN C. Photocatalytic oxidation of formaldehyde over plasmonic Au/TiO2 under LED visible light[D]. Dalian: Dalian University of Technology, 2017(in Chinese).
[26] 成帆, 马运柱, 刘文胜, 等. Ag@AgX纳米光催化材料的研究现状 [J]. 材料导报, 2015, 29(7): 27-32. CHENG F, MA Y Z, LIU W S, et al. Research progress of nano Ag@AgX photocatalysts [J]. Material Report, 2015, 29(7): 27-32(in Chinese).
[27] 于丹丹. 碳纤维承载AgX(X=Br, I)-TiO2复合光催化剂的制备及其可见光催化性能研究[D]. 呼和浩特: 内蒙古工业大学. 2016. YU D D. Fabrication of AgX(X=Br, I)-modified TiO2 supported on carbon nanofibers and their visible-light catalytic performance[D]. Huhehaote: Inner Mongolia University of Technology, 2016(in Chinese).
[28] 李静玲, 陈文哲, 吴波, 等. 银掺杂TiO2纳米管制备与性能研究 [J]. 功能材料, 2012, 43(8): 953-957. doi: 10.3969/j.issn.1001-9731.2012.08.001 LI J L, CHEN W Z, WU B, et al. Preparation and performance of silver doped TiO2 nanotube [J]. Functional Materials, 2012, 43(8): 953-957(in Chinese). doi: 10.3969/j.issn.1001-9731.2012.08.001
[29] 孙彦红. Au@Ag/TiO2催化剂的制备及其光催化消除臭氧的研究[D]. 开封: 河南大学, 2009. SUN Y H. Preparation of Au@Ag/TiO2 and photocatalytic decomposition of gaseous ozone[D]. Kaifeng: Henan University, 2009(in Chinese).
[30] 李思汉. 氢气还原制备纳米核壳双金属催化剂及VOCs氧化性能研究[D]. 杭州: 浙江工业大学, 2019. LI S H. Preparation of nano core-shell bimetallic catalyst by hydrogen reduction and research of catalytic performance for VOCs oxidation[D]. Hangzhou: Zhejiang University of Technology, 2019(in Chinese).
[31] 李婷婷. 含铋氧化物复合光催化材料的制备及其光催化降解有机污染物[D]. 长沙: 湖南大学, 2015. LI T T. Bimuth-containing oxide composite photocatalytic materials: preparation and their application of organic pollutions’ degradation[D]. Changsha: Hunan University, 2015(in Chinese).
[32] 王瑜琦. 碳酸银基半导体复合材料的制备及其光催化性能研究[D]. 镇江: 江苏大学, 2016. WANG Y Q. Synthesis and photocatalytic performance of Ag2CO3-based semiconductor composites[D]. Zhenjiang: Jiangsu University, 2016(in Chinese).
[33] 林双龙. Ag@AgX复合光催化剂的制备及活性研究[D]. 唐山: 华北理工大学, 2015. LIN S L. The preparation and photocatalytic activity of Ag@AgX composition materials[D]. Tangshan: North China University of Science and Technology, 2015(in Chinese).
[34] 邢阳阳. AgBr/TiO2纳米复合催化剂的制备及其可见光光催化性能研究[D]. 开封: 河南大学, 2013. XING Y Y. Preparation of AgBr/TiO2 nanocomposites and investigation of their visible light photocatalytic activity[D]. Kaifeng: Henan University, 2013(in Chinese).
[35] XIONG W, ZHAO Q D, LI X Y, et al. One-step synthesis of flower-like Ag/AgCl/BiOCl composite with enhanced visible-light photocatalytic activity [J]. Catalysis Communications, 2011, 16(1): 229-233. doi: 10.1016/j.catcom.2011.09.027 [36] 庞有勇. Ag@AgX(X=Cl, Br)纳米材料的可控合成及光催化性能研究[D]. 北京: 中国石油大学, 2017. PANG Y Y. The controllable synthesis and properties of Ag@AgX(X=Cl, Br) photocatalysts[D]. Beijing: China University of Petroleum, 2017(in Chinese).
[37] ZHAO Z, ZHU L, FAN J. Ag@AgX(X = Cl, Br, I) modified N, F codoped TiO2 nanotubes as effective photocatalyst [J]. Materials Technology, 2014, 29(A1): A3-A8. [38] 隋玉杰. Ag-AgX/TiO2(X=Br, Cl)等离子复合纳米材料的制备及应用[D]. 长春: 长春工业大学, 2016. SUI Y J. The Preparation and application of nano-composite plasma materials: Ag-AgX/TiO2 (X=Br, Cl)[D]. Changchun: Changchun University of Technology, 2016(in Chinese).
