-
死海位于以色列、巴勒斯坦和约旦的交界处,东西两岸分别为外约旦高原和犹太山地。约旦河作为死海海水的最主要来源,自北注入死海。从各方面上来说,死海都是一个很独特的地区。首先,它的湖面海拔约为−415 m,是世界地表高度最低的湖泊。其次,它位于沙漠中,降水少而不规律,且蒸发量大,因此死海海水中的盐分浓度非常高,是世界上盐分浓度居第三位的水体。Nissenbaum等[1]于1977年对死海海水各成分的浓度进行了测量,发现氯离子和溴离子的浓度高达220 g·L−1和5 g·L−1,分别是普通海水中的10倍和100倍。同时,死海海水中的金属阳离子(例如镁、钠、钙、钾等)的浓度也均明显高于一般海水。此外,死海还是一个庞大的盐储藏地,其南部有一个大蒸发池,可以持续生产盐以供给周边居民使用及商业用途。死海中部地区南侧的“Dead Sea Works”工厂,即利用高盐度的死海海水,进行碳酸钾、氯、溴、金属镁等物质的生产[2]。
20世纪90年代末,Hebestreit等[3]通过观测最早发现,在死海地区的对流层大气中,午间会出现氧化溴(BrO)浓度的爆发性增长,同时伴随臭氧浓度的迅速降低,即臭氧耗损现象(ozone depletion events, 简称ODEs)的发生。此前, ODEs现象主要在极地地区被观测到,并被认为是由独属于极地地区的化学反应所引起的现象。而在死海地区所观测到的ODEs,一方面提供了不同于极地条件的ODEs的观测数据,可以进一步研究ODEs在不同环境下的产生机理。另一方面也使研究学者们对此前所得出的关于ODEs的研究结论进行重新审视与讨论。例如在观测到死海地区的ODEs之前,研究学者们普遍认为ODEs需依赖于极地寒冷的环境以及独特的稳定边界层条件而存在[4],然而在前文中所提到的Hebestreit等的观测中,死海地区在炎热的夏季正午(约40 ℃)也发生了ODEs[3],该温度比极地ODEs发生时高40—60 ℃ [5]。由此,死海地区逐渐成为了研究ODEs的重点区域之一。
然而,目前并没有较为详尽的综述文章对死海地区ODEs的研究现状进行介绍,因此本文针对该地区ODEs现有的观测、模拟等研究发展进行了归纳总结,并通过与极地ODEs间的比较以突显死海地区ODEs的特点。本文阐述了决定死海ODEs发生及终止的化学反应机理,以及非均相反应和氮氧化物(NOx,NO+NO2)对于该现象的作用。归纳总结了死海地区特殊的环境因素(地形、气象条件等)对于死海ODEs可能造成的影响,以及死海ODEs对于当地环境的反馈作用。本文有助于指明对死海ODEs研究的未来方向,从而弥补对死海ODEs现象总体认识的空白。
关于死海地区臭氧耗损现象(ODEs)的研究综述
A review of ozone depletion events (ODEs) in the area of Dead Sea
-
摘要: 自1997年在死海地区的大气边界层中观测到午间臭氧浓度迅速下降的现象后,研究学者们即对该地区的臭氧耗损现象(ozone depletion events, 简称ODEs)展开了研究。而在此之前,大气边界层内的ODEs现象普遍被认为只会发生在极地地区的特殊大气现象。本文综述了关于死海地区ODEs研究的发展历史,主要展示了促使死海ODEs形成的物理化学机理、关于死海地区ODEs的观测和模拟研究,以及死海地区臭氧耗损现象的特点。与极地ODEs类似,造成死海地区的ODEs过程中臭氧耗损的主要化学物质是活性溴化物如氧化溴(BrO)等。但由于死海地区特殊的环境条件,该地区的ODEs在时间尺度上和空间尺度上与极地ODEs存在明显的差异。目前关于死海ODEs的观测研究主要以地面观测为主,并显示相较冬季,死海夏季ODEs的发生频率更高,臭氧耗损也更为明显。而目前关于死海ODEs的模拟研究则以零维和一维模拟为主,模拟中证实了臭氧和BrO之间的负相关关系,并揭示出非均相反应(溴爆炸机制和BrONO2的水解)对于ODEs的重要影响。另外,模拟中还指出了氮氧化物对于ODEs的两面性作用,以及气象条件(如逆温层)对于ODEs产生的影响。现有研究还发现,死海地区特殊的地形、环境条件及其海水中的高溴含量都是促使当地产生ODEs的关键因素。死海ODEs的发生不仅会改变该地区大气边界层中成分(例如汞)的浓度和寿命,也会影响大气的氧化能力,而这些都会对该地区人类的生活和健康产生潜在的作用,因此有必要加深对于该现象的总体认识。Abstract: Ozone depletion events (ODEs) were found to occur in the atmospheric boundary layer of the Dead Sea area at noon since the year 1997, while before that this phenomenon was recognized occurring mostly in high latitudes such as Arctic. In this paper, we reviewed the study history of the ODEs at the Dead Sea, especially summarizing previous observations and model simulations of this phenomenon. We also described the properties of the ODEs at the Dead Sea and the related physico-chemical processes. It was found in previous studies that similar to ODEs occuring in Arctic, reactive bromine species (such as BrO) also play a key role in the occurrence of ODEs at the Dead Sea. However, due to the unique topographic and environmental condition around the Dead Sea, ODEs in the Dead Sea region behave significantly different from those in Arctic, both in spatial and temporal distribution. The observations of the ODEs in the Dead Sea area were mostly ground-based and showed that the ODEs occur in summer more frequently than in winter. The accompanied ozone decrease was also found stronger in summer. The model simulations of ODEs in the Dead Sea area were mostly zero- or one-dimensional, and help to confirm the anticorrelation between ozone and BrO in the observations of the ODEs. The simulation results also revealed the importance of the heterogeneous reactions (such as the “bromine explosion mechanism” and the hydrolysis