-
早在1998年,Havers等[1]对德国农村和城市采集的颗粒物分析表明,大气颗粒物(particulate matter,PM)中超过10%的物质属于腐殖酸和富里酸这类大分子,样品通过离子交换树脂分离后采用傅里叶红外光谱(fourier transform infrared spectroscopy, FTIR)、核磁共振(nuclear magnetic resonance, NMR)等对其结构进行了表征,认为其结构和土壤、水生系统中的腐殖酸和富里酸相似,但分子量更低并富含脂肪族和碳水化合物,称为类腐殖酸(humic-like substances,HULIS)。HULIS是一类弱极性、水溶性、相对分子量较高(一般为200—500 Da,也有的分子量比200低)的有机混合物[2-3],由多个共轭结构和含有羧基、羟基和羰基等极性官能团的脂肪族侧链的芳香结构组成[4-6],但与陆/水生腐殖质相比,HULIS的表面活性更高、酸性更小、分子量和芳香性更低[2]。HULIS普遍存在于雾、云、积雪和PM中[7-10],是水溶性有机物的重要组成部分[11]。
大气中HULIS来源广泛,包括生物质燃烧[12-13]、机动车尾气排放[14]、海上迁移[15-16]和二次反应[17-18],其中生物质燃烧[19-21]和二次反应(气相和液相)是最主要的两个来源[22]。在模拟生物质燃烧排放的木质素化合物(3,5-二羟基苯甲酸)与羟基自由基(·OH)在云中的反应时,发现产物与腐殖酸和黄腐酸的UV-vis光谱基本一致,表明前体物在大气液相中通过自由基聚合为大分子量的HULIS[23];本课题组开展四乙基酚大气液相氧化实验,也测定出产物中含有HULIS,导致吸光性增强[24];Lin等[21]研究表明,受生物质燃烧影响的区域大气HULIS浓度明显升高。Limbeck等[25]认为目前已经确定的HULIS来源—生物质燃烧并不能完全解释欧洲HULIS水平,他提出了在硫酸气溶胶催化下异戊二烯或萜类通过非均相低聚反应形成HULIS;汽车或船舶机油内燃几乎不产生一次源HULIS,但排放的芳香烃(如甲苯、二甲苯等)和硝酸盐可通过二次反应而形成HULIS,因此冬季夜间硝酸盐与有机物液相氧化是HULIS形成的一个重要来源[26]。Iinuma等[27]研究了在酸性粒子存在下,α-蒎烯的臭氧化形成SOA,并经测定结果显示,颗粒相有机物增加了40%,且形成了具有HULIS性质的化合物。研究表明[28-29],硫酸和有机化合物的低聚反应形成高分子量的有机硫酸盐和有机硫酸酯(一类重要的HULIS)。最近有研究[13]提出废物焚烧排放大量的多环芳烃(polycyclic aromatic hydrocarbons, PAHs),也是形成HULIS的来源之一。
HULIS在大气过程中起着重要作用,例如形成云凝结核(cloud condensation nuclei,CCN)、通过吸湿生长增加单个粒子的反照率[30-32],及吸收紫外线从而引发辐射转移和光化学反应等[33]。近年来, 受污染的空气中某些物质通过细胞诱导产生活性氧化物种(reactive oxygen species,ROS),包括H2O2、O2-•、·OH和RO·,从而导致肺炎、哮喘等疾病率升高的研究引起了广泛关注[34]。很多研究[35-36]围绕HULIS或者HULIS-过渡金属螯合产生ROS,从而导致健康影响风险的作用机制开展。
尽管大气颗粒物中HULIS的研究比较多,但关于其特性、在大气转化中的作用以及对人体健康的影响机制等还存在很多不确定性,因此研究大气中的HULIS具有重要的意义。Zheng等[11]综述了HULIS的测定方法,重点关注了外场观测大气颗粒物中HULIS浓度时空变化及来源。本文总结了HULIS的分离和提取方法、测定方法、细胞毒性机制、吸光特性、光敏性等,重点关注了气溶胶致毒机理、ROS的测定方法和HULIS的毒理性,从而为读者全面了解大气PM中HULIS的特性提供参考。
大气颗粒物中类腐殖质的测定、理化特性及健康影响
Determination, physical and chemical characterization and health risk of HULIS in atmospheric particulate matter
-
摘要: 类腐殖质(humic-like substance,HULIS)是一类水溶性、相对分子量高的有机混合物,常见于雾滴、云滴、积雪和大气颗粒物(PM)中。本文主要综述了大气PM中HULIS的提取和分析方法、毒理性、吸光特性和光敏性,重点探讨了PM中有机物和过渡金属(尤其是Fe离子)产生活性氧化性物种(reactive oxygen species, ROS)从而破坏DNA的致毒机理,进一步提出HULIS(含有可逆的氧化还原位点)单独或与过渡金属螯合成有机-金属配体形成ROS的机理。最后对未来大气HULIS的研究方向进行了展望,指出今后应该加强大气HULIS、金属等通过细胞内催生ROS的测定及细胞毒性相关的研究,并关注HULIS的化学结构、分子组分等的定量分析,更好地揭示物质结构与细胞毒性之间的作用机制和关系, 以期为大气HULIS的健康影响提供支持。Abstract: Humic-like substances are a kind of water-soluble, high molecular weight organic mixtures, which usually exist in fog droplets, cloud droplets, snow and atmospheric particulate matters (PM). This paper mainly summarize extraction and isolation, analytical methods, toxicological property, absorbing-light characteristic and photosensitivity, with emphasis on exploring toxic mechanism on DNA damage via generation of reactive oxygen species (ROS) from organic matter and transition metals (especially iron), and further put forward ROS formation mechanism via individual HULIS or HULIS chelating with metal to form organic-metal complexes. At last, the research direction of ambient particle HULIS (reversible redox-active sites) in the future is prospected. It was pointed out that we should highlight intracellular ROS determination and cytotoxicity from atmospheric HULIS and metals, with more attention on quantitation on chemical structure, molecular composition. On the Basis of above study, we can better obtain driving mechanism and correlation between matter structure and cytotoxicity, and try to provide insights into the health risks caused by atmospheric HULIS.
