-
近年来,随着脱硫技术的发展和推广,大气中NO2已逐渐取代SO2,成为大气中主要的酸性污染气体[1]。近来研究显示,硝酸盐成为了我国华北地区夏季灰霾污染的主要诱因[2]。因此通过研究硝酸盐的形成机制及其来源,对了解区域空气污染的成因和制定空气污染的对策有重要意义。人为源(如化石燃料燃烧)和自然源(闪电和土壤微生物活动)释放到大气中的NOx(NO+NO2)主要以NO为主,NO在大气中被臭氧(O3)和过氧自由基(RO2·)氧化成NO2。在白天,NO2被光解产物羟基自由基(·OH)氧化为HNO3;在晚上,NO2被臭氧进一步氧化成三氧化氮(NO3),然后NO2与NO3化合生成五氧化二氮(N2O5)。N2O5在颗粒表面水解和NO3+VOCs是夜间HNO3生成的主要途径。由于从NO到HNO3途径中,参与的氧化剂的氧同位素不同(例如δ18O-O3的值为90‰—120‰[3],大气降雨中δ18O-H2O的值为−36‰—−4‰(http://isohis.iaea.org),大气中羟基自由基的δ18O-OH的值为−60‰—−30‰[4-5]),因此不同路径形成的δ18O-HNO3也不同。例如,NO2+OH(40‰—60‰)路径形成的δ18O-HNO3值远低于N2O5+H2O和NO3+VOCs(80‰—110‰)路径[1,4-6]。因此δ18O-NO3−值被广泛用于定性和定量分析大气气溶胶和雨水中NO3−的形成路径[1,4-7]。
另外,由于不同排放源释放的NOx的δ15N-NOx值不同,例如煤燃烧释放的δ15N-NOx值(13.5‰±4.9‰)[8-9]明显高于汽车尾气(−4.3‰±4.5‰)[10-12]、闪电固氮(−0.5‰—+1.4‰)[13]和土壤微生物(−28.9‰±8.2‰)[10,14-15]释放的δ15N-NOx值,且大气中NOx的最终产物是NO3−,所以δ15N-NO3−值在早期研究中主要用于定性描述大气气溶胶和雨水中NO3−的来源[7,16]。基于热力学分馏理论,Walters等[6]量化了从NOx氧化成HNO3过程中的氮同位素分馏系数。例如,NO2+OH路径形成的δ15N-HNO3值稍低于δ15N-NO2值(−3‰—0‰),但是在300 K的条件下,N2O5+H2O路径形成的δ15N-HNO3值比δ15N-NO2值高25.5‰,相反NO3+VOCs路径形成的δ15N-HNO3值比δ15N-NO2值低18.0‰。基于不同路径形成HNO3所引起的氮同位素分馏、不同来源的δ15N-NOx值和贝叶斯同位素混合模型,δ15N-NO3−已被用于定量评估大气硝酸盐来源的相对贡献[17-19]。因此,联合δ18O-NO3−值和δ15N-NO3−值,可以评估大气硝酸盐的来源。
基于硝酸盐浓度估算大气降雨和气溶胶中硝酸盐沉降通量季节变化[7,16,20]和基于δ15N-NO3−和δ18O-NO3−值探讨大气硝酸盐来源和形成机制季节变化[1,4-5]的研究较多,但是还未有研究报道大气NOy(NOx + HNO3 + NO3−)干沉降的昼夜变化及其双同位素(δ15N-NO3−和δ18O-NO3−值)的昼夜分布特征。另外,南昌位于我国中东部地区,近年来空气污染加剧,且出现硝酸盐和硫酸盐交替主导空气污染[4]。本研究通过对南昌夏季昼夜NOy干沉降样本中硝酸盐氮浓度和氮氧同位素的测定,来探讨NOy干沉降昼夜的变化特征、主要来源以及形成机制。
南昌市夏季NOy干沉降及其氮氧同位素昼夜变化特征
Nyctohemeral variations of NOy dry deposition and its dual isotopic compositions in summer Nanchang
-
