-
川芎是一种常见的中药材,属于四川传统的出口药材,对治疗风湿痹痛、抗凝血及抗血小板聚集、神经保护具有良好效果。现如今由于金属的大量开采和冶炼,土壤重金属污染问题愈发严重,许多研究表明川芎是典型的镉富集植物[1-2],川芎中镉含量超标已经引起了安全性和出口问题[3]。因此,如何有效的、低成本的降低川芎中的镉含量已经成为一个亟需解决的问题。
目前,在治理土壤重金属的技术中,通过向土壤添加混合改良剂的方法可以有效降低土壤有效态重金属活性,减少植物对重金属的富集并改善土壤养分状况[4],从而增加植物生物量,以达到治理和修复的目的[5-6]。
混合改良剂具有修复效果明显,经济成本低,不会造成二次污染的优点,现被我国广泛用于解决重金属在土壤-植物中的迁移累积问题[7-8]。根据研究,施加生物炭、沸石粉、膨润土的混合改良剂处理的玉米土壤与对照组相比,显著降低了有效态镉含量,并且提升了玉米产量[9];生石灰、鸡粪、巯基硅组合处理的水稻土壤和对照组相比,降低了5.21%—20.56%有效态Cd含量,提升了20.59%—62.14%水稻产量[10]。施加生石灰可增加土壤pH值,降低川芎镉含量[11];施加KH2PO4-NaOH缓冲液,降低了川芎土壤有效态镉含量[12]。目前关于单一改良剂修复川芎重金属污染土壤研究日益增多,但目前关于混合改良剂治理川芎镉污染及其生长的研究仍鲜有报道。
本研究基于川芎田间试验,考察不同混合改良剂的施用对川芎中镉污染土壤重金属有效性、川芎药用部位的镉含量、川芎生物量和土壤养分的影响,并探索其相关性,以期为川芎镉污染土壤修复、川芎药用安全性和川芎的科学种植提供科学依据。
混合改良剂对镉污染土壤川芎镉积累及生长的影响
Effects of mixed amendments on the cadmium accumulation and growth of Ligusticum chuanxiong hort in cadmium-contaminated soil
-
摘要: 为解决川芎中镉含量超标而引起的中药安全问题,以四川省川芎主产地的土壤为研究对象,分别研究了施加不同剂量的混合改良剂Ⅰ(轻质碳酸钙、石灰石、钙基膨润土、纳米磷酸二氢钾、生物炭、硅酸钠、凹凸棒)的3种浓度525 kg·hm−2(O1)、1575 kg·hm−2(O2)、5250 kg·hm−2(O3)和改良剂Ⅱ(重质碳酸钙、钙基膨润土、纳米磷酸二氢钾、生物炭、硅酸钠、凹凸棒)的3种浓度612 kg·hm−2(T1)、918 kg·hm−2(T2)、1224 kg·hm−2(T3)对川芎根部镉(Cd)、土壤有效态镉以及川芎生物量的影响。结果表明,不同浓度下两种混合改良剂的施用均减少了川芎根部对镉的富集,这可能是由于两种混合改良剂的添加增加了土壤pH,减少了镉在土壤-川芎中的迁移,其中T1和T3处理降幅最大,对比空白处理分别降低了56.13%和55.67%;通过施加不同浓度混合改良剂,能够提升川芎生物量,增加效果最好的是T1、T3处理,对比空白处理增加了53.50%和52.72%,这可能是由于混合改良剂的添加增加了土壤的氮、磷等含量和脲酶活性,改善了土壤养分状况。从川芎根部镉含量减少效果、川芎生物量增加量和混合改良剂施加量的经济角度来看,混合改良剂Ⅱ的612 kg·hm−2处理效果最好。Abstract: To solve the safety problem caused by excessive cadmium (Cd) in Ligusticum chuanxiong hort, soils of the main producing area of Ligusticum chuanxiong hort in Sichuan province were used for the field experiments. We aimed to investigate the effects of soil amendments on plant growth and Cd accumulation by Ligusticum chuanxiong hort, as well as the available Cd in soils. The soil mixed amendment Ⅰ was composed of precipitated calcium carbonate, limestone, calcium bentonite, nano potassium dihydrogen phosphate, biochar, sodium silicate, and attapulgite,which was applied in the field at the concentration of 525 kg·hm−2 (O1), 1575 kg·hm−2 (O2), and 5250 kg·hm−2 (O3), respectively. The mixed amendment Ⅱ was composed of heavy calcium carbonate, calcium bentonite, nano potassium dihydrogen phosphate, biochar, sodium silicate, and attapulgite,and was applied at the concentration of 612 kg·hm−2 (T1), 918 kg·hm−2 (T2), 1224 kg·hm−2 (T3) , respectively. The results showed that Cd accumulation in the roots of Ligusticum chuanxiong hort was reduced by both the two amendments, which might attributed to the increasing soil pH and then reducing Cd migration to the plant. The treatments of T1 and T3 greatly