-
进入21世纪以来,能源危机和环境问题日益突出,探索可再生和可持续能源以及开发新技术高效去除环境污染物已成为当前缓解能源危机和环境问题的重要研究方向之一[1-5]。其中,环境催化技术是将环境工程与催化技术相结合的一种新技术,而开发高效、稳定和低廉的催化剂是推动环境催化技术应用的关键[6-9]。
纳米材料因具有比表面积大、功能性强、强度高和延展性好等特点而受到了科学界和产业界的广泛关注。其中,纳米纤维是一类直径为纳米尺度而长度较大的具有一定长径比的线状纳米材料。随着纳米材料的发展,利用纳米颗粒填充改性形成的线状材料也可称为纳米纤维。纳米纤维包括纳米线、纳米管、纳米棒等,具有尺寸控制范围大,比表面积丰富和长径比较高的特点,在电子、光学、热学、催化等方面具有更优越的性能[10-17]。目前,制备纳米纤维的方法主要包括化学气相沉积法、模板导向合成法、气固法、液相法、熔体吹制法、自组装法、电沉积和静电纺丝法[11, 18-22]。与其它技术相比,静电纺丝技术能以简单、可控、高效的方法制备具有不同成分或形貌结构多样的纳米纤维[23],但是由于静电纺丝技术受到喷头和纺丝液自身性质的约束,一般情况下难以获得尺寸较小(如低于50 nm)的纳米纤维,因而,在环境领域中多作为一类吸附、富集材料或载体。当应用于催化反应时,将其作为高度分散活性物种的载体,不仅有利于增加催化剂的比表面积,提高空间利用率,增加反应物与活性位点接触的机会,还可根据需要调整修饰方法得到不同类型或具有特定应用的纳米纤维。因此,静电纺丝技术制备的多级结构纳米纤维可以广泛应用于能源和环境催化领域。
本文总结了近几年来利用静电纺丝技术制备不同结构的纳米纤维材料的研究新进展,详细介绍了中空型、wire-in-tube型、tube-in-tube型、多通道型和树枝状型多级结构纳米纤维材料的设计理念和合成手段,重点关注了多级结构纳米材料在催化污染物降解和转化方面的应用,并对当前静电纺丝技术构建适用于环境催化领域的多级结构纳米材料存在的不足和未来的研究方向进行了展望。
多级结构电纺纳米纤维在环境催化领域的应用
Application of hierarchical structure electrospinning nanofibers in the environmental catalysis
-
摘要: 多级结构纳米材料以其形貌多样、比表面积大、空间利用率高以及易于界面传输和吸附富集等特性,在能源催化转化和环境保护等相关领域受到广泛关注。多级结构材料可通过溶剂热合成法、模板法、自组装法、静电纺丝技术等方法合成制得,其中静电纺丝技术是一种简单可控的方法,且可以根据需求构建具有不同成分以及复杂内部和外部结构的纳米纤维。基于此,本文总结了近几年来利用静电纺丝技术制备不同结构的纳米纤维材料的研究进展,详细介绍了中空型、wire-in-tube型、tube-in-tube型、多通道型和树枝状型多级结构纳米纤维材料的制备方法,重点关注了多级结构纳米材料在污染物的降解、环境修复等环境催化领域的应用,并对当前静电纺丝技术构建适用于环境催化领域的多级结构纳米材料面临的挑战和未来的研究方向进行了展望。Abstract: The hierarchical structure nanomaterials have the characteristics of diverse morphology, large specific surface area, high space utilization, easy interface diffusion and adsorptive preconcentration, which have received great attention in the catalytic conversion of energy and environmental protection. It can be synthesized by solvothermal method, template method, self-assembly method, electrospinning technology and other methods. Electrospinning technology has been considered as one of simple and controllable methods, which can construct nanofibers with different compositions and complex internal and external structures as required. Herein, the recent progresses in the preparation of nanofibers with different structures by electrospinning technology have been discussed in detail, including hollow nanofibers, wire-in-tube nanofibers, tube-in-tube nanofibers, multi-channel nanofibers and branched nanofibers, especially in the application of environmental catalysis such as pollutant degradation and environmental remediation. Furthermore, the prospects for the challenges and research directions of designing hierarchical structure nanomaterials by electrospinning technology were proposed to shed light on further development of environmental catalysis in future.