摘要: 大气活性氮沉降对陆地和海洋生态系统有重要的影响,对于气溶胶和降雨中硝酸盐沉降通量和硝酸盐氮氧同位素的研究较多,但对NOy(NO、NO2、NO3、N2O5、HNO3和NO3−)干沉降通量及其氮氧同位素的研究很少。本研究于2019年8月7日—2019年8月31日在江西省南昌市东华理工大学分昼夜采集了NOy干沉降样品,分析了干沉降样本中硝酸盐浓度,δ15N-NO3−和δ18O-NO3−值,基于干沉降样本中硝酸盐浓度估算了大气NOy干沉降通量。结果表明,南昌市夏季白天NOy干沉降通量(16.0—110.2 μg·h−1·m−2,均值(42.6±26.1)μg·h−1·m−2)高于夜晚(11.9—51.9 μg·h−1·m−2,均值(26.7±14.1) μg·h−1·m−2)。NOy干沉降样品中δ18O-NO3−值在白天(均值为(62.4‰±7.5‰))稍低于夜晚(均值为(66.7‰±4.1‰)),表明白天NOy参与的化学过程与晚上不同。NOy干沉降样品中δ15N-NO3−在白天(−5.8‰—−0.1‰,均值为(−2.0‰±1.4‰))与晚上(−5.0‰—+0.6‰,均值为(−2.0‰±1.2‰))类似,表明机动车尾气是南昌市夏季大气中NOx的主要来源。Abstract: Atmospheric reactive nitrogen deposition has important effects on terrestrial and marine ecosystems. Although many studies have focused on the nitrate deposition fluxes and nitrate dual isotopic compositions of aerosol and precipitation, rarely studies reported the NOy (NO2, N2O5, HNO3 and NO3−) dry deposition fluxes and nitrogen and oxygen isotopic compositions. In this study, the NOy dry deposition samples were collected during the daytime and at night on the campus of East China University of Technology in Nanchang City from August 7 to 31, 2019. Concentration of nitrate, values of δ15N-NO3− and δ18O-NO3− in dry deposition samples were analyzed, and the dry deposition fluxes of NOy were estimated. The estimated NOy dry deposition fluxes during the daytime (from 16.0—110.2 μg·h−1·m−2 with average of(42.6±26.1) μg·h−1·m−2 ) were higher than these during night (from 11.9—51.9 μg·h−1·m−2 with mean of (26.7±14.1) μg·h−1·m−2). Values of δ18O-NO3− in daytime (with average of 62.4‰ ±7.5‰) were lower than these during night (with average of 66.7‰±4.1‰), indicated that the NOy involved atmospheric photochemical oxidation processes in daytime were different from these at night. δ15N-NO3− values in daytime (from −5.8‰ to −0.1‰, with mean of (−2.0‰±1.4‰)) were similar to these at night (from −5.0‰ to +0.6‰, with average of (−2.0‰±1.2‰)), suggested that vehicle exhaust was the main NOx source of in the atmosphere of Nanchang City in summer.