decreased the accumulation of Cd in plants by 56.13% and 55.67%, respectively, compared to the control group. The biomass of Ligusticum chuanxiong hort was significantly improved with the application of mixed amendments. The treatments of T1 and T3 were most effective in enhancing the biomass, which increased 53.50% and 52.72% of the biomass compared to the control group. This might due to the increase in urease activity, soil nitrogen, and phosphorus with the application of mixed amendments. In general, the economically optimal amendment rates was 612 kg·hm−2 according to the present study.
-
Key words:
- Mixed amendments /
- Ligusticum chuanxiong hort /
- available cadmium /
- biomass
-
表 1 供试土壤基本理化性质
Table 1. Chemical Properties of the soil tested
项目
ItempH 有机质/(g·kg−1)
Organic matter全磷/(g·kg−1)
Total phosphorus全氮/(g·kg−1)
Total nitrogen孔隙度/%
Porosity总Cd/(g·kg−1)
Total Calcium含量 5.63 28.93 0.67 1.22 43.91 1.52 表 2 混合改良剂对土壤理化性质的影响
Table 2. Effects of mixed amendments on soil physical and chemical properties
处理
TreatmentpH 有机质/ (g·kg−1)
Organic matter硝态氮/ (g·kg−1)
Nitrate nitrogen速效磷/ (g·kg−1)
Available phosphorus孔隙度/%
PorosityCK 5.83±0.25 c 31.87±2.82 d 17.00±0.86 a 21.42±1.15 f 44.10±0.94 c O1 6.17±0.23 bc 35.47±2.39 c 21.76±0.88 bc 34.34±0.95 e 46.47±0.76 abc O2 6.15±0.23 bc 36.39±2.06 bc 21.84±2.34 bc 36.68±0.98 c 47.17±0.51 abc O3 6.42±0.35 ab 37.22±2.46 abc 20.54±0.31 bc 38.24±0.74 c 47.40±0.49 bc T1 6.61±0.09 a 39.45±1.20 ab 29.57±10.14 a 42.83±0.62 a 48.13±0.69 a T2 6.21±0.18 abc 36.43±1.07 bc 24.49±1.44 abc 36.52±0.26 d 44.260±0.53 d T3 6.63±0.06 a 40.25±0.73 a 25.59±1.70 ab 41.01±0.52 b 47.89±0.71 ab 不同小写字母表示同列各处理间差异显著(P < 0.05),下同.
Lowercase letters indicate significant differences at 0.05 level.The same below.表 3 混合改良剂对土壤酶活性的影响(mg·g−1)
Table 3. Effects of mixed amendments on soil enzyme activity
处理 Treatment 脲酶 Urease 磷酸酶 Phosphatase CK 0.10±0.09 ab 170.89±2.19 d O1 0.14±0.06 d 260.89±8.68 a O2 0.15±0.07 c 219.68±8.05 b O3 0.12±0.02 bc 181.15±7.65 d T1 0.14±0.01 ab 201.64±10.98 c T2 0.14±0.05 ab 215.82±2.48 b T3 0.16±0.01 a 20.21±6.50 bc 表 4 川芎生物量和根部Cd与土壤指标之间的相关性分析
Table 4. Correlation analysis of rhizoma chuanxiong biomass, root Cd and soil index
有效态 Cd
Available
CadmiumpH 有机质
Organic
matter硝态氮
Nitrate
nitrogen速效磷
Available
phosphorus脲酶
Urease磷酸酶
Phosphatase孔隙度
Porosity生物量 R −0.748** 0.650** 0.612** 0.383 0.666** 0.492* −0.037 0.406 P 0.000 0.001 0.003 0.087 0.001 0.023 0.874 0.068 川芎Cd R 0.787** −0.719** −0.731** −0.552** −0.964** −0767** −0.446* −0.675** P 0.000 0.000 0.000 0.009 0.000 0.000 0.043 0.001 R值表示Pearson相关系数,P值表示显著性;* 在P < 0.05水平显著,**在P < 0.01水平显著.