-
Key words:
- electrospinning /
- hierarchical structure /
- nanofibers /
- environmental catalysis
-
图 2 (a)同轴静电纺丝装置原理图;(b)wire-in-tube TiO2纳米纤维的SEM图;(c) wire-in-tube SnO2纳米纤维的合成机理;(d-f)不同放大倍数下的wire-in-tube SnO2纳米纤维的SEM图像[33, 35]
Figure 2. (a) Schematic diagram of a three-coaxial electrospinning device; (b) SEM image of wire-in-tube TiO2 nanofibers; (c) synthesis mechanism of wire-in-tube SnO2 nanofibers; (d-f) SEM images of wire-in-tube SnO2 nanofibers with different magnification[33, 35]
图 3 (a)实心、中空、tube-in-tube TiO2纤维的形成机理;(b) tube-in-tube TiO2纤维的SEM图;(c)放大倍数下单根tube-in-tube TiO2纤维的SEM图;(d)紫外光照射下2-氯苯酚的光降解速率;(e)紫外光照射下2, 4-二氯苯酚的光降解速率[36]
Figure 3. (a) Possible formation mechanism of solid, hollow and tube-in-tube TiO2 fibers; (b) SEM images of tube-in-tube TiO2 fibers; (c) SEM images of single tube-in-tube TiO2 fibers at magnification; (d) photodegradation rate of 2-chlorophenol under UV irradiation; (e) photodegradation rate of 2, 4-dichlorophenol under UV irradiation[36]
图 4 (a)制备三通道纳米纤维的实验装置图;(b-e)通道数为2-5的纤维管的SEM图;(f)微乳液静电纺丝法制备的多通道TiO2纳米纤维的SEM图;(g)多通道TiO2纳米纤维的横截面SEM图;(h)多通道碳纳米基质上构建氧化铋纳米片的合成示意图[38, 40-41]
Figure 4. (a) Experimental device for preparing three-channel nanofibers; (b-e) SEM images of fiber tubes with 2-5 channels; (f) SEM images of multi-channel TiO2 nanofibers prepared by microemulsion electrospinning; (g) SEM images of cross section of multi-channel TiO2 nanofibers; (h) schematic diagram of synthesis of bismuth oxide nanosheets constructed on multi-channel carbon nanomatrix[38, 40-41]
图 5 (a) TiO2纳米纤维和TiO2/ VO2复合纳米纤维光催化降解甲基橙的速率;(b-c)不同放大倍数下电纺锐钛矿TiO2 NFs上生长金红石TiO2纳米线的SEM图;(d)单晶RuO2纳米针在电纺TiO2纳米纤维表面的生长过程示意图;(e-f)电纺TiO2纳米纤维表面生长单晶RuO2纳米针的SEM图[51-53]
Figure 5. (a) Photocatalytic degradation rate of methyl orange by titanium dioxide nanofibers and titanium oxide/vanadium oxide composite nanofibers; (b-c) SEM image of rutile TiO2 nanowires grown on electrospun anatase TiO2 NFs at different magnifications; (d) schematic diagram of the growth process of single crystal RuO2 nanoneedles on the surface of electrospun TiO2 nanofibers; (e-f) SEM image of single crystal RuO2 nanoneedles grown on the surface of electrospun TiO2 nanofibers[51-53]
-
[1] ZHU Y H, YAO Y, LUO Z, et al. Nanostructured MoO3 for efficient energy and environmental catalysis [J]. Molecules, 2019, 25(1): 18. doi: 10.3390/molecules25010018 [2] WEI M Y, SHI X W, XIAO L, et al. Synthesis of polyimide-modified carbon nanotubes as catalyst for organic pollutant degradation via production of singlet oxygen with peroxymonosulfate without light irradiation [J]. Journal of Hazardous Materials, 2020, 382: 120993. doi: 10.1016/j.jhazmat.2019.120993 [3] BLOEM E, ALBIHN A, ELVING J, et al. Contamination of organic nutrient sources with potentially toxic elements, antibiotics and pathogen microorganisms in relation to P fertilizer potential and treatment options for the production of sustainable fertilizers: A review [J]. Science of The Total Environment, 2017, 607/608: 225-242. doi: 10.1016/j.scitotenv.2017.06.274 [4] 程梦婷, 刘倩, 刘稷燕, 等. 石墨烯在环境有机污染物分析中的应用进展 [J]. 环境化学, 2014, 33(10): 1733-1743. doi: 10.7524/j.issn.0254-6108.2014.10.019 CHENG M T, LIU Q, LIU J Y, et al. Recent advances in application of graphene in analysis of environmental organic pollutants [J]. Environmental Chemistry, 2014, 33(10): 1733-1743(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.10.019
[5] 张长斌. 室内空气污染物催化氧化研究 [J]. 环境化学, 2015, 34(5): 817-823. doi: 10.7524/j.issn.0254-6108.2015.05.2015010509 ZHANG C B. Study of catalytic oxidation of indoor air pollutants [J]. Environmental Chemistry, 2015, 34(5): 817-823(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.05.2015010509