-
表 1 不同SPE吸附柱结构和适用范围
Table 1. Different SPE adsorption column structure and application range
SPE柱
SPE
column填充成分及特点
Filling composition
and characteristics分离原理
Separation principle干扰物组分
Chaff interferent适用范围
Range of
applicationC-18 C18烷基链,非极性,
高疏水性利用亲、疏水性
分离、酸化长链有机羧酸、芳香酸、芳香
醇等极性有机物,硝基
PAHs、苯醌等非极性到中等极
性化合物分离HLB N-乙烯基吡咯烷酮和
亲脂二乙烯基苯利用亲、疏水性
分离、酸化芳香酸、短链羧酸、羟基酸等
具有
芳香结构和极性官能
团的化合物极性化合物分离 XAD-8 聚合甲基丙烯酸酯,
非离子型、大孔
径、弱极性利用化合物极性分离、
反冲洗脱处理长链高分子量二元酸、芳香酸 高共轭、酸性、疏
水性物质分离DEAE 二乙氨乙基纤维素,
弱阴离子交换柱利用化合物酸性分离、不
需要酸化、需要高离子
强度试剂作为洗脱剂3,5-二甲氧基苯甲酸 高分子量、高芳香
性化合物分离SAX 强阴离子交换树脂 串联在C18 柱之后使用 表 2 大气PM中HULIS测定方法及浓度
Table 2. Determination method and concentration of HULIS in atmospheric PM
采样地点
Site样品
Sample type采样时间
Sampling period分离方法
Isolation
methodHULIS-C
/(µg·m-3)HULIS/
(µg·m-3)HULIS-
C/WSOC测定方法
Quantification
method中国
城市北京 PM2.5 2012.6—2013.4 HLB 7.5 — 59.5% TOC[66] 上海 PM2.5 2011.12—2012.11 HLB 2.69 — 62.8% TOC[67] 常州 PM2.5 2017.1—2017.2 HLB 4.18 — 51.4% TOC[62] 兰州 PM2.5 2012.12 HLB — 7.24 84.7% ELSD[68] 2013.6—2013.7 — 2.15 80.2% 西安 PM2.5 2008.7—2009.8 HLB 3.1 — 34.5% 热光法[69] 广州 PM2.5 2009.1—2009.12 HLB 4.83 — 48.0% ELSD[12] 中国
农村广州 TSP 2006.7 HLB — 4.3 37.0% 重力法[54] 2007.1 — 7.8 44.0% 香港 PM2.5 2007.11 HLB — 11.8 60.0% ELSD[18] 外国
城市瑞士 PM10 2002.8—2002.9 SEC — 1.32 30.0% UV-vis[50] 法国 PM10 2007.11—2008.2 DEAE 2.28 — 38.6% TOC[20] 日本 TSP 2011.7—2011.9 HLB 1.75 — 51.0% TOC[45] 2011.12—2012.2 1.50 — 30.0% 外国
农村印度 PM10 2015.12—2016.1 HLB 15.3 — 45.1% TOC[70] 葡萄牙 PM2.5 2002.7—2003.7 XAD-8+XAD-4 1.97 — 51.6% TOC[71] 瑞士 PM1 2005.12—2006.1 C18 — 1.10 — ELSD[55] 韩国 PM2.5 2015.6—2015.7 HLB 1.3 — 50.0% TOC[72] 2015.12—2016.1 1.9 / 60.0% 海洋 中国广州 PM2.5 2007.7—2008.8 HLB — 7.1 — ELSD[21] 葡萄牙 PM2.5 2002.9—2004.5 C18+
SAX0.08 — 21.0% TOC[10] 高原 西藏 TSP 2015.8—2015.9 HLB 0.22 — 59.0% TOC[73] 森林 中国广州 TSP 2006.7 HLB — 5.7 40.5% 重力法[54] 法国 PM2.5 2002.9—2004.5 C18+
SAX0.35 — 23.0% TOC[10] 德国 PM2.5 2002.9—2004.5 C18+
SAX0.37 — 14.0% TOC[10] -
[1] HAVERS N, BURBA P, LAMBERT J, et al. Spectroscopic characterization of humic-like substances in airborne particulate matter [J]. Journal of Atmospheric Chemistry, 1998, 29(1): 45-54. doi: 10.1023/A:1005875225800 [2] GRABER E R, RUDICH Y. Atmospheric HULIS: how humic-like are they? A comprehensive and critical review [J]. Atmospheric Chemistry and Physics, 2006, 6(3): 729-753. doi: 10.5194/acp-6-729-2006 [3] KRISTENSEN T B, DU L, NGUYEN Q T, et al. Chemical properties of HULIS from three different environments [J]. Journal of Atmospheric Chemistry, 2015, 72(1): 65-80. doi: 10.1007/s10874-015-9302-8 [4] DECESARI S, FACCHINI M C, FUZZI S, et al. Characterization of water-soluble organic compounds in atmospheric aerosol: A new approach [J]. Journal of Geophysical Research:Atmospheres, 2000, 105(D1): 1481-1489. doi: 10.1029/1999JD900950 [5] KISS G, VARGA B, GALAMBOS I, et al. Characterization of water-soluble organic matter isolated from atmospheric fine aerosol [J]. Journal of Geophysical Research:Atmospheres, 2002, 107(D21): 1-8. [6] WIN M S, TIAN Z, ZHAO H, et al. Atmospheric HULIS and its ability to mediate the reactive oxygen species (ROS): A review [J]. Journal of Environmental Sciences, 2018, 71: 13-31. doi: 10.1016/j.jes.2017.12.004 [7] KRIVACSY Z, KISS G, VARGA B, et al. Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis [J]. Atmospheric Environment, 2000, 34(25): 4273-4281. doi: 10.1016/S1352-2310(00)00211-9 [8] FACCHINI M C, DECESARI S, MIRCEA M, et al. Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon content and chemical composition [J]. Atmospheric Environment, 2000, 34(28): 4853-4857. doi: 10.1016/S1352-2310(00)00237-5 [9] VOISIN D, JAFFREZO J L, HOUDIER S, et al. Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow [J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D0): 19. [10] FECZKO T, PUXBAUM H, KASPER-GIEBL A, et al. Determination of water and alkaline extractable atmospheric humic-like substances with the TU Vienna HULIS analyzer in samples from six background sites in Europe [J]. Journal of Geophysical Research, 2007, 112(D23): 10. [11] ZHENG G J, HE K B, DUAN F K, et al. Measurement of humic-like substances in aerosols: a review [J]. Environmental Pollution, 2013, 181: 301-314. doi: 10.1016/j.envpol.2013.05.055 [12] KUANG B Y, LIN P, HUANG X H H, et al. Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM2.5 major components and source markers [J]. Atmospheric Chemistry and Physics, 2015, 15(4): 1995-2008. doi: 10.5194/acp-15-1995-2015 [13] MA Y Q, CHENG Y B, QIU X H, et al. Sources and oxidative potential of water-soluble humic-like substances (HULISWS) in fine particulate matter (PM2.5) in Beijing [J]. Atmospheric Chemistry and Physics, 2018, 18(8): 5607-5617. doi: 10.5194/acp-18-5607-2018 [14] HADDAD I E, MARCHAND N, DRON, J, et al. Comprehensive primary particulate organic characterization of vehicular exhaust emissions in France [J]. Atmospheric Environment, 2009, 43(39): 6190-6198. doi: 10.1016/j.atmosenv.2009.09.001 [15] CALACE N, PETRONIO B M, CINI R, et al. Humic marine matter and insoluble materials in Antarctic snow [J]. International Journal of Environmental Analytical Chemistry, 2001, 79(4): 331-348. doi: 10.1080/03067310108044393 [16] CAVALLI F, FACCHINI M C, DECESARI S, et al. Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic [J]. Journal of Geophysical Research, 2004, 109(D24): 215. [17] SALMA I, MESZAROS T, MAENHAUT W. Mass size distribution of carbon in atmospheric humic-like substances and water soluble organic carbon for an urban environment [J]. Journal of Aerosol Science, 2013, 56: 53-60. doi: 10.1016/j.jaerosci.2012.06.006 [18] LIN P, HUANG X F, HE L Y, et al. Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China [J]. Journal of Aerosol Science, 2010, 41(1): 74-87. doi: 10.1016/j.jaerosci.2009.09.001 [19] MAYOL-BRACERO O L, GUYON P, GRAHAM B, et al. Water-soluble organic compounds in biomass burning aerosols over Amazonia 2. apportionment of the chemical composition and importance of the polyacidic fraction [J]. Journal of Geophysical Research, 2002, 107(D20): 8091. doi: 10.1029/2001JD000522 [20] BADUEL C, VOISIN D, JAFFREZO J L, et al. Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments [J]. Atmospheric Chemistry and Physics, 2010, 10(9): 4085-4095. doi: 10.5194/acp-10-4085-2010 [21] LIN P, ENGLING G, YU J Z. Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region, China [J]. Atmospheric Chemistry and Physics, 2010, 10(14): 6487-6500. doi: 10.5194/acp-10-6487-2010 [22] ALTIERI K E, SEITZINGER S P, CARLTON A G, et al. Oligomers formed through in-cloud methylglyoxal reactions: chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry [J]. Atmospheric Environment, 2008, 42(7): 1476-1490. doi: 10.1016/j.atmosenv.2007.11.015 [23] HOFFER A, KISS G, BLAZSO M, et al. Chemical characterization of humic-like substances (HULIS) formed from a lignin-type precursor in model cloud water [J]. Geophysical Research Letters, 2004, 31(L6): 115. [24] YE Z L, QU Z X, MA S S, et al. A comprehensive investigation of aqueous-phase photochemical oxidation of 4-ethylphenol [J]. Science of the Total Environment, 2019, 685: 976-985. doi: 10.1016/j.scitotenv.2019.06.276 [25] LIMBECK A, KULMALA M, PUXBAUM H, et al. Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles [J]. Geophysical Research Letters, 2003, 30(19): 1-4. [26] ZHAO M F, QIAO T, LI Y L, et al. Temporal variations and source apportionment of Hulis-C in PM2.5 in urban Shanghai [J]. the Science of the Total Environment, 2016, 571(16): 18-26. [27] IINUMA Y, MULLER C, BOGE O, et al. The formation of organic sulfate esters in the limonene ozonolysis secondary organic aerosol (SOA) under acidic conditions [J]. Atmospheric Environment, 2007, 41(27): 5571-5583. doi: 10.1016/j.atmosenv.2007.03.007 [28] IINUMA Y, MULLER C, BERNDT T, et al. Evidence for the existence of organosulfates from β-pinene ozonolysis in ambient secondary organic aerosol [J]. Environmental Science and Technology, 2007, 41(19): 6678-6683. doi: 10.1021/es070938t [29] SURRATT J D, GOMEZ-GONZALEZ Y, CHAN A W H, et al. Organosulfate formation in biogenic secondary organic aerosol [J]. the Journal of Physical Chemistry A, 2008, 112(36): 8345-8378. doi: 10.1021/jp802310p [30] GYSEL M, WEINGARTNER E, NYEKI S, et al. Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol [J]. Atmospheric Chemistry and Physics, 2004, 4(1): 35-50. doi: 10.5194/acp-4-35-2004 [31] DINAR E, TARANIUK I, GRABER E R, et al. Cloud condensation nuclei properties of model and atmospheric HULIS [J]. Atmospheric Chemistry and Physics, 2006, 6(66): 2465-2482. [32] WANG B, KNOPF D A. Heterogeneous ice nucleation on particles composed of humic-like substances impacted by O3 [J]. Journal of Geophysical Research, 2011, 116(D3): 205. [33] HOFFER A, GELENCSER A, GUYON P, et al. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols [J]. Atmospheric Chemistry and Physics, 2006, 6(68): 3563-3570. [34] DELFINO R J, STAIMER N, TJOA T, et al. Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel [J]. Journal of Exposure Science and Environmental Epidemiology, 2013, 23(5): 466-473. doi: 10.1038/jes.2013.25 [35] DOU J, LIN P, KUANG B Y, et al. Reactive oxygen species production mediated by humic-like substances in atmospheric aerosols: enhancement effects by pyridine, imidazole, and their derivatives [J]. Environmental Science and Technology, 2015, 49(11): 6457-6465. doi: 10.1021/es5059378 [36] LIN P, YU J Z. Generation of reactive oxygen species mediated by humic-like substances in atmospheric aerosols [J]. Environmental Science and Technology, 2011, 45(24): 10362-10368. doi: 10.1021/es2028229 [37] VARGA B, KISS G, GANSZKY I, et al. Isolation of water-soluble organic matter from atmospheric aerosol [J]. Talanta, 2001, 55(3): 561-572. doi: 10.1016/S0039-9140(01)00446-5 [38] GORA R, HUTTA M. Reversed-phase liquid chromatographic characterization and analysis of air particulates humic (-like) substances in presence of pollens [J]. Journal of Chromatography A, 2005, 1084(1/2): 39-45. [39] ANDRACCHIO A, CAVICCHI C, TONELLI D, et al. A new approach for the fractionation of water-soluble organic carbon in atmospheric aerosols and cloud drops [J]. Atmospheric environment, 2002, 36(32): 5097-5107. doi: 10.1016/S1352-2310(02)00238-8 [40] SAMBUROVA V, DIDENKO T, KUNENKOV E, et al. Functional group analysis of high-molecular weight compounds in the water-soluble fraction of organic aerosols [J]. Atmospheric Environment, 2007, 41(22): 4703-4710. doi: 10.1016/j.atmosenv.2007.03.033 [41] SULLIVAN A P, WEBER R J. Chemical characterization of the ambient organic aerosol soluble in water: 1. isolation of hydrophobic and hydrophilic fractions with a XAD-8 resin [J]. Journal of Geophysical Research, 2006, 111(D5): 314. [42] BADUEL C, VOISIN D, JAFFREZO J L. Comparison of analytical methods for humic-like substances (HULIS) measurements in atmospheric particles [J]. Atmospheric Chemistry and Physics, 2009, 9(175): 5949-5962. [43] FAN X J, SONG J Z, PENG P A. Comparison of isolation and quantification methods to measure humic-like substances (HULIS) in atmospheric particles [J]. Atmospheric Environment, 2012, 60: 366-374. doi: 10.1016/j.atmosenv.2012.06.063 [44] MIYAZAKI Y, KONDO Y, SHIRAIWA M, et al. Chemical characterization of water-soluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006 [J]. Journal of Geophysical Research, 2009, 114(D14): 208. [45] CHEN Q C, IKEMORI F, HIGO H, et al. Chemical structural characteristics of HULIS and other fractionated organic matter in urban aerosols: results from mass spectral and FT-IR analysis [J]. Environmental Science and Technology, 2016, 50(4): 1721-1730. doi: 10.1021/acs.est.5b05277 [46] LIMBECK A, HANDLER M, NEUBERGER B, et al. Carbon-specific analysis of humic-like substances in atmospheric aerosol and