of BrONO2) in the occurrence of ODEs. Moreover, the model results discovered the two-sided influence of nitrogen oxides on the destruction of ozone during the ODEs, and the impacts of meteorological conditions such as the temperature inversion on ODEs. It was found that the unique environmental conditions, topography and high bromide concentration in the water of Dead Sea are partly responsible for the occurrence and the termination of the ODEs. The occurrence of ODEs is able to alter the oxidation capacity of the atmosphere as well as the lifetime of many components in the boundary layer of the Dead Sea region. Therefore, ODEs in the area of the Dead Sea would potentially have a large influence on the daily life of human beings nearby, thus requiring a more thorough and deeper knowledge of this phenomenon.
-
Key words:
- ozone /
- ozone depletion events /
- Dead Sea /
- bromine /
- halogen /
- nitrogen oxides
-
图 5 Tas等利用UAHCTM_1D模型模拟的在不同非均相反应开/关情况下BrO的日变化[36]a. NOHET-不含有非均相反应(R3)和(R4);b. NOH1-不含有非均相反应(R4);c. NOH2-不含有非均相反应(R3);d. FULL-含有完整的溴化学反应
Figure 5. Simulated BrO diurnal profiles in different scenarios using UAHCTM_1D model [36] a. NOHET-without heterogeneous reaction (R3) and (R4); b. NOH1-without heterogeneous reaction (R4): c. NOH2-without heterogeneous reaction (R3);d. FULL-with full bromine chemistry
表 1 Tas等2001—2002年在死海周边的观测中各站点所处位置及观测条件 [2]
Table 1. Location and observation conditions of stations in the observation around the dead sea from 2001 to 2002 [2]
站点 Stations 观测条件 Observational conditions Ovant(死海北部) 死海西海岸,陆地观测 Ein Bokek(死海中部) 死海水体上空观测 Evaporation ponds DSW (死海南部) 蒸发盐池上空观测 Metzoke Dragot 高空(死海上方400m)及陆地观测 Ein Tamar 蒸发盐池南部,陆地观测 表 2 溴离子和氯离子在普通海水和死海海水中的浓度及其富集程度[2]
Table 2. Concentration and enrichment degree of bromine and chloride ions in ordinary seawater and dead sea seawater by Tas et al. [2]
站点 Station pH Cl−/(g·L−1) Br−/(g·L−1) Br−/Cl−(×103) 富集指数 ${\rm{Br}}_{{\rm{DS}}}^ - /{\rm{Br}}_{{\rm{OW}}}^ - $ 普通海水 19 0.065 3 死海北部(Qalya) 5.9 225 6.1 27 94 死海北部的中间
(Mitzpeh Shalem)5.7 255 6.9 27 106 死海中部(Ein Gedi) 5.8 236 6.4 27 98 蒸发盐池
(Ein Bokek)5.5 306 8.3 27 128 Neveh Zohar 5.0 354 9.6 27 148 死海南部 4.9 405 11.0 27 169 -
[1] NISSENBAUM A. Minor and trace elements in Dead Sea water [J]. Chemical Geology, 1977, 19(1/4): 99-111. [2] TAS E, PELEG M, MATVEEV V, et al. Frequency and extent of bromine oxide formation over the Dead Sea [J]. Journal of Geophysical Research Atmospheres , 2005, 110(D11): D11304. doi: 10.1029/2004JD005665 [3] HEBESTREIT K, STUTZ J, ROSEN D, et al. First DOAS measurements of tropospheric bromine oxide in mid latitudes [J]. Science, 1999, 283(5398): 55-57. doi: 10.1126/science.283.5398.55 [4] SIMPSON W R, von GLASOW R, RIEDEL K, et al. Halogens and their role in polar boundary-layer ozone depletion [J]. Atmospheric Chemistry and Physics, 2007, 7(16): 4375-4418. doi: 10.5194/acp-7-4375-2007 [5] MATVEEV V, PELEG M, ROSEN D,et al. Bromine oxide-ozone interaction over the Dead Sea [J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D10): 10375-10387. doi: 10.1029/2000JD900611 [6] BARRIE L A. Arctic air pollution: An overview of current knowledge [J]. Atmospheric Environment, 1986, 20(4): 643-663. [7] OLTMANS S J, KOMHYR W D. Surface ozone distributions and variations from 1973-1984: Measurements at the NOAA