The R value represents the Pearson correlation coefficient, The P value represents significance; *means it’s significant correlation at 0.05 level; **means it’s significant correlation at 0.01 level. -
[1] 宁梓君, 李彬, 何春杨, 等. 川芎生长阶段中对镉的富集阶段的初探 [J]. 时珍国医国药, 2015, 26(9): 2240-2242. NING Z J, LI B, HE C Y, et al. Preliminary investigation on the stage of cadmium-concentrated in growth cycle of Ligusticum chuanxiong hort [J]. Lishizhen Medicine and Materia Medica Research, 2015, 26(9): 2240-2242(in Chinese).
[2] 任敏, 李敏, 刘德军, 等. 川芎重金属镉吸收累积规律的初步研究 [J]. 中国药学杂志, 2016, 20(51): 1735-1738. REN M, LI M, LIU D J, et al. Preliminary research on cadmium absorption and accumulation in Ligusticum wallichii [J]. Chinese Pharmaceutical Journal, 2016, 20(51): 1735-1738(in Chinese).
[3] 宁梓君. 改良栽培方式对川芎镉吸附能力和镉富集阶段影响的研究[D]. 成都: 成都中医药大学, 2015. NING Z J. Effect of improved cultivation on cadmium adsorption capacity and cadmium enrichment stage of Ligusticum chuanxiong hort[D]. Chengdu: Chengdu University of Traditional Chinese Medicine, 2015(in Chinese).
[4] 张迪, 吴晓霞, 丁爱芳, 等. 生物炭和熟石灰对土壤镉铅生物有效性和微生物活性的影响 [J]. 环境化学, 2019, 38(11): 2534-2626. ZHANG D, WU X X, DING A F, et al. Effects of hydrated lime and biochar on the bioavailability of Cd and Pb and microbial activity in a contaminated soil [J]. Environmental Chemistry, 2019, 38(11): 2534-2626(in Chinese).
[5] 黎大荣, 吴丽香, 宁晓君, 等. 不同钝化剂对土壤有效态铅和镉含量的影响 [J]. 环境保护科学, 2013, 39(3): 46-49. doi: 10.3969/j.issn.1004-6216.2013.03.012 LI D R, WU L X, NING X J, et al. Effects of different passivating agents on contents of available lead and cadmium in soil [J]. Environmental Protection Science, 2013, 39(3): 46-49(in Chinese). doi: 10.3969/j.issn.1004-6216.2013.03.012
[6] 高瑞丽, 唐茂, 付庆灵, 等. 生物炭、蒙脱石及其混合添加对复合污染土壤中重金属形态的影响 [J]. 环境科学, 2017, 38(1): 361-367. GAO R L, TANG M, FU Q L, el al. Fractions transformation of heavy metals in compound contaminated soil treated with biochar, montmorillonite and mixed addition [J]. Environmental Science, 2017, 38(1): 361-367(in Chinese).
[7] 胡红青, 黄益宗, 黄巧云, 等. 农田土壤重金属污染化学钝化修复研究进展 [J]. 植物营养与肥料学报, 2017(6): 1676-1685. doi: 10.11674/zwyf.17299 HU H Q, HUANG Y Z, HUANG Q Y, et al. Research progress of heavy metals chemical immobilization in farm land [J]. Plant Nutrition and Fertilizer Science, 2017(6): 1676-1685(in Chinese). doi: 10.11674/zwyf.17299
[8] 王美娥, 彭驰, 陈卫平. 水稻品种及典型土壤改良措施对稻米吸收镉的影响 [J]. 环境科学, 2015, 36(11): 351-358. WANG M E, PENG C, CHEN W P. Effects of rice cultivar and typical soil improvement measures on the uptake of Cd in rice grains [J]. Environmental Science, 2015, 36(11): 351-358(in Chinese).