[6] YANG Y L, WU M G, ZHU X W, et al. 2020 Roadmap on two-dimensional nanomaterials for environmental catalysis [J]. Chinese Chemical Letters, 2019, 30(12): 2065-2088. doi: 10.1016/j.cclet.2019.11.001 [7] AHSAN M A, JABBARI V, EL-GENDY A A, et al. Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon [J]. Applied Surface Science, 2019, 497: 143608. doi: 10.1016/j.apsusc.2019.143608 [8] BARAN N Y. Generation and characterization of palladium nanocatalyst anchored on a novel polyazomethine support: Application in highly efficient and quick catalytic reduction of environmental contaminant nitroarenes [J]. Journal of Molecular Structure, 2020, 1220: 128697. doi: 10.1016/j.molstruc.2020.128697 [9] 陈满堂, 王楠, 朱丽华. X射线光电子能谱在环境催化研究中的应用 [J]. 环境化学, 2017, 36(10): 2140-2146. doi: 10.7524/j.issn.0254-6108.2017030802 CHEN M T, WANG N, ZHU L H. Application of X-ray photoelectron spectroscopy in environmental catalysis research [J]. Environmental Chemistry, 2017, 36(10): 2140-2146(in Chinese). doi: 10.7524/j.issn.0254-6108.2017030802
[10] LI L L, PENG S J, LEE J K Y, et al. Electrospun hollow nanofibers for advanced secondary batteries [J]. Nano Energy, 2017, 39: 111-139. doi: 10.1016/j.nanoen.2017.06.050 [11] LU X F, WANG C, FAVIER F, et al. Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance [J]. Advanced Energy Materials, 2017, 7(2): 1601301. doi: 10.1002/aenm.201601301 [12] MIN L L, PAN H, CHEN S Y, et al. Recent progress in bio-inspired electrospun materials [J]. Composites Communications, 2019, 11: 12-20. doi: 10.1016/j.coco.2018.10.010 [13] WU J, WANG N, ZHAO Y, et al. Electrospinning of multilevel structured functional micro-/nanofibers and their applications [J]. Journal of Materials Chemistry A, 2013, 1(25): 7290-7305. doi: 10.1039/c3ta10451f [14] ZHAO R, LU X F, WANG C. Electrospinning based all-nano composite materials: Recent achievements and perspectives [J]. Composites Communications, 2018, 10: 140-150. doi: 10.1016/j.coco.2018.09.005 [15] SUN M H, HUANG S Z, CHEN L H, et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine [J]. Chemical Society Reviews, 2016, 45: 3479-3563. doi: 10.1039/C6CS00135A [16] WEI Q L, XIONG F Y, TAN S S, et al. Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage [J]. Advanced Materials, 2017, 29(20): 160230. [17] KUMAR P S, SUNDARAMURTHY J, SUBRAMANIAN S, et al. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation [J]. Energy & Environmental Science, 2014, 7(10): 3192-3222. [18] HADIA N M A, ALZAID M, MOHAMED W S. Tailoring the physical properties of low dimensional MgO nanostructures using vapor transport deposition [J]. Materials Characterization, 2020, 165: 110392. doi: 10.1016/j.matchar.2020.110392 [19] MENG Z C, GAO L Y, LIU Z Q. Synthesis of Sn nanowire by template electrodeposition and its conversion into Sn nanosolder [J]. Materials Characterization, 2020, 163: 110278. doi: 10.1016/j.matchar.2020.110278 [20] ZHANG Y, NISHI N, AMANO K, et al. One-dimensional Pt nanofibers formed by the redox reaction at the ionic liquid| water interface [J]. Electrochimica Acta, 2018, 282: 886-891. doi: 10.1016/j.electacta.2018.06.024 [21] WANG L, YANG G R, PENG S J, et al. One-dimensional nanomaterials toward electrochemical sodium-ion storage applications via electrospinning [J]. Energy Storage Materials, 2020, 25: 443-476. doi: 10.1016/j.ensm.2019.09.036 [22] JIANG Z X, ZHAO Y, YANG P. Formation of MFe2O4(M = Co, Mn, Ni) 1D nanostructures towards rapid removal of pollutants [J]. Materials Chemistry and Physics, 2018, 214: 1-7. doi: 10.1016/j.matchemphys.2018.04.066 [23] MOHEMAN A, ALAM M S, MOHAMMAD A. Recent trends in electrospinning of polymer nanofibers and their applications in ultra-thin layer chromatography [J]. Advances in Colloid and Interface Science, 2016, 229: 1-24. doi: 10.1016/j.cis.2015.12.003 [24] KIM T, NAOKI W, MIYAWAKI J, et al. Synthesis of surface-replicated ultra-thin silica hollow nanofibers using structurally different carbon nanofibers as templates [J]. Journal of Solid State Chemistry, 2019, 272: 21-26. doi: 10.1016/j.jssc.2019.01.025 [25] LIN J, YANG Y, ZHANG H, et al. Carbon nanotube growth on titanium boride powder by chemical vapor deposition: Influence of nickel catalyst and carbon precursor supply [J]. Ceramics International, 2020, 46(8): 12409-12415. doi: 10.1016/j.ceramint.2020.02.002 [26] 刘朋超, 龚静华, 杨曙光, 等. 静电纺丝法制备陶瓷中空纳米纤维的研究进展 [J]. 无机材料学报, 2013, 28(6): 571-578. doi: 10.3724/SP.J.1077.2013.12625 LIU P C, GONG J H, YANG S G, et al. Research progress on the preparation of ceramic hollow nanofibers by electrospinning [J]. Journal of Inorganic Materials, 2013, 28(6): 571-578(in Chinese). doi: 10.3724/SP.J.1077.2013.12625
[27] BAZILEVSKY A V, YARIN A L, MEGARIDIS C M. Co-electrospinning of core-shell fibers using a single-nozzle technique [J]. Langmuir, 2007, 23(5): 2311-2314. doi: 10.1021/la063194q [28] LI X H, SHAO C L, LIU Y C. A simple method for controllable preparation of polymer nanotubes via a single capillary electrospinning [J]. Langmuir, 2007, 23(22): 10920-10923. doi: 10.1021/la701806f [29] JING P P, DU J L, WANG J B, et al. Hierarchical SrTiO3/NiFe2O4 composite nanostructures with excellent light response and magnetic performance synthesized toward enhanced photocatalytic activity [J]. Nanoscale, 2015, 7(35): 14738-14746. doi: 10.1039/C5NR04819B [30] DUAN N, GENG X, YE L, et al. A vascular tissue engineering scaffold with core-shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation [J]. Biomedical Materials, 2016, 11(3): 035007. doi: 10.1088/1748-6041/11/3/035007 [31] CHANG G, ZHENG X, CHEN R, et al. Silver nanoparticles filling in TiO2 hollow nanofibers by coaxial electrospinning [J]. Acta Physico-Chimica Sinica, 2008, 24(10): 1790-1797. doi: 10.1016/S1872-1508(08)60073-X [32] KANG S, HWANG J. Fabrication of hollow activated carbon nanofibers (HACNFs) containing manganese oxide catalyst for toluene removal via two-step process of electrospinning and thermal treatment [J]. Chemical Engineering Journal, 2020, 379: 122315. doi: 10.1016/j.cej.2019.122315 [33] CHEN H, WANG N, DI J C, et al. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning [J]. Langmuir, 2010, 26(13): 11291-11296. doi: 10.1021/la100611f [34] CHO J S, HONG Y J, KANG Y C. Electrochemical properties of fiber-in-tube-and filled-structured TiO2 nanofiber anode materials for lithium-ion batteries [J]. Chemistry-A European Jounal, 2015, 21(31): 11082-11087. doi: 10.1002/chem.201500729 [35] FAN L, XIA Z, XU M J, et al. 1D SnO2 with wire-in-tube architectures for highly selective electrochemical reduction of CO2 to C1 products [J]. Advanced Functional Materials, 2018, 28(17): 1706289. doi: 10.1002/adfm.201706289 [36] LANG L, WU D, XU Z. Controllable fabrication of TiO2 1D-nano/micro structures: solid, hollow, and tube-in-tube fibers by electrospinning and the photocatalytic performance [J]. Chemistry-A European Journal, 2012, 18(34): 10661-10668. doi: 10.1002/chem.201200378 [37] JIN R, YANG Y, LI Y F, et al. In situ assembly of well-dispersed gold nanoparticles on hierarchical double-walled nickel silicate hollow nanofibers as an efficient and reusable hydrogenation catalyst [J]. Chemical Communications, 2014, 50(41): 