Geophysical Monitoring for Climate Change Baseline Observatories [J]. Journal of Geophysical Research Atmospheres, 1986, 91(D4): 5229-5236. doi: 10.1029/JD091iD04p05229 [8] OLTMANS S J, SCHNELL R C, SHERIDAN P J, et al. Seasonal surface ozone and filterable bromine relationship in the high Arctic [J]. Atmospheric Environment, 1989, 23(11): 2431-2441. doi: 10.1016/0004-6981(89)90254-0 [9] BERG W W, SPERRY P D, RAHN K A, et al. Atmospheric bromine in the Arctic [J]. Journal of Geophysical Research:Atmospheres, 1983, 88(C11): 6719-6736. doi: 10.1029/JC088iC11p06719 [10] STURGES W T. Excess particulate and gaseous bromine at a remote coastal location [J]. Atmospheric Environment, 1990, 24(1): 167-171. doi: 10.1016/0960-1686(90)90452-S [11] BARRIE L A, BOTTENHEIM J W, SCHNELL R C, et al. Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere [J]. Nature, 1988, 334(6178): 138-141. doi: 10.1038/334138a0 [12] FAN S M, JACOB D J. Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols [J]. Nature, 1992, 359(6395): 522-524. doi: 10.1038/359522a0 [13] MCCONNELL J C, HENDERSON G S, BARRIE L, et al. Photochemical bromine production implicated in Arctic boundary-layer ozone depletion [J]. Nature, 1992, 355(6356): 150-152. doi: 10.1038/355150a0 [14] HAUSMANN M, PLATT U. Spectroscopic measurement of bromine oxide and ozone in the high Arctic during Polar Sunrise Experiment 1992 [J]. Journal of Geophysical Research Atmospheres, 1994, 99(D12): 25399-25413. doi: 10.1029/94JD01314 [15] BOTTENHEIM J W, BARRIE L A, ATLAS E, et al. Depletion of lower tropospheric ozone during Arctic spring: The Polar Sunrise Experiment 1988 [J]. Journal of Geophysical Research, 1990, 95(D11): 18555-18568. doi: 10.1029/JD095iD11p18555 [16] YOKOUCHI Y, AKIMOTO H, BARRIE L A, et al. Serial gas chromatographic/mass spectrometric measurements of some volatile organic-compounds in the Arctic atmosphere during the 1992 Polar Sunrise Experiment [J]. Journal of Geophysical Research:Atmospheres, 1994, 99(D12): 25379-25389. doi: 10.1029/94JD00227 [17] SIMPSON W R, KING M D, BEINE H J, et al. Atmospheric photolysis rate coefficients during the Polar Sunrise Experiment ALERT2000 [J]. Atmospheric Environment, 2002, 36(15/16): 2471-2480. [18] PLATT U , LEHRER E . ARCTOC final report (Arctic tropospheric ozone chemistry NO. EVSV-CT93-0318) [R]. European Community, 1997. [19] TANG T, MCCONNELL J C. Autocatalytic release of bromine from Arctic snow pack during polar sunrise [J]. Geophysical Research Letters, 1996, 23(19): 2633-2636. doi: 10.1029/96GL02572 [20] WENNBERG P. Bromine explosion [J]. Nature, 1999, 397(6717): 299-301. [21] HALFACRE J W, KNEPP T N, SHEPSON P B, et al. Temporal and spatial characteristics of ozone depletion events from measurements in the Arctic [J]. Atmospheric Chemistry and Physics, 2014, 14(10): 4875-4894. doi: 10.5194/acp-14-4875-2014 [22] MORIN S, HOENNINGER G, STAEBLER R M, et al. A high time resolution study of boundary layer ozone chemistry and dynamics over the Arctic Ocean near Alert, Nunavut [J]. Geophysical Research Letters, 2005, 32(8): L08809. [23] JONES A E, ANDERSON P S, WOLFF E W, et al. A role for newly forming sea ice in springtime polar tropospheric ozone loss? Observational evidence from Halley Station, Antarctica [J]. Journal of Geophysical Research Atmospheres, 