环境中微/纳米塑料的污染现状、分析方法、毒性评价及健康效应研究进展

张瑾, 李丹. 环境中微/纳米塑料的污染现状、分析方法、毒性评价及健康效应研究进展[J]. 环境化学, 2021, (1): 28-40. doi: 10.7524/j.issn.0254-6108.2020062003
引用本文: 张瑾, 李丹. 环境中微/纳米塑料的污染现状、分析方法、毒性评价及健康效应研究进展[J]. 环境化学, 2021, (1): 28-40. doi: 10.7524/j.issn.0254-6108.2020062003
ZHANG Jin, LI Dan. Review on the occurrence, analysis methods, toxicity and health effects of micro-and nano-plastics in the environment[J]. Environmental Chemistry, 2021, (1): 28-40. doi: 10.7524/j.issn.0254-6108.2020062003
Citation: ZHANG Jin, LI Dan. Review on the occurrence, analysis methods, toxicity and health effects of micro-and nano-plastics in the environment[J]. Environmental Chemistry, 2021, (1): 28-40. doi: 10.7524/j.issn.0254-6108.2020062003

环境中微/纳米塑料的污染现状、分析方法、毒性评价及健康效应研究进展

    通讯作者: 李丹, E-mail: lidanfudan@fudan.edu.cn
  • 基金项目:

    国家自然科学基金(91843301)资助.

Review on the occurrence, analysis methods, toxicity and health effects of micro-and nano-plastics in the environment

    Corresponding author: LI Dan, lidanfudan@fudan.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(91843301).
  • 摘要: 微塑料是粒径小于5 mm的塑料颗粒,纳米塑料是粒径小于1 μm的塑料颗粒.微/纳米塑料广泛存在于各种环境介质中,由于其粒径小、比表面积大,很容易被直接吸入、经口食入或皮肤浸入至体内,造成毒害作用,危害健康.本文主要总结了环境中微/纳米塑料在水、大气、土壤和食品中的污染现状,阐述了其对生物体可能产生的毒性效应,探讨了其对人体健康造成的不良影响.最后本文在总结现有研究的基础上,对未来微/纳米塑料的毒性效应和健康危害的研究方向进行了分析和展望.
  • 加载中
  • [1] LEBRETON L, EGGER M, SLAT B. A global mass budget for positively buoyant macroplastic debris in the ocean[J]. Scientific Reports, 2019, 9(1):12922.
    [2] LEBRETON L, ANDRADY A. Future scenarios of global plastic waste generation and disposal[J]. Palgarve Communications, 2019, 5(1):1-11.
    [3] LAW K L, THOMPSON R C. Microplastics in the seas[J]. Science, 2014, 345(6193):144-145.
    [4] CHAE Y, KIM D, KIM S W, et al. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain[J]. Scientific Reports, 2018, 8(1):284.
    [5] DAWSON A L, KAWAGUCHI S, KING C K, et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill[J]. Nature Communications, 2018, 9(1):1001.
    [6] COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment:A review[J]. Marine Pollution Bulletin, 2011, 62(12):2588-2597.
    [7] BELLINGERI A, BERGAMI E, GRASSI G, et al. Combined effects of nanoplastics and copper on the freshwater alga Raphidocelis subcapitata[J]. Aquatic Toxicology, 2019, 210:179-187.
    [8] WAGNER S, REEMTSMA T. Things we know and don't know about nanoplastic in the environment[J]. Nature Nanotechnology, 2019, 14(4):300-301.
    [9] LEHNER R, WEDER C, PETRI-FINK A, et al. Emergence of nanoplastic in the environment and possible impact on human health[J]. Environmental Science & Technology, 2019, 53(4):1748-1765.
    [10] DRIS R, GASPERI J, SAAD M, et al. Synthetic fibers in atmospheric fallout:A source of microplastics in the environment?[J]. Marine Pollution Bulletin, 2016, 104(1/2):290-293.
    [11] DI M, WANG J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J]. The Science of the Total Environment, 2018, 616/617:1620-1607.
    [12] 徐湘博, 孙明星, 张林秀, 等. 土壤微塑料污染研究进展与展望[J]. 农业资源与环境学报, 2021,38(1):1-9.