-
Key words:
- Nanchang City /
- NOy dry deposition /
- nitrate /
- nitrogen and oxygen isotope
-
表 1 与其他地区硝酸盐氮、氧同位素比较
Table 1. Comparison of δ15N-NO3− and δ18O-NO3− in This Study with Other Regions
研究点
Research site采样时间
(夏季)
Sample time
(Summer)采样类型
Type of samplingδ15N-NO3−
范围/‰
Range of
δ15N-NO3−δ15N-NO3−
平均值/‰
Average of
δ15N-NO3−δ18O-NO3−
范围/‰
Range of
δ18O-NO3−δ18O-NO3−
平均值/‰
Average of
δ15N-NO3−参考文献
References南昌 2019-07—2019-08 NOy干沉降 −5.8—+0.6 −2.0±1.3 46.5—72.4 64.6±6.3 本研究 贵阳(小雨) 2001-06—2001-07 降雨 −3.8—+8.5 2 — — [29] 贵阳(暴雨) 2001-06—2001-07 降雨 −2.9—+10.1 4.1 — — [29] 九龙江流域 2005-05—2005-08 降雨 −7.5— −0.3 −3.6 — — [20] 成都 2014-08 气溶胶 −15.8—+8.1 +2.1±6.1 21.6—76.5 59.2±13.6 [27] 广州 2007-07—2007-09 降雨 0—+12.7 +4.8±3.2 — — [28] 百慕大群岛 2000—2001暖季 降雨 −4.8—+1.6 −2.1±1.5 60.3—78.5 68.6±3.6 [16] 广东 2008-04—2008-09 降雨 −3.9—+7.9 3.8 33.4—81.5 63.5 [7] 广东 2009-04—2009-09 降雨 +0.5—+10.1 4.1 47.2—86.2 66.4 [7] 日本秋田县 2010夏季 气溶胶 — −2.5±1.5 — — [30] 南昌 2018夏季 气溶胶 −1.9—+10.2 +3.1±2.4 50.7—70.5 60.7±3.9 [4] 百慕大(沿海) 2009—2011暖季 降雨 −6.2—+8.9 −0.8±3.0 50.5—77.7 68.2±5.1 [31] 百慕大(大陆) 2009—2011暖季 降雨 −5.2—0 −3.0±2.1 64.6—77.3 71.3±4.4 [31] -
[1] LUO L, ZHU R G, SONG C B, et al. Changes in nitrate accumulation mechanisms as PM2.5 levels increase on the North China Plain: A perspective from the dual isotopic compositions of nitrate [J]. Chemosphere, 2021, 263: 127915. doi: 10.1016/j.chemosphere.2020.127915 [2] LI H Y, ZHANG Q, ZHENG B, et al. Nitrate-driven urban haze pollution during summertime over the North China Plain [J]. Atmospheric Chemistry and Physics, 2018, 18(8): 5293-5306. doi: 10.5194/acp-18-5293-2018 [3] THIEMENS M H, JACKSON T. Pressure dependency for heavy isotope enhancement in ozone formation [J]. Geophysical Research Letters, 1990, 17(6): 717-719. doi: 10.1029/GL017i006p00717 [4] LUO L, PAN Y Y, ZHU R G, et al. Assessment of the seasonal cycle of nitrate in PM2.5 using chemical compositions and stable nitrogen and oxygen isotopes at Nanchang, China [J]. Atmospheric Environment, 2020, 225: 117371. [5] LUO L, KAO S J, WU Y F, et al. Stable oxygen isotope constraints on nitrate formation in Beijing in springtime [J]. Environmental Pollution, 2020, 263: 114515. [6] WALTERS W W, MICHALSKI G. Theoretical calculation of oxygen equilibrium isotope fractionation factors involving various NOy molecules, [rad]OH, and H2O and its implications for isotope variations in atmospheric nitrate [J]. Geochimica et Cosmochimica Acta, 2016, 191: 89-101. doi: 10.1016/j.gca.2016.06.039 [7] FANG Y T, KOBA K, WANG X M, et al. Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China [J]. Atmospheric Chemistry and Physics, 2011, 11(220): 1313-1325. [8] HEATON T H E. 15N/14N ratios of NOx from vehicle engines and coal‐fired power stations [J]. Tellus:Series B, Chemical and Physical Meteorology, 1990, 42(3): 304-307. [9] FELIX J D, ELLIOTT E M, SHAW S L. Nitrogen isotopic composition of coal-fired power plant NOx:Influence of emission controls and implications for global emission inventories [J]. Environmental Science and Technology, 2012, 46(6): 3528-3535. doi: 10.1021/es203355v [10] FELIX J D, ELLIOTT E M. Isotopic composition of passively collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures [J]. Atmospheric Environment, 2014, 92: 359-366. [11] WALTERS W W, GOODWIN S R, MICHALSKI G. Nitrogen stable