[39] 曹玉辉, 李秋叶, 邢阳阳, 等. AgX-TiO2纳米复合催化剂在可见光下的催化性能 [J]. 材料保护, 2014, 47(S1): 122-124. CAO Y H, LI Q Y, XING Y Y, et al. Catalytic performance of AgX-TiO2 nano-composite catalyst in visible light [J]. Materials Protection, 2014, 47(S1): 122-124(in Chinese).
[40] LI W, HUA F, YUE J, et al. Ag@AgCl plasmon-induced sensitized ZnO particle for high-efficiency photocatalytic property under visible light [J]. Applied Surface Science, 2013, 285: 490-497. doi: 10.1016/j.apsusc.2013.08.082 [41] XU Y, HUANG S, XIE M, et al. Core-shell magnetic Ag/AgCl@Fe2O3 photocatalyst with enhanced photoactivity in eliminating the bisphenol A and microbial contamination [J]. New Journal of Chemistry, 2016, 40(4): 3413-3422. doi: 10.1039/C5NJ02898A [42] YE L Q, LIU J Y, GONG C Q, et al. Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge [J]. ACS Catalysis, 2012, 2(8): 1677-1683. doi: 10.1021/cs300213m [43] LIN S L, WANG M, LIU L, et al. Enhanced visible light photocatalytic degradation of organic pollutants over flower-like Bi2O2CO3 dotted with Ag@AgBr [J]. Materials, 2016, 9(11): 882. doi: 10.3390/ma9110882 [44] 安伟佳, 田玲玉, 芮玉兰, 等. Ag@AgCl/Bi2WO6复合光催化剂的制备及可见光催化性能 [J]. 材料导报, 2019, 33(12): 1932-1938. doi: 10.11896/cldb.17120047 AN W J, TIAN L Y, RUI Y L, et al. Preparation and visible light photocatalytic activity of Ag@AgCl/Bi2WO6 composite photocatalyst [J]. Material Report, 2019, 33(12): 1932-1938(in Chinese). doi: 10.11896/cldb.17120047
[45] SHI H X, CHEN J Y, LI G Y, et al. Synthesis and characterization of novel plasmonic Ag/AgX-CNTs (X = Cl, Br, I) nanocomposite photocatalysts and synergetic degradation of organic pollutant under visible light [J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6959-6967. [46] ZHU M, CHEN P, LIU M. Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst [J]. ACS Nano, 2011, 5(6): 4529-4536. doi: 10.1021/nn200088x [47] 韩玉琦, 宋红娟, 魏玉娟, 等. Ag@AgCl/Mg-Al-LDHs复合光催化剂的制备及可见光催化活性 [J]. 化学工程, 2016, 44(1): 58-62. doi: 10.3969/j.issn.1005-9954.2016.01.013 HAN Y Q, SONG H J, WEI Y J, et al. Preparation and photocatalytic activity of Ag@AgCl/Mg-Al-LDHs composite catalyst under visible light [J]. Chemical Engineering(China), 2016, 44(1): 58-62(in Chinese). doi: 10.3969/j.issn.1005-9954.2016.01.013
[48] YANG Y, GUO W, GUO Y, et al. Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity [J]. Journal of Hazardous Materials, 2014, 271(30): 150-159. [49] SUN S, WANG W, ZENG S, et al. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation [J]. Journal of Hazardous Materials, 2010, 178(1-3): 427-433. doi: 10.1016/j.jhazmat.2010.01.098 [50] TANAKA A, OGINO A, IWAKI M, et al. Gold–titanium (IV) oxide plasmonic photocatalysts prepared by a colloid-photodeposition method: Correlation between physical properties and photocatalytic activities [J]. Langmuir, 2012, 28(36): 13105-13111. doi: 10.1021/la301944b [51] MONDAL C, PAL J, GANGULY M, et al. A one pot synthesis of Au–ZnO nanocomposites for plasmon-enhanced sunlight driven photocatalytic activity [J]. New Journal of Chemistry, 2014, 38(7): 2999-3005. doi: 10.1039/c4nj00227j [52] KHANNA A, VIDYA S K. Solar photocatalysis for treatment of acid yellow-17 (AY-17) dye contaminated water using Ag@TiO2 core–shell structured nanoparticles [J]. Environmental Science and Pollution Research, 2013, 20(8): 5692-5707. doi: 10.1007/s11356-013-1582-4 [53] 高虎虎, 莫尊理, 牛小慧, 等. 部分金属硫化物光催化剂的研究进展 [J]. 化工新型材料, 2017, 45(8): 41-43. GAO H H, MO Z L, NIU X H, et al. Progress in the study of metal sulfide photocatalyst [J]. New Chemical Materials, 2017, 45(8): 41-43(in Chinese).