    XU X B, SUN M X, ZHANG L X, et al. Research progress and prospect of soil microplastic pollution[J]. Journal of Agricultural Resources and Environment, 2021,38(1):1-9(in Chinese).

    [13] ENYOH C E, VERLA A W, VERLA E N, et al. Airborne microplastics:A review study on method for analysis, occurrence, movement and risks[J]. Environmental Monitoring and Assessment, 2019, 191(11):668.
    [14] BESSA F, RATCLIFFE N, OTERO V, et al. Microplastics in gentoo penguins from the Antarctic region[J]. Scientific Reports, 2019, 9(1):14191.
    [15] ISOBE A, IWASAKI S, UCHIDA K, et al. Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066[J]. Nature Communications, 2019, 10(1):417.
    [16] SHEN M, ZHU Y, ZHANG Y, et al. Micro(nano)plastics:Unignorable vectors for organisms[J]. Marine Pollution Bulletin, 2019, 139:328-331.
    [17] ZHANG H, WANG J, ZHOU B, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene:Kinetics, isotherms and influencing factors[J]. Environmental Pollution, 2018, 243(Pt B):1550-1557.
    [18] BRENNECKE D, DUARTE B, PAIVA F, et al. Microplastics as vector for heavy metal contamination from the marine environment[J]. Estuarine Coastal and Shelf Science, 2016, 178:189-195.
    [19] FRIAS J P G, SOBRAL P, FERREIRA A M. Organic pollutants in microplastics from two beaches of the Portuguese coast[J]. Marine Pollution Bulletin, 2010, 60(11):1988-1992
    [20] 邹亚丹, 徐擎擎, 张哿, 等. 微塑料与农药污染的联合毒性作用研究进展[J]. 生态毒理学报, 2017, 12(4):25-33.

    ZOU Y D, XU Q Q, ZHANG G, et al. Review on the joint toxicity of microplastics and pesticide pollution[J]. Asian Journal of Ecotoxicology, 2017, 12(4):25-33(in Chinese).

    [21] BRIGNAC K C, JUNG M R, KING C, et al. Marine debris polymers on main Hawaiian island beaches, sea surface, and seafloor[J]. Environmental Science & Technology, 2019, 53(21):12218-12226.
    [22] CHANG X, XUE Y, LI J, et al. Potential health impact of environmental micro- and nanoplastics pollution[J]. Journal of Applied Toxicology, 2020, 40(1):4-15.
    [23] ENFRIN M, LEE J, GIBERT Y, et al. Release of hazardous nanoplastic contaminants due to microplastics fragmentation under shear stress forces[J].Journal of Hazardous Materials, 2020, 384:121393.
    [24] BRADNEY L, WIJESEKARA H, PALANSOORIYA K N, et al. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk[J]. Environmental International, 2019, 131:104937.
    [25] POULAIN M, MERCIER M J, BRACH L, et al. Small microplastics as a main contributor to plastic mass balance in the North Atlantic Subtropical Gyre[J]. Environmental Science & Technology, 2019, 53(3):1157-1164.
    [26] 贾其隆, 陈浩, 赵昕, 等. 大型城市污水处理厂处理工艺对微塑料的去除[J]. 环境科学, 2019, 40(9):4105-4112.

    JIA Q L, CHEN H, ZHAO X, et al. Removal of microplastics by different treatment processes in shanghai large municipal wastewater treatment plants[J]. Environmental Science, 2019, 40(9):4105-4112(in Chinese).