precipitation samples [J]. Analytical Chemistry, 2005, 77(22): 7288-7293. doi: 10.1021/ac050953l [47] DUARTE R M B O, DUARTE A C. Application of non-ionic solid sorbents (XAD resins) for the isolation and fractionation of water-soluble organic compounds from atmospheric aerosols [J]. Journal of Atmospheric Chemistry, 2005, 51(1): 79-93. doi: 10.1007/s10874-005-8091-x [48] STONE E A, HEDMAN C J, SHEESLEY R J, et al. Investigating the chemical nature of humic-like substances (HULIS) in North American atmospheric aerosols by liquid chromatography tandem mass spectrometry [J]. Atmospheric Environment, 2009, 43(27): 4205-4213. doi: 10.1016/j.atmosenv.2009.05.030 [49] ZAPPOLI S, ANDRACCHIO A, FUZZI S, et al. Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility [J]. Atmospheric Environment, 1999, 33(17): 2733-2743. doi: 10.1016/S1352-2310(98)00362-8 [50] SAMBUROVA V, ZENOBI R, KALBERER M. Characterization of high molecular weight compounds in urban atmospheric particles [J]. Atmospheric Environment and Physics, 2005, 5(53): 2163-2170. [51] PAVLOVIC J, HOPKE P K. Chemical nature and molecular weight distribution of the water-soluble fine and ultrafine PM fractions collected in a rural environment [J]. Atmospheric Environment, 2012, 59: 264-271. doi: 10.1016/j.atmosenv.2012.04.053 [52] SANTOS P S M, OTERO M, FILIPE O M S, et al. Comparison between DAX-8 and C-18 solid phase extraction of rainwater dissolved organic matter [J]. Talanta, 2010, 83(2): 505-512. doi: 10.1016/j.talanta.2010.09.050 [53] CHANG J L, THOMPSON J E. Characterization of colored products formed during irradiation of aqueous solutions containing H2O2 and phenolic compounds [J]. Atmospheric Environment, 2010, 44(4): 541-551. doi: 10.1016/j.atmosenv.2009.10.042 [54] SONG J Z, HE L L, PENG P A, et al. Chemical and isotopic composition of humic-like substances (HULIS) in ambient aerosols in Guangzhou, South China [J]. Aerosol Science and Technology, 2012, 46(5): 533-546. doi: 10.1080/02786826.2011.645956 [55] EMMENEGGER C, REINHARDT A, HUEGLIN C, et al. Evaporative light scattering: a novel detection method for the quantitative analysis of humic-like substances in aerosols [J]. Environmental Science and Technology, 2007, 41(7): 2473-2478. doi: 10.1021/es061095t [56] YOUNG C S, DOLAN J W. Success with evaporative light-scattering detection [J]. LC-GC Europr, 2003, 16(3): 132-137. [57] 项萍, 谭吉华, 马永亮, 等. 大气颗粒物中类腐殖酸的研究进展 [J]. 环境化学, 2015, 34(3): 401-409. doi: 10.7524/j.issn.0254-6108.2015.03.2014071902 XIANG P, TAN J H, MA Y L, et al. Research progress of humic-like substances (HULIS) in atmospheric particles [J]. Environmental Chemistry, 2015, 34(3): 401-409(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.03.2014071902
[58] KISS G, TOMBACZ E, VARGA B, et al. Estimation of the average molecular weight of humic-like substances isolated from fine atmospheric aerosol [J]. Atmospheric Environment, 2003, 37(27): 3783-3794. doi: 10.1016/S1352-2310(03)00468-0 [59] POLIDORI A, TURPIN B J, DAVIDSON C I, et al. Organic PM2.5: Fractionation by polarity, FTIR spectroscopy, and OM/OC ratio for the pittsburgh aerosol [J]. Aerosol Science and Technology, 2008, 42(3): 233-246. doi: 10.1080/02786820801958767 [60] WENTWORTH G R, AL-ABADLEH H A. DRIFTS studies on the photosensitized transformation of gallic acid by iron(III) chloride as a model for HULIS in atmospheric aerosols [J]. Physical Chemistry Chemical Physics, 2011, 13(14): 6507-6516. doi: 10.1039/c0cp01953d [61] YE Z l, LI Q, MA S S, et al. Summertime day-night differences of PM2.5 components (inorganic Ions, OC, EC, WSOC, WSON, HULIS, and PAHs) in Changzhou, China [J]. Atmosphere, 2017, 8(10): 189. [62] 顾远, 李清, 黄雯倩, 等. 常州市冬季PM2.5中类腐殖质昼夜特征分析 [J]. 环境科学, 2019, 40(3): 1091-1100. GU Y, LI Q, HUANG W Q, et al. Day-night characteristics of humic-like substances in PM2.5 during winter in Changzhou] [J]. Environmental Science, 2019, 40(3): 1091-1100(in Chinese).
