-
醛酮类羰基化合物是环境中一类重要污染物[1-4],是我国及世界许多国家和地区重点监测的环境污染物之一。环境中醛酮类化合物一次污染源主要来源于工业排放、植被释放、香烟烟雾、烹饪油烟以及化石燃料和植物燃烧[5-9] 等。大气中VOCs的光氧化反应是醛酮类羰基化合物二次排放的主要来源[10]。在水[11-12]、土壤和沉积物[13-14],尤其是大气[15-16]等介质中均有不同程度的检出。
测定醛酮类羰基化合物主要有GC法[17]、GC/MS(/MS)法[7-18],毛细管电泳-紫外法[19]、HPLC法[13-15, 20]以及HPLC/MS法[12, 21]等。空气样品醛酮类化合物中最常用的方法是用涂敷2,4-二硝基苯肼(DNPH)的硅胶管采集,使目标物与DNPH在酸性介质中发生衍生化反应生成醛酮-DNPH腙衍生物,用反相液相色谱法分离,紫外检测器检测。
LC对比GC和GC/MS法的缺点是分辨率低、分析时间长、溶剂用量大,但GC或GC/MS只能分析样品在进样系统不发生分解且能产生较高不受干扰色谱或质谱峰的羰基化合物或羰基化合物衍生物,而大部分高沸点羰基化合物衍生物容易分解,使得GC或GC/MS分析的目标物种类受到很大限制。LC-MS(/MS)对比LC-UV主要优势在于其选择性和灵敏度,但LC法仪器成本低、方法稳定性好也是其不可被替代的优势。Ochs等[22-23] 建立了RRLC-APCI(-)-MS/MS法测定31种羰基化合物,并与RRLC-UV法的线性、相关系数、检测限和灵敏度进行了比较,RRLC-UV法灵敏度更高;RRLC-APCI(-)-MS/MS检测限为0.71—10.3 µg·L−1,略低于RRLC-UV法,但方法定性准确更高。Zurek等[24]对比了APCI和ESI正离子模式下测定羰基化合物与4-二甲氨基-6-(4-甲氧基-1-萘基)-1,3,5-三嗪-2-肼(DMNTH) 的Hantzsch衍生反应产物。随着高分辨质谱技术的发展,化合物定性准确性又有了大幅提高。孟志娟等[25] 将Orbitrap GC-MS用于农产品中70种农药残留的快速筛查分析,陈溪等[26]用UPLC-Q-Orbitrap MS对水中112种药品及个人护理品进行了筛查和定量测定,112 种PPCPs 的定量限可达 0.002—0. 8 µg·L−1,准确性和灵敏度大大提高。目前还未发现使用液相色谱/高分辨质谱分析醛酮类化合物的报道。
本论文深入研究了25种羰基化合物-DNPH衍生物的HPLC-UV、UPLC-ESI-MS/MS和UPLC-ESI-Q- Orbitrap MS的最佳分析条件,建立了各自对应分析方法,并对分析结果的分离度、分辨率、检出限、线性范围和定性准确性等分析特征进行了比较评价。使用3种方法分别对加标模拟样及天津市大气实际样品进行了分析测定,明确3种方法各自特点和适用范围,Orbitrap MS还可对样品中非靶标污染物进行准确识别,并可通过理化性质相似的已知浓度化合物响应因子比较,提供半定量结果,为复杂环境样品污染物精准识别和准确检测提供了有力技术支持。
液相色谱和液相色谱质谱测定空气中25种醛酮类化合物
Determination of 25 aldehydes and ketones in air by HPLC and UHPLC-MS
-
摘要: 本研究建立了高效液相色谱-紫外检测法(HPLC-UV,UV)、超高效液相色谱-电喷雾离子源-串联四极杆质谱法(UPLC-ESI-MS/MS,MS/MS)和超高效液相色谱-电喷雾离子源-三重四极杆/静电场轨道阱高分辨质谱法(UPLC-ESI-Q-Orbitrap MS,Orbitrap MS)分别同时测定空气中25种醛酮类羰基化合物的分析方法。优化了流动相梯度、碎裂电压和碰撞能等参数。结果发现,3种方法标准曲线相关系数r均大于 0.990,UV法比MS/MS法线性范围更宽,在30—1500 µg·L−1内线性关系良好,而MS法线性最高点仅为300 µg·L−1内,Orbitrap MS法适合检测浓度最低,约为0.45—300 µg·L−1。方法检出限UV法略高于MS/MS法,分别在0.12—0.40 µg·m−3和0.08—0.60 µg·m−3之间,Orbitrap MS法最低,在1.1—13 ng·m−3之间。加标量为75 ng的模拟样品UV法、MS/MS法和Orbitrap MS测得平均回收率范围分别为68.9%—98.8%、67.9%—97.6%和66.5%—107%,相对标准偏差范围分别为4.9%—10%、6.9%—18%和5.6%—11%。3种方法检测实际样品,UV法和MS/MS法检出化合物分别为9种和14种,均远少于Orbitrap MS法的24种。3种方法均能检出的目标物测定结果相对偏差均小于20%,均可用于醛酮类羰基化合物检测,但MS法定性较UV法更加准确,UV法可以测定高浓度样品,MS/MS法适合测定中等浓度样品,而Orbitrap MS不仅适用于测定极低浓度样品,同时还可用于筛查非靶标目标物,为污染物识别和防治提供了更加有力的技术手段。