    [27] JOHN W, S H P, JAMES B, et al. Occurrence, fate and transformation of emerging contaminants in water:An overarching review of the field[J]. Environmental Pollution, 2017, 231(Pt1):954-970.
    [28] DRIS R, GASPERI J, MIRANDE C, et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments[J]. Environmental Pollution, 2017, 221:453-458.
    [29] LI Y, SHAO L, WANG W, et al. Airborne fiber particles:Types, size and concentration observed in Beijing[J]. The Science of the Total Environment, 2020, 705:135967.
    [30] ALLEN S, ALLEN D, PHOENIX V R, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment[J]. Nature Geoscience, 2019, 12(5):339-344.
    [31] CHERYL K.北极积雪中发现微塑料:纳米塑料可能进入人类细胞[EB/OL].[2019-8-17]. http://www.xzwyu.com/article-25514-1.html CHERYL K. Microplastics found in Arctic snow:Nanoplastics may enter human cells[EB/OL].[2019-8-17]. http://www.xzwyu.com/article-25514-1.html (in Chinese).
    [32] SCHEURER M,BIGALKE M. Microplastics in Swiss floodplain soils[J]. Environmental Science & Technology, 2018,52(6):3591-3598.
    [33] 骆永明, 周倩, 章海波, 等. 重视土壤中微塑料污染研究防范生态与食物链风险[J]. 中国科学院院刊, 2018, 33(10):1021-1030.

    JUO Y M, ZHOU Q, ZHANG H B, et al. Research on soil microplastics pollution should be emphasized to prevent ecological and food chain risks[J]. Environmental Pollution and Control Strategy of Microplastics, 2018, 33(10):1021-1030(in Chinese).

    [34] YANFEI Z, XIAONING L, JUN W. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China[J]. The Science of the Total Environment, 2019, 694:133789.
    [35] ZHU K, JIA H, ZHAO S, et al. Formation of environmentally persistent free radicals on microplastics under light irradiation[J]. Environmental Science & Technology, 2019, 53(14):8177-8186.
    [36] KELLER A S, JIMENEZ-MARTINEZ J, MITRANO D M. Transport of nano- and microplastic through unsaturated porous media from sewage sludge application[J]. Environmental Science & Technology, 2020, 54(2):911-920.
    [37] ZHANG L, XIE Y, LIU J, et al. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers[J]. Environmental Science & Technology, 2020, 54(7):4248-4255.
    [38] PIEHL S, LEIBNER A, LODER M G J, et al. Identification and quantification of macro- and microplastics on an agricultural farmland[J]. Scientific Reports, 2018, 8(1):17950.
    [39] PANNO S V, KELLY W R, SCOTT J, et al. Microplastic contamination in karst groundwater systems[J]. Ground Water, 2019, 57(2):189-196.
    [40] C R M, LISA Z, STEFAN H. Microplastic transport in soil by earthworms[J]. Scientific Reports, 2017, 7(1):1362.
    [41] HERNANDEZ L M, XU E G, LARSSON H C E, et al. Plastic teabags release billions of microparticles and nanoparticles into tea[J]. Environmental Science & Technology, 2019, 53(21):12300-12310.
    [42] LEE H, KUNZ A, SHIM W J, et al. Microplastic contamination of table salts from Taiwan, including a global review[J]. Scientific Reports, 2019, 9(1):10145.
    [43] RAINIERI S, BARRANCO A. Microplastics, a food safety issue?[J]. Trends in Food Science & Technology, 2019, 84:55-57.
    [44] PRATA J C, DA COSTA J P, DUARTE A C, et al. Methods for sampling and detection of microplastics in water and sediment:A critical review[J]. Trac-trends in Analytical Chemistry, 2019, 110:150-159.
    [45] ZHOU X X,HAO L T,WANG H Y Z, et al. Cloud-point extraction combined with thermal degradation for nanoplastic analysis using pyrolysis gas chromatography-mass spectrometry[J]. Analytical Chemistry, 2019,91(3):1785-1790.
    [46] FULLER S,GAUTAM A. A procedure for measuring microplastics using pressurized fluid extraction[J]. Environmental Science & Technology, 2016,50(11):5774-5780.
    [47] 王俊豪, 梁荣宁, 秦伟. 海洋微塑料检测技术研究进展[J]. 海洋通报, 2019, 38(6):601-612.

    WANG J H, LIANG R N, QIN W, et al. Review of analytical methods for detecting microplastics in the ocean[J]. Marine Science Bulletin, 2019, 38(6):601-612(in Chinese).