isotope composition (δ15N) of vehicle-emitted NOx [J]. Environmental Science and Technology, 2015, 49(4): 2278-2285. doi: 10.1021/es505580v [12] MILLER D J, WOJTAL P K, CLARK S C, et al. Vehicle NOx emission plume isotopic signatures: Spatial variability across the eastern United States [J]. Journal of Geophysical Research:Atmospheres, 2017, 122(8): 4698-4717. doi: 10.1002/2016JD025877 [13] THOMAS H. The isotopic composition of the ammonia and the nitrate ion in rain [J]. Geochimica et Cosmochimica Acta, 1957, 12(1、2): 97-102. [14] LI D J, WANG X M. Nitrogen isotopic signature of soil-released nitric oxide (NO) after fertilizer application [J]. Atmospheric Environment, 2008, 42(19): 4747-4754. doi: 10.1016/j.atmosenv.2008.01.042 [15] FELIX J D, ELLIOTT E M. The agricultural history of human‐nitrogen interactions as recorded in ice core δ15N‐NO3- [J]. Geophysical Research Letters, 2013, 40(8): 1642-1646. doi: 10.1002/grl.50209 [16] HASTINGS M G, SIGMAN D M, LIPSCHULTZ F. Isotopic evidence for source changes of nitrate in rain at Bermuda [J]. Journal of Geophysical Research:Earth Surface, 2003, 108(D24): 4790. [17] ZONG Z, WANG X P, TIAN C G, et al. First assessment of NOx sources at a regional background site in North China using isotopic analysis linked with modeling [J]. Environmental Science and Technology, 2017, 51(11): 5923-5931. doi: 10.1021/acs.est.6b06316 [18] CHANG Y H, ZHANG Y L, TIAN C G, et al. Nitrogen isotope fractionation during gas-to-particle conversion of NOx to NO3− in the atmosphere – implications for isotope-based NOx source apportionment [J]. Atmospheric Chemistry and Physics, 2018, 18: 11647-11661. doi: 10.5194/acp-18-11647-2018 [19] LUO L, WU Y F, XIAO H Y, et al. Origins of aerosol nitrate in Beijing during late winter through spring [J]. Science of The Total Environment, 2019, 653: 776-782. doi: 10.1016/j.scitotenv.2018.10.306 [20] 陈能汪, 洪华生, 张珞平. 九龙江流域大气氮湿沉降研究 [J]. 环境科学, 2008, 29(1): 38-46. doi: 10.3321/j.issn:0250-3301.2008.01.007 CHEN N W, HONG H S, ZHANG L P. Wet deposition of atmospheric nitrogen in Jiulong River watershed [J]. Environmental Science, 2008, 29(1): 38-46(in Chinese). doi: 10.3321/j.issn:0250-3301.2008.01.007
[21] SIGMAN D M, CASCIOTTI K L, ANDREANI M, et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater [J]. Analytical Chemistry, 2001, 73(17): 4145-4153. doi: 10.1021/ac010088e [22] CASCIOTTI K L, SIGMAN D M, HASTINGS M G, et al. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method [J]. Analytical Chemistry, 2002, 74(19): 4905-4912. doi: 10.1021/ac020113w [23] BÖHLKE J K, MROCZKOWSKI S J, COPLEN T B. Oxygen isotopes in nitrate: New reference materials for 18O: 17O: 16O measurements and observations on nitrate-water equilibration [J]. Rapid Communications in Mass Spectrometry, 2003, 17(16): 1835-1846. doi: 10.1002/rcm.1123 [24] LUO L, KAO S J, BAO H Y, et al. Sources of reactive nitrogen in marine aerosol over the Northwest Pacific Ocean in spring [J]. Atmospheric Chemistry and Physics, 2018, 18(9): 6207-6222. doi: 10.5194/acp-18-6207-2018 [25] 何瑞亮, 蒋勇军, 张远瞩, 等. 重庆市近郊大气无机氮、硫沉降特征及其来源分析 [J]. 生态学报, 2019, 39(16): 6173-6185. HE R L, JIANG Y J, ZHANG Y Z, et al. Characteristics and sources of atmospheric inorganic nitrogen and sulfur deposition in the suburbs of Chongqing [J]. Acta Ecologica Sinica, 2019, 39(16): 6173-6185(in Chinese).