Abstract: Three methods of qualitative and quantitative determination of 25 aldehydes and ketones in air by high performance liquid chromatography with ultraviolet detection (HPLC-UV), ultrahigh performance liquid chromatography with electrospray ion source and tandem quadrupole mass spectrometry (UPLC-ESI-MS/MS), and ultrahigh performance liquid chromatography with electrospray ion source and quadrupole/electrostatic field orbitrap high resolution mass spectrometry (UPLC-ESI-Q-Orbitrap MS) were developed.Some key test conditions like gradient of mobile phase, mode of positive and negative ions, fragmentation voltage, collision energy (CE) and Orbitrap MS screening library were optimized. The results showed that the regression coefficients of the calibration curves (r) were all greater than 0.990. The linear ranges of UV method were wider than those of MS/MS method, with the range of 30—1500 µg·L−1, while the highest linear point of MS method was only 300 µg·L−1. The liner ranges of Orbitrap MS method were about 0.45—300 µg·L−1. The method detection limits (MDL) of UV and MS/MS were between 0.12—0.40 µg·m−3 and 0.08—0.60 µg·m−3 respectively, while the Orbitrap MS was between 1.1—13 ng·m−3, which was the lowest of the three methods. The average 75 ng spiked recoveries for UV, MS/MS and orbitrap MS methods were between 68.9%—98.8%, 67.9%—97.6% and 66.5%—107%, and the relative standard deviations were 4.9%—10%, 6.9%—18% and 5.6%—11% respectively. The compounds numbers of field samples detected by UV method and MS/MS method were 9 and 14 respectively, far less than 24, which detected by Orbitrap MS method. The relative deviations of the test results for the targets detected out by all three methods were less than 20%. However, MS methods were more accurate than UV method. UV method could be used to determine high concentration samples, and MS/MS method was suitable for the determination of medium concentration samples. Furthermore Orbitrap MS method is not only suitable for determining very low concentration samples, but also for screening non-target objects, which provides a more powerful techniques for pollutants identification and control.