5447-5450. doi: 10.1039/C4CC01286K [38] ZHAO Y, CAO X Y, JIANG L. Bio-mimic multichannel microtubes by a facile method [J]. Journal of the American Chemical Society, 2007, 129(4): 764-765. doi: 10.1021/ja068165g [39] ZHAO T Y, LIU Z Y, NAKATA K, et al. Multichannel TiO2 hollow fibers with enhanced photocatalytic activity [J]. Journal of Materials Chemistry, 2010, 20(24): 5095-5099. doi: 10.1039/c0jm00484g [40] CHEN H Y, DI J C, WANG N, et al. Fabrication of hierarchically porous inorganic nanofibers by a general microemulsion electrospinning approach [J]. Small, 2011, 7(13): 1779-1783. doi: 10.1002/smll.201002376 [41] LIU S B, LU X F, XIAO J, et al. Bi2O3 nanosheets grown on multi-channel carbon matrix catalyze efficient CO2 electroreduction to HCOOH [J]. Angewandte Chemie International Edition, 2019, 58(39): 13828-13847. doi: 10.1002/anie.201907674 [42] ZHANG L, ZHAO Z J, WANG T, et al. Nano-designed semiconductors for electro-and photoelectro-catalytic conversion of carbon dioxide [J]. Chemical Society Reviews, 2018, 47: 5423-5443. doi: 10.1039/C8CS00016F [43] TANG Z M, ZHAO Y X, LAI Q X, et al. Stepwise fabrication of co-embedded porous multichannel carbon nanofibers for high-efficiency oxygen reduction [J]. Nano-Micro Letters, 2019, 33: 11. [44] SIRIRERKRATANA K, KEMCHEEVAKUL P, CHUANGCHOTE S, et al. Color removal from wastewater by photocatalytic process using titanium dioxide-coated glass, ceramic tile, and stainless steel sheets [J]. Journal of Cleaner Production, 2019, 215: 123-130. doi: 10.1016/j.jclepro.2019.01.037 [45] AREERACHAKUL N, SAKULKHAEMARUETHAI S, JOHIR M A H, et al. Photocatalytic degradation of organic pollutants from wastewater using aluminium doped titanium dioxide [J]. Journal of Water Process Engineering, 2019, 27: 177-184. doi: 10.1016/j.jwpe.2018.12.006 [46] YE F, WANG Z H, MI Y Z, et al. Preparation of reduced graphene oxide/titanium dioxide composite materials and its application in the treatment of oily wastewater [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 586: 124251. [47] MAMAGHANI A H, HAGHIGHAT F, LEE C S. Role of Titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification [J]. Applied Catalysis B:Environmental, 2020, 269: 118735. doi: 10.1016/j.apcatb.2020.118735 [48] AGHIGHI A, HAGHIGHAT F. Evaluation of nano-titanium dioxide (TiO2) catalysts for ultraviolet photocatalytic oxidation air cleaning devices [J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 1622-1629. doi: 10.1016/j.jece.2015.05.019 [49] OSTERMANN R, LI D, YIN Y D, et al. V2O5 nanorods on TiO2 nanofibers: A new class of hierarchical nanostructures enabled by electrospinning and calcination. [J]. Nano Letters, 2006, 6(6): 1297-1302. doi: 10.1021/nl060928a [50] FORMO E, LEE E, CAMPBELL D, et al. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications [J]. Nano Letters, 2008, 8(2): 668-672. doi: 10.1021/nl073163v [51] ZHAO K, TENG L T, TANG Y F, et al. Branched titanium oxide/vanadium oxide composite nanofibers formed by electrospinning and dipping in vanadium sol [J]. Ceramics International, 2014, 40(9): 15335-15340. doi: 10.1016/j.ceramint.2014.06.079 [52] WANG C H, ZHANG X T, SHAO C L, et al. Rutile TiO2 nanowires on anatase TiO2 nanofibers: A branched heterostructured photocatalysts via interface-assisted fabrication approach [J]. Journal of Colloid and Interface Science, 2011, 363(1): 157-164. doi: 10.1016/j.jcis.2011.07.035 [53] KIM S J, CHO Y K, SEOK J, et al. Highly branched RuO2 nanoneedles on electrospun TiO2 nanofibers as an efficient electrocatalytic platform [J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15321-15330.