[9] 杜彩艳, 王攀磊, 杜建磊, 等. 生物炭、沸石与膨润土混施对玉米生长和吸收Cd、Pb、Zn的影响研究 [J]. 生态环境学报, 2019, 28(1): 194-202. DU C Y, WANG P L, DU J L, et al. Influence of fixed addition of biochar, zeolite and bentonite on growth and Cd, Pb, Zn uptake by maize [J]. Ecology and Environment Sciences, 2019, 28(1): 194-202(in Chinese).
[10] 韦小了, 牟力, 付天岭, 等. 不同钝化剂组合对水稻各部位吸收积累Cd及产量的影响 [J]. 土壤学报, 2019, 56(4): 883-894. doi: 10.11766/trxb201810120516 WEI X L, MOU L, FU T L, et al. Effects of passivator on Cd absorption and accumulation and yield of rice as affected by its combination [J]. Acta Pedologica Sinica, 2019, 56(4): 883-894(in Chinese). doi: 10.11766/trxb201810120516
[11] 宁梓君, 李彬, 李青苗, 等. 改良酸性土壤对土壤活性态镉及川芎镉含量影响的研究 [J]. 中草药, 2014, 37(11): 1925-1928. NING Z J, LI B, LI Q M, et al. Effects of acidic Soil improvement on active-state Cd content in soil and Cd content in Ligusticum chuanxiong [J]. Journal of Chinese Medicinal Materials, 2014, 37(11): 1925-1928(in Chinese).
[12] 何春杨, 李彬, 李青苗, 等. 一种新型土壤改良剂对川芎镉污染土壤的修复效果 [J]. 时珍国医国药, 2015, 26(12): 3002-3004. HE C Y, LI B, LI Q M, et al. Effects of a new soil amendment on the remediation of Cd contaminated soil of Ligusticum chuanxiong hort [J]. Lishizhen Medicine and Materia Medica Research, 2015, 26(12): 3002-3004(in Chinese).
[13] 刘亚华, 徐文芬, 高杰, 等. 栽培川续断药材质量的综合考察 [J]. 安徽农业科学, 2010, 14(38): 170-172. LIU Y H, XU W F, GAO J, et al. Comprehensive qualitative investigation on the cultivated dipsacu asperides materials [J]. Journal of Anhui Agricultural Sciences, 2010, 14(38): 170-172(in Chinese).
[14] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. BAO S D. Soil agrochemical analysis[M]. Beijing: China Agricultural Press, 2020(in Chinese).
[15] 徐琴, 李彬, 李青苗, 等. 川芎镉含量与栽培土壤pH及活性态Cd含量关系初探 [J]. 安徽农业科学, 2013, 41(3): 116-118. XU Q, LI B, LI Q M, et al. Preliminary investigation on the relationship between the Cd content in Ligusticum chuanxiong hort. and the pH value and activestate Cd content in cultivated soil [J]. Journal of Anhui Agricultural Sciences, 2013, 41(3): 116-118(in Chinese).
[16] 宋正国, 唐世荣, 丁永祯, 等. 田间条件下不同钝化材料对玉米吸收镉的影响研究 [J]. 农业环境科学学报, 2011, 30(11): 2152-2159. SONG Z G, TANG S R, DING Y Z, et al. Effects of different amendments on cadmium uptake by maize under field conditions [J]. Journal of Agro-Environment Science, 2011, 30(11): 2152-2159(in Chinese).
[17] 蔡梅. 混合改良剂对土壤Cd污染的钝化修复研究[D]. 杭州: 浙江大学, 2019. CAI M. Study on passivation remediation of soil Cd pollution by mixed amendments[D]. Hangzhou: Zhejiang University, 2019(in Chinese).