-
Key words:
- aldehydes and ketones /
- optimization and comparison /
- high performance liquid chromatography with ultraviolet detection (HPLC-UV) /
- ultrahigh performance liquid chromatography with electrospray ion source and tandem quadrupole mass spectrometry (UPLC-ESI-MS/MS) /
- ultrahigh performance liquid chromatography with electrospray ionization / quadrupole / electrostatic field orbitrap high resolution mass spectrometry (UPLC-ESI-Q-Orbitrap MS)
-
表 1 目标化合物的多反应监测条件
Table 1. MRM parameters for target compounds
序号
No.化合物缩写
Compound
abbreviation化合物
Compound分子式
Molecular
formula母离子
Precursor
ions(m/z)子离子
Product
ions(m/z)碎裂电压/V
Fragmenter碰撞能/eV
CE1 DNPH 2,4-二硝基苯肼
2,4-dinitrophenylhydrazineC6H6N4O4 197 137 60 8 167.1 4 2 FA 甲醛-DNPH
Formaldehyde-DNPHC7H6N4O4 209 163.1 100 0 151.1 0 3 AA 乙醛-DNPH
Acetaldehyde-DNPHC8H8N4O4 223 46.1 100 16 163.1 0 4 ACR 丙烯醛-DNPH
Acrolein-DNPHC9H8N4O4 235 158.2 100 4 163.1 28 5 PA 丙醛-DNPH
Propionaldehyde-DNPHC9H10N4O4 237.1 46.1 100 20 163.1 16 6 AK 丙酮-DNPH
Actone-DNPHC9H10N4O4 237.1 46.1 100 20 122.0 0 7 CA 巴豆醛/丁烯醛-DNPH
Crotonaldehyde-DNPHC10H10N4O4 249.1 172.1 100 4 46.2 12 8 MA 甲基丙烯醛-DNPH
Methacrolein-DNPHC10H10N4O4 249.1 46.2 100 12 172.1 4 9 BK 丁酮-DNPH
Butanone-DNPHC10H12N4O4 251.1 152.1 100 8 122.0 16 10 BA 丁醛-DNPH
Butylaldehyde-DNPHC10H12N4O4 251.1 152.1 100 8 122.0 16 11 IVA 异戊醛-DNPH
Isovaleraldehyde-DNPHC11H14N4O4 265.1 152.1 100 12 163.1 4 12 VA 戊醛-DNPH
Valeraldehyde-DNPHC11H14N4O4 265.1 152.1 100 12 163.1 4 13 2-FA 糠醛-DNPH
2-Furaldehyde-DNPHC11H8N4O5 275 46.1 100 12 228.0 4 14 CHK 环己酮-DNPH
Cyclohexanone-DNPHC12H14N4O4 277.1 247.2 100 4 231.1 12 15 HEXA 己醛-DNPH
Hexaldehyde-DNPHC12H16N4O4 279.1 152.0 100 12 122.0 28 16 MIBK 甲基异丁基酮-DNPH
Methyl Isobutyl Ketone-DNPHC12H16N4O4 279.1 152.0 100 12 122.0 28 17 BZA 苯甲醛-DNPH
Benzaldehyde-DNPHC13H10N4O4 285.1 46.2 100 20 163.1 20 18 HEPA 庚醛-DNPH
Heptaldehyde-DNPHC13H18N4O4 293.1 152.1 100 12 163.2 4 19 o-TA 邻-甲基苯甲醛-DNPH
o-Tolualdehyde-DNPHC14H12N4O4 299.1 162.9 100 8 252.1 8 20,21 p,m-TA 对,间-甲基苯甲醛-DNPH
p,m-Tolualdehyde-DNPHC14H12N4O4 299.1 162.9 100 8 252.1 8 22 OA 辛醛-DNPH
Octanal-DNPHC14H20N4O4 307.1 152.1 100 20 163.0 8 23 DMBA 2,5-二甲基苯甲醛
2,5-Dimethylbenzaldehyde-DNPHC15H14N4O4 313.1 181.0 140 20 163.0 20 24 NA 壬醛-DNPH
Nonanal-DNPHC15H22N4O4 321.1 152.0 140 20 46.1 56 25 DA 癸醛-DNPH
Decanal-DNPHC16H24N4O4 335.2 152.1 140 20 163.0 8 26 GA 戊二醛-DNPH