    [48] 张玉佩, 吴东旭, 余建平, 等. TGA-FTIR联用技术快速检测海水中的聚酰胺微塑料[J]. 环境化学, 2018, 37(10):2332-2334.

    ZHANG Y P, WU D X, YU J P, et al. Quantification of microplastic polyamide (PA) in seawater by TGA-FTIR[J].Environmental Chemistry, 2018,37(10):2332-2334(in Chinese).

    [49] 赵传靓,闫仪, 苏俊堂, 等. 水体环境中纳米塑料的危害与检测研究进展[J]. 环境工程, 2019, 37(12):64-70.

    ZHAO C L, YAN Y, SU J T, et al. Research progress on the harm and detection technologies of nanoplastics in aquatic environment[J]. Environmental Engineering, 2019, 37(12):64-70(in Chinese).

    [50] FREE C M, JENSEN O P, MASON S A, et al. High-levels of microplastic pollution in a large, remote, mountain lake[J]. Marine Pollution Bulletin, 2014, 85(1):156-163.
    [51] DESFORGES J P, GALBRAITH M, DANGERFIELD N, et al. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean[J]. Marine Pollution Bulletin, 2014, 79(1/2):94-99.
    [52] YAN M, NIE H, XU K, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary, China[J]. Chemosphere, 2019, 217:879-886.
    [53] LIU K, WANG X, FANG T, et al. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai[J]. Environmental Science & Technology, 2019, 675:462-471.
    [54] LIU K, WU T N, WANG X H, et al. Consistent transport of terrestrial microplastics to the ocean through atmosphere[J]. Environmental Science & Technology, 2019, 53(18):10612-10619.
    [55] CAI L, WANG J, PENG J, et al. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China:Preliminary research and first evidence[J]. Environmental Science and Pollution Research, 2017, 24(32):24928-24935.
    [56] ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. The Science of the Total Environment, 2018, 642:12-20.
    [57] HUERTA LWANGA E, MENDOZA VEGA J, KU QUEJ V, et al. Field evidence for transfer of plastic debris along a terrestrial food chain[J]. Scientific Reports, 2017, 7(1):14071.
    [58] KOELMANS A A, BESSELING E, WEGNER A, et al. Plastic as a carrier of POPs to aquatic organisms:A model analysis[J]. Environmental Science & Technology, 2013, 47(14):7812-7820.
    [59] CARUSO G. Microplastics as vectors of contaminants[J]. Marine Pollution Bulletin, 2019, 146:921-924.
    [60] VOSSHAGE A T L, NEU T R, GABEL F. Plastic alters biofilm quality as food resource of the freshwater gastropod Radix balthica[J]. Environmental Science & Technology, 2018, 52(19):11387-11393.
    [61] TIAN X, MICHAEL K, LIONG M. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways[J]. ACS Nano, 2008, 2(1):85-96.
    [62] BOOTS B, RUSSELL C W, GREEN D S. Effects of microplastics in soil ecosystems:above and below ground[J]. Environmental Science & Technology, 2019, 53(19):11496-11506.
    [63] DE SOUZA MACHADO A A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 2019, 53(10):6044-6052.
    [64] ASMONAITE G, SUNDH H, ASKER N, et al. Rainbow trout maintain intestinal transport and barrier functions following exposure to polystyrene microplastics[J]. Environmental Science & Technology, 2018, 52(24):14392-14401.
    [65] LI L, LUO Y, LI R, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability,2020,3:929-937.
    [66] GU W, LIU S, CHEN L, et al. Single-cell RNA sequencing reveals size-dependent effects of polystyrene microplastics on immune and secretory cell populations from zebrafish intestines[J]. Environmental Science & Technology, 2020, 54(6):3417-3427.
    [67] LU L, WAN Z, LUO T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J]. The Science of the Total Environment,2018, 631/632:449-458.