2006, 111(D8): D08306. [24] JACOBI H W, KALESCHKE L, RICHTER A, et al. Observation of a fast ozone loss over frost flowers in the marginal ice zone of the Arctic Ocean [J]. Journal of Geophysical Research Atmospheres, 2006, 111(D15): D15309. doi: 10.1029/2005JD006715 [25] PLATT U. Differential optical absorption spectroscopy (DOAS), in air monitoring by spectroscopic techniques [J]. Chemical Analysis Series, 1994: 127. [26] TAS E, MATVEEV V, ZINGLER J, et al. Frequency and extent of ozone destruction episodes over the Dead Sea, Israel [J]. Atmospheric Environment, 2003, 37(34): 4769-4780. doi: 10.1016/j.atmosenv.2003.08.015 [27] SHECHNER M, GUENTHER A, RHEW R, et al. Emission of volatile halogenated organic compounds over various Dead Sea landscapes [J]. Atmospheric Chemistry and Physics, 2019, 19(11): 7667-7690. doi: 10.5194/acp-19-7667-2019 [28] HOLLA R, SCHMITT S, FRIEß U, et al. Vertical distribution of BrO in the boundary layer at the Dead Sea [J]. Environmental Chemistry, 2015, 12(4): 438-460. doi: 10.1071/EN14224 [29] SANDER R, KERKWEG A, JOCKEL P, et al. Technical note: The new comprehensive atmospheric chemistry module MECCA [J]. Atmospheric Chemistry and Physics, 2005, 5(2): 445-450. doi: 10.5194/acp-5-445-2005 [30] SANDER R, JOCKEL P, KIRNER O, et al. The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP) [J]. Geoscientific Model Development, 2014, 7(6): 2653-2662. doi: 10.5194/gmd-7-2653-2014 [31] SANDER R, BAUMGAERTNER A, GROMOV S, et al. The atmospheric chemistry box model CAABA/MECCA-3.0 [J]. Geoscientific Model Development, 2011, 4(2): 373-380. doi: 10.5194/gmd-4-373-2011 [32] BIAZAR A P . The role of natural nitrogen oxides in ozone production in the southeastern environment [D]. Huntsville : University of Alabama in Huntsville, 1995. [33] von GLASOW R, SANDER R, BOTT A, et al. Modeling halogen chemistry in the marine boundary layer 1. Cloud-free MBL [J]. Journal of Geophysical Research Atmospheres, 2002, 107(D17): 4341. [34] von GLASOW R, SANDER R, BOTT A, et al. Modeling halogen chemistry in the marine boundary layer 2. Interactions with sulfur and the cloud-covered MBL [J]. Journal of Geophysical Research Atmospheres, 2002, 107(D17): 4323. [35] VON GLASOW R . Modeling the gas and aqueous phase chemistry of the marine boundary layer [D]. Mainz, Germany: Johannes Gutenberg University of Mainz, 2001. [36] TAS E, PELEG M, PEDERSEN D U, et al. Measurement-based modeling of bromine chemistry in the boundary layer – 1: Bromine chemistry at the Dead Sea [J]. Atmospheric Chemistry and Physics, 2006, 6(12): 5589-5604. doi: 10.5194/acp-6-5589-2006 [37] TAS E, PELEG M, PEDERSEN D U, et al. Measurement-based modeling of bromine chemistry in the Dead Sea boundary layer - Part 2: The influence of NO2 on bromine chemistry at mid-latitude areas [J]. Atmospheric Chemistry and Physics, 2008, 8(16): 4811-4821. doi: 10.5194/acp-8-4811-2008 [38] SMOYDZIN L , VON GLASOW R. Modelling chemistry over the Dead Sea: bromine and ozone chemistry [J]. Atmospheric Chemistry and Physics, 2009, 9(14): 5057-5072. [39] TAS E, OBRIST D, PELEG M, et al. Measurement-based modelling of bromine-induced oxidation of mercury above the Dead Sea [J]. Atmospheric Chemistry and Physics, 2012, 12: 2429-2440. doi: 10.5194/acp-12-2429-2012 [40] WAYNE R P, POULET G, BIGGS