Glutaraldehyde-DNPHC17H16N8O8 459.1 182.1 140 12 179.0 8 表 2 不同方法测定25种醛酮类化合物线性方程、相关系数、方法检出限比较
Table 2. Comparison of linear equations, correlation Coefficients, method detection limits of 25 carbonyl derivatives by different methods
化合物compound HPLC-UV法 HPLC-ESI-MS/MS法 HPLC-ESI-Q-Orbitrap MS法 线性方程
Linear
equations线性范围/ (µg·L−1)
Linear range相关系数r 检出限/ (µg·m−3)
MDL线性方程
Linear
equations线性范围/(µg·L−1)
Linear range
相关
系数r检出限/ (µg·m−3)
MDL线性方程
Linear
equations线性范围/(µg·L−1)
Linear range相关
系数r检出限/ (ng·m−3)
MDLFA y=0.362x+0.807 3.0—1500 0.999 0.12 y=226x+55.6 15—300 0.999 0.15 y=7.43e6x+2.026e6 0.75—300 0.999 7.5 AA y=0.267x+0.670 7.5—1500 0.999 0.15 y=259x+130 7.5—300 0.997 0.08 y=1.0917x−3.0536 0.75—300 0.999 4.6 2-FA y=0.0981x+0.256 15—1500 0.999 0.25 y=143x+181 7.5—300 0.996 0.08 y=1.06e7x−6.78e6 0.75—300 0.999 6.5 ACR y=0.231x+0.679 15—1500 0.999 0.15 y=213x+80.2 7.5—300 0.994 0.08 y=1.47e6x−1.57e6 0.75—300 0.999 4.5 AK y=0.209x+0.486 15—1500 1.000 0.16 y=121x+176 7.5—300 0.995 0.08 y=6.87e6x−1.16e6 1.50—300 0.999 15 PA y=0.207x+0.524 15—1500 0.999 0.16 y=430x+545 7.5—300 0.997 0.08 y=1.16e7x−5.58e6 0.75—300 0.999 8.5 CA y=0.182x+0.365 15—1500 0.999 0.20 y=342x+396 7.5—300 0.997 0.08 y=1.53e7x−5.54e6 0.75—150 0.999 9.1 MA y=0.184x+0.722 15—1500 0.999 0.20 y=352x+290 7.5—300 0.999 0.08 y=1.51e7x−6.12e5 0.45—300 0.999 5.1 BK y=0.153x+0.338 15—1500 0.999 0.21 y=764x−10.6 7.5—300 0.994 0.08 y=7.04e6x−3.74e6 1.50—300 0.999 15 BA y=0.160x+0.388 15—1500 0.999 0.21 y=889x+109 7.5—300 0.998 0.08 y=1.47e7x−9.78e4 0.75—300 0.999 7.5 BZA y=0.125x+0.255 15—1500 0.999 0.25 y=165x+70.3 15—300 0.998 0.15 y=1.58e7x-4.47e6 0.45—75.0 0.999 4.5 CHK y=0.0911x+0.310 30—1500 0.999 0.28 y=191x+172 30—300 0.998 0.30 y=7.20e6x-2.61e6 0.45—150 0.999 3.8 IVA y=0.113x+1.16 30—1500 0.999 0.30 y=538x+109 7.5—300 0.998 0.08 y=3.14e7x−9.02e6 0.45—300 0.999 4.1 GA y=0.191x+1.10 30—1500 0.999 0.30 y=1939x1549 7.5—300 0.998 0.08 y=1.69e7x−2.16e6 1.50—75.0 0.999 15 VA y=0.119x+1.33 30—1500 0.999 0.35 y=798x+29.3 7.5—300 0.999 0.08 y=1.50e7x+1.90e6 0.45—300 0.999 4.5 o−TA y=0.105x+1.50 30—1500 0.999 0.38 y=325x+276 30—300 0.995 0.30 y=1.63e7x−6.86e6 0.75—75.0 0.999 5.5 p−TA y=0.0879x+0.496 30—1500 0.999 0.38 y=567x+283 60—600 0.997 0.60 y=2.66e7x+4.00e6 1.5—150 0.999 5.5 m−TA y=0.121x−0.0047 30—1500 0.999 0.38 MIBK y=0.120x+0.258 30—1500 0.999 0.38 y=838x+346 7.5—300 0.998 0.08 y=1.09e7x−6.70e6 0.45—300 0.999 4.5 