[63] FAN X J, WEI S Y, ZHU, M B, et al. Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels [J]. Atmospheric Chemistry and Physics, 2016, 16(20): 13321-13340. doi: 10.5194/acp-16-13321-2016 [64] LIN P, RINCON A G, KALBERER M, et al. Elemental composition of HULIS in the Pearl River Delta Region, China: results inferred from positive and negative electrospray high resolution mass spectrometric data [J]. Environmental Science and Technology, 2012, 46(14): 7454-7462. doi: 10.1021/es300285d [65] KUMAR V, RAJPUT P, GOEL A. Atmospheric abundance of HULIS during wintertime in Indo-Gangetic Plain: impact of biomass burning emissions [J]. Journal of Atmospheric Chemistry, 2018, 75(4): 385-398. doi: 10.1007/s10874-018-9381-4 [66] LI X, HAN J Z, HOPKE P K, et al. Quantifying primary and secondary humic-like substances in urban aerosol based on emission source characterization and a source-oriented air quality model [J]. Atmospheric Chemistry and Physics, 2019, 19(4): 2327-2341. doi: 10.5194/acp-19-2327-2019 [67] 黄众思, 修光利, 蔡婧, 等. 大气PM2.5中水溶性有机碳和类腐殖质碳的季节变化特征 [J]. 环境科学学报, 2013, 33(10): 2664-2670. HUANG Z S, XIU G L, CAI J, et al. Seasonal characterization of water-soluble organic carbon and humic-like substance carbon in atmospheric PM2.5 [J]. Acta Scientiae Circumstantiae, 2013, 33(10): 2664-2670(in Chinese).
[68] TAN J H, XIANG P, ZHOU X M, et al. Chemical characterization of humic-like substances (HULIS) in PM2.5 in Lanzhou, China [J]. the Science of the Total Environment, 2016, 573: 1481-1490. doi: 10.1016/j.scitotenv.2016.08.025 [69] 倪海燕, 韩永明, 曹军骥. 西安水溶性类腐殖质气溶胶(HULIS)的污染特征及其来源[C]. 十一届全国气溶胶会议暨第十届海峡两岸气溶胶技术研讨会, 2013: 98. NI H Y, HAN Y M, CAO J J. Pollution characteristics and sources of water soluble humic-like substances aerosol (HULIS) in Xi 'an[C]. 11st National Aerosol Conference and 10th Cross-strait Workshop for Aerosol Science and Technology, 2013: 98(in Chinese).
[70] KUMAR V, GOEL A, RAJPUT P. Compositional and surface characterization of HULIS by UV-Vis, FTIR, NMR and XPS: wintertime study in Northern India [J]. Atmospheric Environment, 2017, 164: 468-475. doi: 10.1016/j.atmosenv.2017.06.008 [71] DUARTE R M B O, SANTOS E B H, PIO C A, et al. Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances [J]. Atmospheric Environment, 2007, 41(37): 8100-8113. doi: 10.1016/j.atmosenv.2007.06.034 [72] PARK S, SON S C, LEE S. Characterization, sources, and light absorption of fine organic aerosols during summer and winter at an urban site [J]. Atmospheric Research, 2018, 213: 370-380. doi: 10.1016/j.atmosres.2018.06.017 [73] WU G M, WAN X, GAO S P, et al. Humic-like substances (HULIS) in aerosols of central Tibetan Plateau (Nam Co, 4730 m asl): abundance, light absorption properties, and sources [J]. Environmental Science and Technology, 2018, 52(13): 7203-7211. doi: 10.1021/acs.est.8b01251 [74] MA Y Q, CHENG Y B, GAO G, et al. Speciation of carboxylic components in humic-like substances (HULIS) and source apportionment of HULIS in ambient fine aerosols (PM2.5) collected in Hong Kong [J]. Environmental Science and Pollution Research, 2020, 27: 23172-23180. doi: 10.1007/s11356-020-08915-w [75] CHANG-GRAHAM A L, PROFETA L T M, JOHNSON T J, et al. Case study of water-soluble metal containing organic constituents of biomass burning aerosol [J]. Environmental Science and Technology, 2011, 45: 1257-1263. doi: 10.1021/es103010j [76] SINT T, DONOHUE J F, GHIO A J. Ambient air pollution particles and the acute exacerbation of chronic obstructive pulmonary disease [J]. Inhalation Toxicology, 2008, 20(1): 25-29. doi: 10.1080/08958370701758759 [77] FAJERSZTAJN L, VERAS M, BARROZO L V, et al. Air pollution: A potentially modifiable risk factor for lung cancer [J]. Nature Reviews. Cancer, 2013, 13(9): 674-678. doi: 10.1038/nrc3572 [78] GHIO A J, CARRAWAY M S, MADDEN M C. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems [J]. Journal of Toxicology and Environmental Health Part B Critical Reviews, 2012, 15(1): 1-21. doi: 10.1080/10937404.2012.632359 [79] LI N, HAO M Q, PHALEN R F, et al. Particulate air pollutants and asthma A paradigm for the role of oxidative stress in PM-induced adverse health effects [J]. Clinical Immunology (Orlando), 2003, 109(3): 250-265. doi: 10.1016/j.clim.2003.08.006 [80] SEE S W, WANG Y H, BALASUBRAMANIAN R. Contrasting reactive oxygen species and transition metal concentrations in combustion aerosols [J]. Environmental Research, 2007, 103(3): 317-324. doi: 10.1016/j.envres.2006.08.012 [81] LI N, WANG M Y, BRAMBLE L A, et al. The adjuvant effect of ambient particulate matter is closely reflected by the particulate oxidant potential [J]. Environmental Health Perspectives, 