[26] 张艳, 王体健, 胡正义, 等. 典型大气污染物在不同下垫面上干沉积速率的动态变化及空间分布 [J]. 气候与环境研究, 2004, 9(4): 591-604. doi: 10.3878/j.issn.1006-9585.2004.04.05 ZHANG Y, WANG T J, HU Z Y, et al. Temporal variety and spatial distribution of dry deposition velocities of typical air pollutants over different landuse types [J]. Climatic and Environmental Research, 2004, 9(4): 591-604(in Chinese). doi: 10.3878/j.issn.1006-9585.2004.04.05
[27] 杨周, 李晓东, 雷国良, 等. 成都市PM2.5中无机组分与硝酸盐氮氧同位素变化特征 [J]. 地球与环境, 2020, 48(1): 10-16. YANG Z, LI X D, LEI G L, et al. Characteristics of inorganic components and nitrate nitrogen-oxygen isotopes of PM2.5 in the Chengdu City [J]. Earth And Environment, 2020, 48(1): 10-16(in Chinese).
[28] 陈法锦, 贾国东, 陈建芳, 等. 广州夏季雨水硝酸盐δ15N变化特征 [J]. 地球化学, 2010, 39(2): 154-158. CHEN F J, JIA G D, CHEN J F, et al. The variation of nitrate δ15N in summertime rainwater in Guangzhou [J]. Geochimica, 2010, 39(2): 154-158(in Chinese).
[29] XIAO H Y, LIU C Q. Sources of nitrogen and sulfur in wet deposition at Guiyang, southwest China [J]. Atmospheric Environment, 2002, 36(33): 5121-5130. doi: 10.1016/S1352-2310(02)00649-0 [30] KAWASHIMA H, KURAHASHI T. Inorganic ion and nitrogen isotopic compositions of atmospheric aerosols at Yurihonjo, Japan: Implications for nitrogen sources [J]. Atmospheric Environment, 2011, 45(35): 6309-6316. doi: 10.1016/j.atmosenv.2011.08.057 [31] ALTIERI K E, HASTINGS M G, GOBEL A R, et al. Isotopic composition of rainwater nitrate at Bermuda: The influence of air mass source and chemistry in the marine boundary layer [J]. Journal of Geophysical Research:Atmospheres, 2013, 118(19): 11,304-11,316. doi: 10.1002/jgrd.50829 [32] SONG W, WANG Y L, YANG W, et al. Isotopic evaluation on relative contributions of major NOx sources to nitrate of PM2.5 in Beijing [J]. Environmental Pollution, 2019, 248: 183-190. doi: 10.1016/j.envpol.2019.01.081 [33] LIANG J Y, HOROWITZ L W, JACOB D J, et al. Seasonal budgets of reactive nitrogen species and ozone over the United States, and export fluxes to the global atmosphere [J]. Journal of Geophysical Research:Earth Surface, 1998, 103(D11): 13435-13450. doi: 10.1029/97JD03126 [34] ELLIOTT E M, KENDALL C, BOYER E W, et al. Dual nitrate isotopes in dry deposition: Utility for partitioning NOx source contributions to landscape nitrogen deposition [J]. Journal of Geophysical Research:Earth Surface, 2009, 114(G4): 425-453. [35] YANG, J Y T, HSU S C, DAI M H, et al. Isotopic composition of water-soluble nitrate in bulk atmospheric deposition at Dongsha Island: Sources and implications of external N supply to the northern South China Sea [J]. Biogeosciences, 2014, 11(7): 1833-1846. doi: 10.5194/bg-11-1833-2014