DMBA y=0.102x+0.927 30—1500 0.999 0.40 y=278x+266 30—300 0.998 0.30 y=1.48e7x−4.44e6 0.45—75.0 0.999 3.5 HEXA y=0.0951x+0.241 30—1500 0.999 0.40 y=521x+266 15—300 0.993 0.15 y=1.58e7x+6.15e6 0.45—300 0.999 3.8 HEPA y=0.108x+0.378 15—1500 0.999 0.20 y=509x+111 7.5—300 0.997 0.08 y=1.53e7x+2.39e6 0.45—300 0.999 2.5 OA y=0.0954x+0.192 15—1500 0.999 0.20 y=553x+738 7.5—300 0.996 0.08 y=1.74e7x−4.66e6 0.45—75.0 0.999 1.1 NA y=0.0897x+0.117 15—1500 1.000 0.21 y=638x+116 7.5—300 0.994 0.08 y=1.81e7x−2.58e6 0.45—75.0 0.999 1.1 DA y=0.0840x+0.709 15—1500 0.999 0.21 y=854x+308 7.5—300 0.997 0.08 y=1.82e7x+2.24e6 0.45—75.0 0.999 1.1 表 3 UV法、MS/MS法和Orbitrap法精密度、准确度和实际样品测定结果比较
Table 3. Comparison of the accuracy, precision and real sample test results by UV, MS/MS and Orbitrap methods respectively
化合物
Compound加标样/% Spiked sample(n=6) 样品1/(µg·m−3) Sample 1 样品2/(µg·m−3) Sample 2 UV MS/MS Orbitrap MS UV MS/MS Orbitrap MS UV MS/MS Orbitrap MS 回收率
RecoveryRSD 回收率
RecoveryRSD 回收率
RecoveryRSD FA 94.7 10.4 90.3 12 97.9 7.1 2.31 2.06 2.25 2.45 2.70 2.56 AA 98.8 7.3 90.7 8.1 107 8.9 2.05 1.78 1.96 1.80 1.76 1.92 2-FA 83.6 7.1 86.1 7.9 88.5 5.6 ND ND 0.052 ND ND 0.017 ACR 75.8 7.5 67.9 6.9 74.1 6.2 ND 0.146 0.136 ND ND 0.049 AK 81.3 7.4 70.3 12 74.5 11 3.27 3.13 3.80 2.78 2.67 2.84 PA 90.9 5.6 89.5 13 94.5 7.1 0.33 0.25 0.300 0.25 0.22 0.229 CA 84.1 5.9 78.7 8.8 81.5 8.9 ND ND 0.10 ND ND 0.013 MA 85.3 6.6 80.2 9.1 83.3 7.8 ND ND 0.033 ND ND 0.016 BK 77.4 9.7 78.6 15 66.5 6.7 0.64 0.702 0.656 0.35 0.41 0.364 BA 68.9 5.5 75.6 8.2 85.3 7.9 0.41 0.468 0.477 0.22 0.26 0.235 BZA 91.1 5.6 92.5 9.6 97.4 9.7 ND ND 0.114 ND ND 0.043 CHK 75.6 8.8 70.7 14 86.7 8.2 ND 0.46 0.048 ND ND 0.040 IVA 80.9 7.4 78.9 17 94.8 9.9 ND 0.12 0.108 ND ND 0.027 GA 71.7 9.8 72.5 18 77.1 11 ND ND ND ND ND ND VA 79.3 5.8 75.1 12 99.4 7.5 ND 0.33 0.274 ND 0.12 0.117 o−TA 79.3 4.9 80.1 11 98.4 8.1 ND ND 0.015 ND ND ND p−TA 92.9 7.6 97.6 12 101 8.7 ND ND 0.009 ND ND ND m−TA 90.5 6.7 ND ND MIBK 82.2 5.4 78.4 8.8 77.7 6.2 ND ND 0.040 ND ND 0.015 DMBA 90.8 7.1 91.2 16 93.2 8.6 ND ND 0.024 ND ND 0.007 HEXA 84.8 7.6 83.4 8.8 79.4 9.2 ND 0.40 0.334 0.50 0.63 0.536 HEPA 86.5 7.3 78.3 11 81.0 7.8 ND 0.16 0.192 0.31 0.29 0.322 OA 93.2 8.4 87.8 9.3 90.9 5.7 0.47 0.54 0.518 0.83 0.78 0.895 NA 90.9 6.7 88.7 10 86.4 9.1 2.29 2.12 2.40 4.45 4.37 4.84 DA 93.4 7.9 92.2 15 90.4 7.7 0.43 0.31 0.336 0.77 0.71 0.820 注:ND., 未检出.