2009, 117(7): 1116-1123. doi: 10.1289/ehp.0800319 [82] GURGUEIRA S A, LAWRENCE J, COULL B, et al. Rapid Increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation [J]. Environmental Health Perspectives, 2002, 110(8): 749-755. doi: 10.1289/ehp.02110749 [83] ZIEMANN P J. Evidence for low-volatility diacyl peroxides as a nucleating agent and major component of aerosol formed from reactions of O3 with cyclohexene and homologous compounds [J]. Journal of Physical Chemistry A, 2002, 106(17): 4390-4402. doi: 10.1021/jp012925m [84] LI Q F, WYATT A, KAMENS R M. Oxidant generation and toxicity enhancement of aged-diesel exhaust [J]. Atmospheric Environment, 2009, 43(5): 1037-1042. doi: 10.1016/j.atmosenv.2008.11.018 [85] YU H R, WEI J L, CHENG Y L, et al. Synergistic and antagonistic interactions among the particulate matter components in generating reactive oxygen species based on the dithiothreitol assay [J]. Environmental Science and Technology, 2018, 52(4): 2261-2270. doi: 10.1021/acs.est.7b04261 [86] LIN M F, YU J Z. Dithiothreitol (DTT) concentration effect and its implications on the applicability of DTT assay to evaluate the oxidative potential of atmospheric aerosol samples [J]. Environmental Pollution, 2019, 251: 938-944. doi: 10.1016/j.envpol.2019.05.074 [87] KING L E, WEBER R J. Development and testing of an online method to measure ambient fine particulate reactive oxygen species (ROS) based on the 2, 7-dichlorofluorescin (DCFH) assay [J]. Atmospheric Measurement Techniques, 2013, 6(7): 1647-1658. doi: 10.5194/amt-6-1647-2013 [88] VENKATACHARI P, HOPKE P K. Development and laboratory testing of an automated monitor for the measurement of atmospheric particle-bound reactive oxygen species (ROS) [J]. Aerosol Science and Technology, 2008, 42(8): 629-635. doi: 10.1080/02786820802227345 [89] PIETROGRANDE M C, BERTOLI I, MANARINI F, et al. Ascorbate assay as a measure of oxidative potential for ambient particles: Evidence for the importance of cell-free surrogate lung fluid composition [J]. Atmospheric Environment, 2019, 211: 103-112. doi: 10.1016/j.atmosenv.2019.05.012 [90] DISTEFANO E, EIGUREN-FERNANDEZ A, DELFINO R J, et al. Determination of metal-based hydroxyl radical generating capacity of ambient and diesel exhaust particles [J]. Inhalation Toxicology, 2009, 21(9): 731-738. doi: 10.1080/08958370802491433 [91] VIDRIO E, PHUAH C H, DILLNER A M, et al. Generation of hydroxyl radicals from ambient fine particles in a surrogate lung fluid solution [J]. Environmental Science and Technology, 2009, 43(3): 922-927. doi: 10.1021/es801653u [92] CHARRIER J G, ANASTASIO C. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals [J]. Atmospheric Chemistry and Physics, 2012, 12(19): 9321-9333. doi: 10.5194/acp-12-9321-2012 [93] LI N, SIOUTAS C, CHO A, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage [J]. Environmental Health Perspectives, 2003, 111(4): 455-460. doi: 10.1289/ehp.6000 [94] 张曼曼, 李慧蓉, 杨闻达, 等. 基于DTT法测量广州市区PM2.5的氧化潜势 [J]. 中国环境科学, 2019, 39(6): 2258-2266. doi: 10.3969/j.issn.1000-6923.2019.06.003 ZHANG M M, LI H R, YANG W D, et al. Measurement based on DTT method of the PM2.5 oxidative potential in Guangzhou urban area [J]. China Environment Science, 2019, 39(6): 2258-2266(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.06.003
[95] LIU W J, XU Y S, LIU W X, et al. Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: seasonal variation and source apportionment [J]. Environmental Pollution, 2018, 236: 514-528. doi: 10.1016/j.envpol.2018.01.116 [96] HEO J, ANTKIEWICZ D S, SHAFER M M, et al. Assessing the role of chemical components in cellular responses to atmospheric particle matter (PM) through chemical fractionation of PM extracts [J]. Analytical and Bioanalytical Chemistry, 2015, 407(20): 5953-5963. doi: 10.1007/s00216-015-8749-4 [97] SAFFARI A, DAHER N, SHAFER M M, et al. Global perspective on the oxidative potential of airborne particulate matter: a synthesis of research findings [J]. Environmental Science and Technology, 2014, 48(13): 7576-7583. doi: 10.1021/es500937x [98] VERMA V, RICO-MARTINEZ R, KOTRA N, et al. Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols [J]. Environmental Science and Technology, 2012, 46(20): 11384-11392. doi: 10.1021/es302484r [99] VERMA V, FANG T, XU L, et al. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5 [J]. Environmental Science and Technology, 2015, 49(7): 4646-4656. doi: 10.1021/es505577w [100] GONZALEZ D H, CALA C K, PENG Q Y, et al. HULIS enhancement of hydroxyl radical formation from Fe(II): kinetics of fulvic acid-Fe(II) complexes in the presence of lung antioxidants [J]. Environmental Science and Technology, 2017, 51(13): 7676-7685. doi: 10.1021/acs.est.7b01299 [101] VERMA V, FANG T, GUO H, et al. Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: spatiotemporal trends and source apportionment [J]. Atmospheric Chemistry and Physics, 2014, 14(23): 12915-12930. doi: 10.5194/acp-14-12915-2014 [102] MCWHINNEY R D, ZHOU S, ABBATT J P D. Naphthalene SOA: redox activity and naphthoquinone gas–particle partitioning [J]. Atmospheric Chemistry and Physics, 2013, 13(19): 9731-9744. doi: 10.5194/acp-13-9731-2013 [103] MA Y Q, CHENG Y B, QIU X H, et al. Optical properties, source apportionment and redox activity of humic-like substances (HULIS) in airborne fine particulates in Hong Kong [J]. Environmental Pollution, 2019, 255: 113087. doi: 10.1016/j.envpol.2019.113087 [104] KOSTIC I, ANDJELKOVIC T, NIKOLIC R, et al. Copper(II) and lead(II) complexation by humic acid and humic-like ligands [J]. Journal of the Serbian Chemical Society, 2011, 76(9): 1325-1336. doi: 10.2298/JSC110310115K [105] ARAKAKI T, SAITO K, OKADA K, et al. Contribution of fulvic acid to the photochemical formation of Fe(II) in acidic Suwannee River fulvic acid solutions [J]. Chemosphere, 2010, 78(8): 1023-1027. doi: 10.1016/j.chemosphere.2009.11.035 [106] MOONSHINE M, RUDICH Y, KATSMAN S, et al. Atmospheric HULIS enhance pollutant degradation by promoting the dark Fenton reaction [J]. Geophysical Research Letters, 2008, 35(20): 807. [107] LU S L, WIN M S, ZENG J Y, et al. A characterization of HULIS-C and the oxidative potential of HULIS and HULIS-Fe(II) mixture in PM2.5 during hazy and non-hazy days in Shanghai [J]. Atmospheric Environment, 2019, 219(117058): 1-8. [108] ZHOU P, YAN H, GU B H. Competitive complexation of metal ions with humic substances [J]. Chemosphere, 2005, 58(10): 1327-1337. doi: 10.1016/j.chemosphere.2004.10.017 [109] AL-ABADLEH H A. Review of the bulk and surface chemistry of iron in atmospherically relevant systems containing humic-like substances [J]. RSC Advances, 2015, 5(57): 45785-45811. doi: 10.1039/C5RA03132J [110] UTRY N, AJTAI T, FILEP A, et al. Mass specific optical absorption coefficient of HULIS aerosol measured by a four-wavelength photoacoustic spectrometer at NIR, VIS and UV wavelengths [J]. Atmospheric Environment, 2013, 69: 321-324. doi: 10.1016/j.atmosenv.2013.01.003 [111] LEE J, JUNG C, KIM Y. Estimation of optical properties for HULIS aerosols at Anmyeon island, Korea [J]. Atmosphere, 2017, 8(7): 120-138. [112] KISS G, VARGA B, GELENCSER A, et al. Characterisation of polar organic compounds in fog water [J]. Atmospheric Environment, 2001, 35(12): 2193-2200. doi: 10.1016/S1352-2310(00)00473-8 [113] DUARTE R M B O, PIO C A, DUARTE A C. Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions [J]. Analytica Chimica Acta, 2005, 530(1): 7-14. doi: 10.1016/j.aca.2004.08.049 [114] VOLIOTIS A, PROKES R, LAMMEL G, et al. New insights on humic-like substances associated with wintertime urban aerosols from central and southern Europe: Size-resolved chemical characterization and optical properties [J]. Atmospheric Environment, 2017, 166: 286-299. doi: 10.1016/j.atmosenv.2017.07.024 [115] HUO Y Q, LI M, JIANG M H, et al. Light absorption properties of HULIS in primary particulate matter produced by crop straw combustion under different moisture contents and stacking modes [J]. Atmospheric Environment, 2018, 191: 490-499. doi: 10.1016/j.atmosenv.2018.08.038 [116] FAN X J, SONG J Z, PENG P A. Temporal variations of the abundance and optical properties of water soluble humic-like substances (HULIS) in PM2.5 at Guangzhou, China [J]. Atmospheric Research, 2016, 172/173: 8-15. doi: 10.1016/j.atmosres.2015.12.024 [117] VIONE D, MAURINO V, MINERO C. Photosensitised humic-like substances (HULIS) formation processes of atmospheric significance: a review [J]. Environmental Science and Pollution Research International, 2014, 21(20): 11614-11622. doi: 10.1007/s11356-013-2319-0 [118] TSUI W G, MCNEILL V F. Modeling secondary organic aerosol production from photosensitized humic-like substances (HULIS) [J]. Environmental Science and Technology Letters, 2018, 5(5): 255-259. doi: 10.1021/acs.estlett.8b00101 [119] LAURENTIIS E D, SUR B, PAZZI M, et al. Phenol transformation and dimerisation, photosensitised by the triplet state of 1-nitronaphthalene: A possible pathway to humic-like substances (HULIS) in atmospheric waters [J]. Atmospheric Environment, 2013, 70: 318-327. doi: 10.1016/j.atmosenv.2013.01.014 [120] WANG X, GEMAYEL R, HAYECK N, et al. Atmospheric photosensitization: a new pathway for sulfate formation [J]. Environmental Science and Technology, 2020, 54(6): 3114-3120. doi: 10.1021/acs.est.9b06347