[54] LIU Y, CHI M, DONG H, et al. Ag/CdS heterostructural composites: Fabrication, characterizations and photocatalysis [J]. Applied Surface Science, 2014, 313: 558-562. doi: 10.1016/j.apsusc.2014.06.022 [55] XU L, YIN Z Y, CAO S W, et al. Rational synthesis of triangular Au-Ag2S hybrid nanoframes with effective photoresponses [J]. Chemistry-A European Journal, 2014, 20(10): 2742-2745. doi: 10.1002/chem.201304545 [56] MANNA G, BOSE R, PRADHAN N. Photocatalytic Au-Bi2S3 heteronanostructures [J]. Angewandte Chemie International Edition, 2014, 53(26): 6743-6746. doi: 10.1002/anie.201402709 [57] LIU Y, FANG L, LU H, et al. One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag3PO4 [J]. Applied Catalysis B: Environmental, 2012, 115-116: 245-252. doi: 10.1016/j.apcatb.2011.12.038 [58] WANG D J, XUE G L, ZHEN Y Z, et al. Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities [J]. Journal of Materials Chemistry, 2012, 22(11): 4751-4758. doi: 10.1039/c2jm14448d [59] 赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展 [J]. 材料工程, 2017, 45(6): 129-137. doi: 10.11868/j.issn.1001-4381.2015.001083 ZHAO Y R, MA J Z, LIU J L. Research progress on visible light responding ZnO-based nanocomposite photocatalyst [J]. Journal of Materials Engineering, 2017, 45(6): 129-137(in Chinese). doi: 10.11868/j.issn.1001-4381.2015.001083
[60] WANG D S, LI Y D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications [J]. Advanced Materials, 2011, 23(9): 1044-1060. doi: 10.1002/adma.201003695 [61] 仇昊. 负载型核-壳结构双金属催化剂的制备及其选择性催化加氢性能研究[D]. 南京: 南京大学, 2019. QIU H. Preparation and catalytic properties of supported core-shell structured bimetallic catalysts for selective hydrogenation[D]. Nanjing: Nanjing University, 2019(in Chinese).
[62] XU H, SONG P, YAN B, et al. Surface-plasmon-enhanced photo-electrocatalytic ethylene glycol oxidation based on highly open AuAg nanobowls [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4138-4146. [63] SUN X, GUO S, LIU Y, et al. Dumbbell-like PtPd-Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2 [J]. Nano Letters, 2012, 12(9): 4859-4863. doi: 10.1021/nl302358e [64] 海子彬. 金铜双金属纳米颗粒修饰二氧化钛和铜基光催化剂的制备及应用基础研究[D]. 合肥: 中国科学技术大学, 2013. HAI Z B. Modification of titania with gold-copper bimetallic nanoparticles and preparation of copper-based photocatalysts and applied basic research[D]. Hefei: University of Science and Technology of China, 2013(in Chinese).
[65] 孙帅其, 易颜辉, 王丽, 等. 负载型双金属催化剂的制备及其等离子体催化氨分解制氢性能 [J]. 物理化学学报, 2017, 33(6): 1123-1129. doi: 10.3866/PKU.WHXB201703301 SUN S Q, YI Y H, WANG L, et al. Preparation and performance of supported bimetallic catalysts for hydrogen production from ammonia decomposition by plasma catalysis [J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1123-1129(in Chinese). doi: 10.3866/PKU.WHXB201703301
[66] ZHOU L N, MARTIREZ J M P, FINZEL J, et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts [J]. Nature Energy, 2020, 5(1): 61-70. doi: 10.1038/s41560-019-0517-9 [67] 闫世成, 罗文俊, 李朝升, 等. 新型光催化材料探索和研究进展 [J]. 中国材料进展, 2010, 29(1): 1-9. YAN S C, LUO W J, LI C S, et al. Progress in the exploration and research of new photocatalytic materials [J]. Progress in Materials in China, 2010, 29(1): 1-9(in Chinese).