ND., not detected. -
[1] O’BRIEN P J, SIRAKI A G, SHANGARI N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health [J]. Crit Rev Toxicol, 2005, 35: 609-662. doi: 10.1080/10408440591002183 [2] SKYBOVA M, LENICEK J, RYCHTECKA A N, et al. Determination of volatile organic compounds in the atmosphere and their influence on ozone formation [J]. Fresenius Environmental Bulletin, 2006, 15(12): 1616-1623. [3] ATKINSON R. Gas-phase tropospheric chemistry of organic compounds: A review [J]. Atmos Environ, 1990, 24A: 1-41. [4] GARAYCOECHEA J I, CROSSAN G P, LANGEVIN F, et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells [J]. Nature, 2018, 553: 171-177. doi: 10.1038/nature25154 [5] PANG X, LEE X. Temporal variations of atmospheric carbonyls in urban ambient air and street canyons of a Mountainous city in Southwest China [J]. Atmospheric Environment, 2010, 44: 2098-2106. doi: 10.1016/j.atmosenv.2010.03.006 [6] HUANG J A, FENG Y L, FU J M, et al. A method of detecting carbonyl compounds in tree leaves in China [J]. Environmental Science and Pollution Research, 2010, 17: 1129-1136. doi: 10.1007/s11356-009-0277-3 [7] 崔婷惠, 李恒, 唐石云, 等. 超临界流体色谱与气相色谱-质谱联用测定卷烟主流烟气中醛酮类化合物的研究 [J]. 分析测试学报, 2018, 39(7): 766-771. doi: 10.3969/j.issn.1004-4957.2018.07.002 CUI T H, LI H, TANG S Y, et al. Determination of aldehydes and ketones compounds in mainstream cigarette smoke by supercritical fluid chromatography and gas chromatography-mass spectrometry [J]. Journal of Instrumental Analysis, 2018, 39(7): 766-771(in Chinese). doi: 10.3969/j.issn.1004-4957.2018.07.002
[8] 史纯珍, 姜锡, 姚志良, 等. 烹饪油烟羰基化合物排放特征 [J]. 环境工程学报, 2015, 9(3): 1376-1380. doi: 10.12030/j.cjee.20150364 SHI C Z, JIANG X, YAO Z L, et al. Carbonyl compounds emission characteristics in cooking fumes [J]. Chinese Journal of Environmental Engineering, 2015, 9(3): 1376-1380(in Chinese). doi: 10.12030/j.cjee.20150364
[9] KIM K H, CHOI B, PARK S, et al. Emission characteristics of compression ignition (CI) engine using diesel blended with hydrated butanol [J]. Fuel, 2019, 257(1): 1-9. [10] LI J, CHEN J Y, JI Y M, et al. Solar light induced transformation mechanism of allyl alcohol to monocarbonyl and dicarbonyl compounds on different TiO2: A combined experimental and theoretical investigation [J]. Chemosphere, 2019, 232(9): 287-295. [11] SUKHAREV S, MARIYCHUK R, ONYSKO M, et al. Fast determination of total aldehydes in rainwaters in the presence of interfering compounds [J]. Environmental Chemistry Letters, 2019, 17(3): 1405-1411. doi: 10.1007/s10311-019-00875-z [12] ZWIENER C, FRIMMEL F H. LC-MS analysis in the aquatic environment and in water treatment technology–a critical review [J]. Analytical and Bioanalytical Chemistry, 2004, 378: 862-874. doi: 10.1007/s00216-003-2412-1 [13] 崔连喜, 李利荣, 吴宇峰, 等. 液相色谱法测定土壤和沉积物中15种醛酮类化合物 [J]. 理化检验:化学分册, 2018, 54(4): 484-487. CUI L X, LI L R, WU Y F, et al. LC determination of 15 carbonyl compounds in soil and sediment [J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2018, 54(4): 484-487(in Chinese).
[14] 李利荣, 关玉春, 吴宇峰, 等. 2, 4-二硝基苯肼衍生-固相萃取-液相色谱法测定环境固体基质中15种醛酮类羰基化合物的含量 [J]. 理化检验:化学分册, 2018, 54(7): 841-846. LI L R, GUAN Y C, WU Y F, et al. Determination of 15 aldehyde and ketone carbonyl compounds in environmental solid matrix by liquid chromatography with 2, 4-dinitrophenylhydrazine derivatization and solid phase extraction [J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2018, 54(7): 841-846(in Chinese).