[18] 胡文. 土壤—植物系统中重金属的生物有效性及其影响因素的研究[D]. 北京: 北京林业大学, 2008. HU W. Study on bioavailability of heavy metals in soil-plant system and its influencing factors[D]. Beijing: Beijing Forestry University, 2008(in Chinese).
[19] 杜彩艳, 王攀磊, 杜建磊, 等. 生物炭、沸石与膨润土混施对玉米生长和吸收Cd、Pb、Zn的影响研究 [J]. 生态环境学报, 2019, 28(1): 190-198. DU C Y, WANG P L, DU J L, et al. Influence of fixed addition of biochar, zeolite and bentonite on growth and Cd, Pb, Zn uptake by maize [J]. Ecology and Environment Sciences, 2019, 28(1): 190-198(in Chinese).
[20] 韩玉琦. 凹凸棒石复合材料的制备及其吸附性能研究[D]. 兰州: 兰州大学, 2010. HAN Y Q. Preparation and adsorption properties of attapulgite composites were studied[D]. Lanzhou: Lanzhou university, 2010(in Chinese).
[21] 杨惟薇, 张超兰, 曹美珠, 等. 4种生物炭对镉污染潮土钝化修复效果研究 [J]. 水土保持学报, 2015, 29(1): 239-243. YANG W W, ZHANG C L, CAO M Z, et al. Immobilization and remediation of cadmium contaminated soil with four kinds of biochars [J]. Journal of Soil and Water Conservation, 2015, 29(1): 239-243(in Chinese).
[22] 刘艳, 王聪颖, 史志明, 等. 老化生物炭对小白菜积累重金属的影响 [J]. 山西农业大学学报(自然科学版), 2019, 39(3): 58-64. LIU Y, WANG C Y, SHI Z M, et al. Effect of aged biochar on the accumulation of heavy metals in pakchoi [J]. Journal of Shanxi Agricultural University(Natural Science Edition), 2019, 39(3): 58-64(in Chinese).
[23] 闫家普, 丁效东, 崔良, 等. 不同改良剂及其组合对土壤镉形态和理化性质的影响 [J]. 农业环境科学学报, 2018, 37(9): 1842-1849. doi: 10.11654/jaes.2018-0187 YAN J P, DING X D, CUI L, et al. Effects of several modifiers and their combined application on cadmium forms and physicochemical properties of soil [J]. Journal of Agro-Environment Science, 2018, 37(9): 1842-1849(in Chinese). doi: 10.11654/jaes.2018-0187
[24] 王英杰, 邹佳玲, 杨文弢, 等. 组配改良剂对稻田系统Pb、Cd和As生物有效性的协同调控 [J]. 环境科学, 2016, 37(10): 4004-4010. WANG Y J, ZOU J L, YANG W T, et al. Synergetic control of bioavailability of Pb, Cd and As in the rice paddy system by combined amendments [J]. Environmental Science, 2016, 37(10): 4004-4010(in Chinese).
[25] 任静华, 廖启林, 范健, 等. 凹凸棒粘土对镉污染农田的原位钝化修复效果研究 [J]. 生态环境学报, 2017, 26(12): 2161-2168. REN J H, LIAO Q L, FAN J, et al. Effectof in-situ stabilizing remediation of Cd-polluted soil by attapulgite [J]. Ecology and Environment Sciences, 2017, 26(12): 2161-2168(in Chinese).
[26] 侯建伟, 陈芬, 余高谭, 等. 生态有机型土壤改良剂对油菜生育期土壤酶活性的影响 [J]. 浙江农业科学, 2020, 61(1): 32-33. HOU J W, CHEN F, YU G T, et al. Effects of ecological soil improvers on soil enzyme activity during rapeseed growth period [J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(1): 32-33(in Chinese).
[27] MING G X, PING L, ZHENG G S, et al. Progress in fertilization on behavior of heavy metals in contaminated soils [J]. Journal of Agro-Environment Science, 2006, 25(S1): 328-333. [28] 肖丹丹. 腐植酸对铅镉污染土壤中重金属形态及油菜抗氧化酶活性的影响[D]. 泰安: 山东农业大学, 2017. XIAO D D. Effects of humic acid on the morphology of heavy metals in lead-cadmium contaminated soil and antioxidant enzyme activity of rapeseed[D]. Taian: Shandong Agricultural University, 2017(in Chinese).