[68] 李海龙, 罗武林, 陈涛, 等. 载Ag二氧化钛纳米管的制备及其光催化性能 [J]. 物理化学学报, 2008, 24(8): 1383-1386. doi: 10.3866/PKU.WHXB20080810 LI H L, LUO W L, CHEN T, et al. Preparation and photocatalytic performance of titania nanotubes loaded with Ag nanoparticles [J]. Acta Physico-Chimica Sinica, 2008, 24(8): 1383-1386(in Chinese). doi: 10.3866/PKU.WHXB20080810
[69] GE M, CAO C, LI S, et al. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting [J]. Nanoscale, 2016, 8(9): 5226-5234. doi: 10.1039/C5NR08341A [70] HOU W, HUNG W H, PAVASKAR P, et al. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions [J]. ACS Catalysis, 2011, 1(8): 929-936. doi: 10.1021/cs2001434 [71] 鞠剑峰, 李澄俊, 徐铭. 纳米Ag/TiO2复合材料的抗菌性能 [J]. 精细化工, 2005, 22(1): 59-61. doi: 10.3321/j.issn:1003-5214.2005.01.018 JU J F, LI C J, XU M. Antibacterial activity of nanocomposite Ag/TiO2 material [J]. Fine Chemicals, 2005, 22(1): 59-61(in Chinese). doi: 10.3321/j.issn:1003-5214.2005.01.018
[72] MIZUNO A, KISANUKI Y, NOGUCHI M, et al. Indoor air cleaning using a pulsed discharge plasma [J]. IEEE Transactions on Industry Applications, 1999, 35(6): 1284-1288. doi: 10.1109/28.806040 [73] YANG X H, FU H T, WONG K, et al. Hybrid Ag@TiO2 core-shell nanostructures with highly enhanced photocatalytic performance [J]. Nanotechnology, 2013, 24(41): 415601. doi: 10.1088/0957-4484/24/41/415601 [74] GEORGE R S A, CRISTIANE C N, ELIAS C S L, et al. ZnO/Au nanocatalysts for enhanced decolorization of an azo dye under solar, UV-A and dark conditions [J]. Journal of Alloys and Compounds, 2017, 710: 557-566. doi: 10.1016/j.jallcom.2017.03.295 [75] 陈海洋. 贵金属修饰氮掺杂TiO2薄膜光催化还原性能的研究[D]. 南京: 东南大学, 2017. CHEN H Y. Study on the photocatalytic reduction performance of N-doped titanium oxide films with noble metal modification[D]. Nanjing: Southeast University, 2017(in Chinese).
[76] WANG S Y, GAO Y Y, MIAO S, et al. Positioning the water oxidation reaction sites in plasmonic photocatalysts [J]. Journal of the American Chemical Society, 2017, 139(34): 11771-11778. doi: 10.1021/jacs.7b04470 [77] LUO Y, LIU X, TANG X, et al. Gold nanoparticles embedded in Ta2O5/Ta3N5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution [J]. Journal of Materials Chemistry A, 2014, 2(36): 14927-14939. doi: 10.1039/C4TA02991G [78] 袁颂东, 曹小艳, 王小波, 等. 掺银二氧化钛纳米带的制备及其光催化性能研究 [J]. 材料工程, 2009, 10: 11-14. doi: 10.3969/j.issn.1001-4381.2009.05.003 YUAN S D, CAO X Y, WANG X B, et al. Synthesis of Ag-doping TiO2 nanobelt and study on its photocatalytic character [J]. Journal of Materials Engineering, 2009, 10: 11-14(in Chinese). doi: 10.3969/j.issn.1001-4381.2009.05.003
[79] TAHIR M, TAHIR B, AMIN N A S. Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation [J]. Applied Surface Science, 2015, 356: 1289-1299. doi: 10.1016/j.apsusc.2015.08.231 [80] KREJCIKOVA S, MATEJOVA L, KOCI K, et al. Preparation and characterization of Ag-doped crystalline titania for photocatalysis applications [J]. Applied Catalysis B: Environmental, 2012, 111: 119-125. [81] KIM Y H, LEE D K, CHA H G, et al. Synthesis and characterization of antibacterial Ag-SiO2 nanocomposite [J]. Journal of Physical Chemistry C, 2007, 111(9): 3629-3635. doi: 10.1021/jp068302w [82] 李艳琼, 余巍, 张俊敏, 等. Ag/TiO2纳米复合材料的结构及抗菌性能研究 [J]. 贵金属, 2011, 32(4): 24-28. doi: 10.3969/j.issn.1004-0676.2011.04.006 LI Y Q, SHE W, ZHANG J M, et al. Study on structure and antibacterial activity of Ag/TiO2 composite nanomaterials [J]. Precious Metals, 2011, 32(4): 24-28(in Chinese). doi: 10.3969/j.issn.1004-0676.2011.04.006
[83] 张晓明, 黄碧纯, 叶代启. 低温等离子体-光催化净化空气污染物技术研究进展 [J]. 化工进展, 2005, 24(9): 19-22. ZHANG X M, HUANG B C, YE D Q. Advances in researches on non-thermal plasma photocatalysis technology for air polullants control [J]. Chemical Industry and Engineering Progress, 2005, 24(9): 19-22(in Chinese).
[84] LI D, YAKUSHIJI D, KANAZAWA S, et al. Decomposition of toluene by streamer corona discharge with catalyst [J]. Journal of Electrostatics, 2002, 55(3-4): 311-319. doi: 10.1016/S0304-3886(01)00213-3