[15] QIAN X, SHEN H Q, CHEN Z M. Characterizing summer and winter carbonyl compounds in Beijing atmosphere [J]. Atmospheric Environment, 2019, 214: 116845. doi: 10.1016/j.atmosenv.2019.116845 [16] 景盛翱. 上海市典型区域大气羰基化合物水平研究 [J]. 环境污染与防治, 2017, 39(7): 713-716. SHENG J A. Study on the level of ambient carbonyl compounds in typical regions of Shanghai [J]. Environmental Pollution & Control, 2017, 39(7): 713-716(in Chinese).
[17] MANDIC A I, SEDEJ I J, SAKAC M B, et al. Static headspace gas chromatographic method for aldehyde determination in crackers [J]. Food Analytical Methods, 2013, 6(1): 61-68. doi: 10.1007/s12161-012-9415-5 [18] CALEJO I, MOREIRA N, ARAUJO A M, et al. Optimization and validation of a HS-SPME-GC-IT/MS method for analysis of carbonyl volatile compounds as biomarkers in human urine: Application in a pilot study to discriminate individuals with smoking habits [J]. Talanta, 2016, 148: 486-493. doi: 10.1016/j.talanta.2015.09.070 [19] PEREIRA E A, REZENDE M O O, TAVARES M F M. Analysis of low molecular weight aldehydes in air samples by capillary electrophoresis after derivatization with 4-hydrazinobenzoic acid [J]. J Sep Sci, 2004, 27(1-2): 28-32. doi: 10.1002/jssc.200301665 [20] GUO S J, CHEN M, TAN J H. Seasonal and diurnal characteristics of atmospheric carbonyls in Nanning, China [J]. Atmospheric Research, 2016, 169: 46-53. doi: 10.1016/j.atmosres.2015.09.028 [21] TIE C, HU T, JIA Z X, Zhang J L. Derivatization strategy for the comprehensive characterization of endogenous fatty aldehydes using HPLC-multiple reaction monitoring [J]. Anal Chem, 2016, 88: 7762-7768. doi: 10.1021/acs.analchem.6b01756 [22] OCHS S M, FASCIOTTI M, BARRETO R P, et al. Optimization and comparison of HPLC and RRLC conditions for the analysis of carbonyl-DNPH derivatives [J]. Talanta, 2010, 81(1-2): 521-529. doi: 10.1016/j.talanta.2009.12.036 [23] OCHS S M, FASCIOTTI M, NETTO A D P. Analysis of 31hydrazones of carbonyl compounds by RRLC-UV and TTLC-MS(/MS): A comparison of methods [J]. Journal of Spectroscopy, 2015(6b): 1-11. [24] ZUREK G, KARST U. Liquid chromatography-mass spectrometry method for the determination of aldehydes derivatized by the hantzsch reaction [J]. J Chromatogr A, 1999, 864: 191-197. doi: 10.1016/S0021-9673(99)01041-9 [25] 孟志娟, 孙文毅, 赵丽敏, 等. 气相色谱-静电场轨道阱高分辨质谱快速筛查农产品中 70 种农药残留 [J]. 分析化学, 2019, 47(8): 1227-1234. MENG Z J, SUN W Y, ZHAO L M, et al. Rapid screening of 70 kinds of pesticide residues in agricultural products by gas chromatography-electrostatic field orbit trap high resolution mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2019, 47(8): 1227-1234(in Chinese).
[26] 陈溪, 吴慈, 王龙祥, 等. 基于超高效液相色谱-高分辨质谱技术的水中 112 种药品和个人护理用品的高通量筛查和定量方法 [J]. 色谱, 2019, 36(11): 1147-1157. CHEN X, WU C, WANG L X, et al. High-throughput screening and quantitative analysis method of 112 pharmaceutical and personal care products in water based on ultra-high performance liquid chromatography with high-resolution mass spectrometry [J]. Chinese Journal of Chromatography, 2019, 36(11): 1147-1157(in Chinese).