[29] 王国兵, 郭娇娇, 曹国华, 等. 不同施肥模式对杨树人工林土壤微生物生物量C、N、P的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(5): 9-13. WANG G B, GUO J J, CAO G H, et al. Effects of different fertilization regimes on soil microbial biomass C, N, P under poplar plantation. Journal of Nanjing Forestry University(Natural Science Edition), 2016, 40(5): 9-13(in Chinese).
[30] 王丙烁, 黄益宗, 李娟, 等. 镉胁迫下不同改良剂对水稻种子萌发和镉吸收积累的影响 [J]. 农业环境科学学报, 2019, 38(4): 746-755. WANG B S, HUANG Y Z, LI J. Effects of different amendments on seed germination and cadmium uptake and accumulation in rice seedlings under cadmium stress [J]. Journal of Agro-Environment Science, 2019, 38(4): 746-755(in Chinese).
[31] 张德, 杨海涛, 沈上越. 轻质碳酸钙与重质碳酸钙比较[J]. 非金属矿, 2001, 24(增刊): 27-28. ZHANG D, YANG H T, SHEN S Y. Comparison of light calcium carbonate with heavy calcium carbonate[J]. Non-Metallic Mines, 2001, 24(special issue): 27-28(in Chinese).
[32] 朱维, 刘丽, 吴燕明, 等. 组配改良剂对土壤-蔬菜系统铅镉转运调控的场地研究 [J]. 环境科学, 2015, 36(11): 4277-4282. ZHU W, LIU L, WU Y M, et al. In-situ study on effects of combined amendment on translocation control of Pb and Cd in soil-Vegetable system [J]. Environmental Science, 2015, 36(11): 4277-4282(in Chinese).
[33] 杜彩艳, 祖艳群, 李元. pH和有机质对土壤中镉和锌生物有效性影响研究 [J]. 云南农业大学学报, 2005, 20(4): 539-543. DU C Y,ZU Y Q,LI Y. Effect of pH and organic matter on the bioavailability Cd and Zn in soil [J]. Journal of Yunnan Agricultural University, 2005, 20(4): 539-543(in Chinese).
[34] 刘美菊, 李江舟, 计思贵, 等. 生物炭对山坡地烟叶产量和氮肥利用效率的影响效果评价 [J]. 作物杂志, 2020, 1(1): 89-97. LIU M J, LI J Z, JI G S, et al. Evaluation of effect of biochar on tobacco yield and nitrogen use efficiency in mountain slope areas [J]. Crops, 2020, 1(1): 89-97(in Chinese).
[35] 张德林, 张思荻, 杨海燕, 等. 基于土壤Cd污染对川芎产量和品质的影响研究 [J]. 中药材, 2019, 42(6): 1228-1230. ZHANG D L, ZHANG S H, YANG H Y, et al. Based on the effect of soil Cd pollution on the yield and quality of Ligusticum chuanxiong [J]. Journal of Chinese Medicinal Materials, 2019, 42(6): 1228-1230(in Chinese).
[36] 杨江, 李彬, 李青苗, 等. 川芎镉含量与栽培土壤pH及镉活性态含量的相关研究 [J]. 中国农学通报, 2014, 30(7): 142-147. doi: 10.11924/j.issn.1000-6850.2013-1947 YANG J, LI B, LI Q M, et al. The study of correlation between the pH value of cultivated soil, the active-state content in cultivated soft and the content in Rhizoma chuanxiong [J]. Chinese Agricultural Science Bulletin, 2014, 30(7): 142-147(in Chinese). doi: 10.11924/j.issn.1000-6850.2013-1947
[37] 郭碧林, 陈效民, 景峰, 等. 生物质炭添加对重金属污染稻田土壤理化性状及微生物量的影响 [J]. 水土保持学报, 2018, 32(4): 279-290. GUO B L, CHEN X M, JING F, et al. Effects of biochar addtion on physicochemical properties and microbial biomass of the red paddy soil polluted by heavy metals [J]. Journal of Soil and Water Conservation, 2018, 32(4): 279-290(in Chinese).