P, et al. Halogen oxides: radicals, sources and reservoirs in the laboratory and in the atmosphere [J]. Atmospheric Environment, 1995, 29(20): 2677-2881. doi: 10.1016/1352-2310(95)90286-4 [41] HANSON D R, RAVISHANKARA A R. Heterogeneous chemistry of bromine species in sulfuric acid under stratospheric conditions [J]. Geophysical Research Letters, 1995, 22(4): 385-388. doi: 10.1029/94GL03379 [42] HANSON D R , RAVISHANKARA A R , LOVEJOY E R. Reaction of BrONO2 with H2O on submicron sulfuric acid aerosol and implications for the lower stratosphere [J]. Journal of Geophysical Research:Atmospheres, 1996, 101(D4): 9063-9069. [43] SANDER R, RUDICH Y, von GLASOW R, et al. The role of BrNO3 in marine tropospheric chemistry: A model study [J]. Geophysical Research Letters, 1999, 26(18): 2857-2860. doi: 10.1029/1999GL900478 [44] le BRAS G, PLATT U. A possible mechanism for combined chlorine and bromine catalyzed destruction of tropospheric ozone in the Arctic [J]. Geophysical Research Letters, 1995, 22(5): 599-602. doi: 10.1029/94GL03334 [45] SOLOMON S, GARCIA R R, RAVISHANKARA A R. On the role of iodine in ozone depletion [J]. Journal of Geophysical Research Atmospheres, 1994, 99(D10): 20491-20499. doi: 10.1029/94JD02028 [46] ADAMS J W, HOLMES N S, CROWLEY J N. Uptake and reaction of HOBr on frozen and dry salt surfaces between 253 and 233 K [J]. Atmospheric Chemistry and Physics, 2002, 2(1): 79-91. doi: 10.5194/acp-2-79-2002 [47] SAIZ-LOPEZ A, PLANE J M C, MAHAJAN A S, et al. On the vertical distribution of boundary layer halogens over coastal Antarctica: Implications for O3, HOx, NOx and the Hg lifetime [J]. Atmospheric Chemistry and Physics, 2008, 8(4): 887-900. doi: 10.5194/acp-8-887-2008 [48] AKIMOTO H . Atmospheric reaction chemistry [M]. Tokyo: Springer. 2016. [49] ZHOU J S, CAO L, LI S M. Influence of the background nitrogen oxides on the tropospheric ozone depletion events in the Arctic during springtime [J]. Atmosphere, 2020, 11(4): 344. doi: 10.3390/atmos11040344 [50] SCHROEDER W H, ANLAUF K G, BARRIE L A, et al. Arctic springtime depletion of mercury [J]. Nature, 1998, 394(6691): 331-332. doi: 10.1038/28530 [51] MOORE C W, OBRIST D, LURIA M, et al. Atmospheric mercury depletion events at the Dead Sea: Spatial and temporal aspects [J]. Atmospheric Environment, 2013, 69: 231-239. doi: 10.1016/j.atmosenv.2012.12.020 [52] OBRIST D, TAS E, PELEG M, et al. Bromine-induced oxidation of mercury in the mid-latitude atmosphere [J]. Nature Geoscience, 2011, 4(1): 22-26. doi: 10.1038/ngeo1018 [53] PELEG M, MATVEEV V, TAS E, et al. Mercury depletion events in the troposphere in mid-latitudes at the Dead Sea, Israel [J]. Environmental Science & Technology, 2007, 41(21): 7280-7285. [54] GRELL G A, PECKHAM S E, SCHMITZ R, et al. Fully coupled 'online' chemistry within the WRF model [J]. Atmospheric Environment, 2005, 39(37): 6957-6976. doi: 10.1016/j.atmosenv.2005.04.027 [55] BYUN D, SCHERE K L. Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system [J]. Applied Mechanics Reviews, 2006, 59(2): 51-77. doi: 10.1115/1.2128636 [56] HÖRMANN C, SIHLER H, BEIRLE S, et al. Seasonal variation of tropospheric bromine monoxide over the Rann of Kutch salt marsh seen from space [J]. Atmospheric Chemistry and Physics, 2016, 16(20): 13015-13034. doi: 10.5194/acp-16-13015-2016