    [68] LUO T, WANG C, PAN Z, et al. Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring[J]. Environmental Science & Technology, 2019, 53(18):10978-10992.
    [69] CORLETT D, PHOTO A S. Nanoplastic should be better understood[J]. Nature Nanotechnology, 2019, 14(4):299.
    [70] HOLLOCZKI O, GEHRKE S. Can nanoplastics alter cell membranes?[J]. Chemphyschem, 2020, 21(1):9-12.
    [71] HOLLOCZKI O, GEHRKE S. Nanoplastics can change the secondary structure of proteins[J]. Scientific Reports 2019, 9(1):16013.
    [72] CAPOLUPO M, FRANZELLITTI S, VALBONESI P, et al. Uptake and transcriptional effects of polystyrene microplastics in larval stages of the Mediterranean mussel Mytilus galloprovincialis[J]. Environmental Pollution, 2018, 241:1038-1047.
    [73] TALLEC K, HUVET A, DI POI C, et al. Nanoplastics impaired oyster free living stages, gametes and embryos[J]. Environmental Pollution, 2018, 242(Pt B):1226-1235.
    [74] LEI L, LIU M, SONG Y, et al. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans[J]. Environmental Science-Nano, 2018, 5(8):2009-2020.
    [75] VAN POMEREN M, BRUN N R, PEIJNENBURG W, et al. Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages[J]. Aquatic Toxicology, 2017, 190:40-45.
    [76] PITT J A, KOZAL J S, JAYASUNDARA N, et al. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2018, 194:185-194.
    [77] MATTSSON K, EKVALL M T, HANSSON L A, et al. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles[J]. Environmental Science & Technology, 2015, 49(1):553-561.
    [78] CEDERVALL T, HANSSON L A, LARD M, et al. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish[J]. PLoS One, 2012, 7(2):e32254.
    [79] MATTSSON K, JOHNSON E V, MALMENDAL A, et al. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain[J]. Scientific Reports, 2017, 7(1):11452.
    [80] SUN X D, YUAN X Z, JIA Y B, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana[J]. Nature nanotechnology,2020,15(6):1-8.
    [81] LIU X, SHI H, XIE B, et al. Microplastics as both a sink and a source of bisphenol A in the marine environment[J]. Environmental Science & Technology, 2019, 53(17):10188-10196.
    [82] ZHANG Q, QU Q, LU T, et al. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth[J]. Environmental Pollution, 2018, 243(Pt B):1106-1112.
    [83] AVIO C G, GORBI S, MILAN M, et al. Pollutants bioavailability and toxicological risk from microplastics to marine mussels[J]. Environmental Pollution, 2015, 198:211-222.
    [84] BESSELING E, WEGNER A, FOEKEMA E M, et al. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.)[J]. Environmental Science & Technology, 2013, 47(1):593-600.
    [85] DENG Y, ZHANG Y, LEMOS B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure[J]. Scientific Reports, 2017, 7:46687.
    [86] LIMONTA G, MANCIA A, BENKHALQUI A, et al. Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish[J]. Scientific Reports, 2019, 9(1):15775
    [87] STOCK V, BOHMERT L, LISICKI E, et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo[J]. Archives of Toxicology, 2019, 93(7):1817-1833.
    [88] COLE M, COPPOCK R. Effects of nylon microplastic on feeding, lipid accumulation, and moulting in a coldwater copepod[J]. Environmental Science & Technology, 2019, 53:7075-7082.
    [89] CHEN Y, LIU X, LENG Y, et al. Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils[J]. Ecotoxicology and Environmental Safety, 2020, 187:109788.
    [90] BRUN N R, KOCH B E V, VARELA M, et al. Nanoparticles induce dermal and intestinal innate immune system responses in zebrafish embryos[J]. Environmental Science-Nano, 2018, 5(4):904-916.
    [91] BRUN N R, VAN HAGE P, HUNTING E R, et al. Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish[J]. Communications Biology, 2019, 2(1):85-90.
    [92] LEE W S, CHO H J, KIM E, et al. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos[J]. Nanoscale, 2019, 11(7):3173-3185.
    [93] BERGAMI E, BOCCI E, VANNUCCINI M L, et al. Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae[J]. Ecotoxicology and Environmental Safety, 2016, 123:18-25.
    [94] ALMEIDA M, MARTINS M A, SOARES A M V, et al. Polystyrene nanoplastics alter the cytotoxicity of human pharmaceuticals on marine fish cell lines[J]. Environmental Toxicology and Pharmacology, 2019, 69:57-65.
    [95] GONZALEZ-FERNANDEZ C, TOULLEC J, LAMBERT C, et al. Do transparent exopolymeric particles (TEP) affect the toxicity of nanoplastics on Chaetoceros neogracile?[J]. Environmental Pollution, 2019, 250:873-882.
    [96] ZHENG T, YUAN D, LIU C. Molecular toxicity of nanoplastics involving in oxidative stress and desoxyribonucleic acid damage[J]. Journal of Molecular Recognition, 2019, 32(11):e2804.
    [97] JEONG C B, KANG H M, LEE Y H, et al. Nanoplastic ingestion enhances toxicity of persistent organic pollutants (POPs) in the monogonont rotifer Brachionus koreanus via multixenobiotic resistance (MXR) disruption[J]. Environmental Science & Technology, 2018, 52(19):11411-11418.
    [98] TREVISAN R, VOY C, CHEN S, et al. Nanoplastics decrease the toxicity of a complex PAH mixture but impair mitochondrial energy production in developing zebrafish[J]. Environmental Science & Technology, 2019, 53(14):8405-8415.
    [99] CHEN Q, YIN D, JIA Y, et al. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish[J]. The Science of the Total Environment, 2017, 609:1312-1321.
    [100] DONG S, QU M, RUI Q, et al. Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematode Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2018, 161:444-450.
    [101] ZHANG J, WANG L, KANNAN K. Polyethylene terephthalate and polycarbonate microplastics in pet food and feces from the United States[J]. Environmental Science & Technology, 2019, 53(20):12035-12042.
    [102] MERCOGLIANO R,AVIO C G,REGOLI F, et al. Occurrence of microplastics in commercial seafood under the perspective of the human food chain. A Review.[J]. Journal of agricultural and food chemistry,2020,68(19):5296-5301.
    [103] PICHETA R. Microplastics found in human stools, research finds[N].CNN, 2018, 1023.
    [104] LIU K, WANG X, WEI N, et al. Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities:Implications for human health[J]. Environmental International, 2019, 132:105127.
    [105] GASPERI J, WRIGHT S L, DRIS R, et al. Microplastics in air:Are we breathing it in?[J]. Current Opinion in Environmental Science & Health, 2018, 1:1-5.
    [106] DOYLE-MCCULLOUGH M, SMYTH S H, MOYES S M, et al. Factors influencing intestinal microparticle uptake in vivo[J]. International Journal of Pharmaceutics, 2007, 335(1/2):79-89.
  • 加载中
计量
  • 文章访问数:  7433
  • HTML全文浏览数:  7433
  • PDF下载数:  475
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-06-20

环境中微/纳米塑料的污染现状、分析方法、毒性评价及健康效应研究进展

    通讯作者: 李丹, E-mail: lidanfudan@fudan.edu.cn
  • 上海市大气颗粒物污染与防治重点实验室, 复旦大学环境科学与工程系, 上海, 200000
基金项目:

国家自然科学基金(91843301)资助.

摘要: 微塑料是粒径小于5 mm的塑料颗粒,纳米塑料是粒径小于1 μm的塑料颗粒.微/纳米塑料广泛存在于各种环境介质中,由于其粒径小、比表面积大,很容易被直接吸入、经口食入或皮肤浸入至体内,造成毒害作用,危害健康.本文主要总结了环境中微/纳米塑料在水、大气、土壤和食品中的污染现状,阐述了其对生物体可能产生的毒性效应,探讨了其对人体健康造成的不良影响.最后本文在总结现有研究的基础上,对未来微/纳米塑料的毒性效应和健康危害的研究方向进行了分析和展望.

English Abstract

参考文献 (106)

目录

/

返回文章
返回