-
大气细颗粒物是指分散在大气中的固态或颗粒状物质[1],因为具有粒径小、活性强比表面积大等特点而容易富集有毒有害物质进而危害人体健康[2-3],细颗粒物不仅影响人体健康,同时它通过光的散射和吸收等消光效应降低大气能见度[4]。水溶性无机离子是大气细颗粒物的主要组成部分,可以占ρ(PM2. 5)的40%以上[5- 6],灰霾期占比为50%—60%[7]。
SNA ( 为
${\rm{SO}}_4^{2- } $ 、${\rm{NO}}_3^{- } $ 和${\rm{NH}}_4^{+ } $ 的统称) 是大气二次气溶胶的重要组成,主要来源于SO2的直接排放及NOx和NH3的氧化作用,三者占比之和可达到80%以上[8],是造成许多城市大气能见度降低的主要原因。SO2和NO2不仅是形成硫酸盐和硝酸盐的重要前体物[9],也是造成大气酸化的主要物质。硫酸盐的生成主要有两种方式,一种是通过非均相气粒转化,主要是与温度、自由基和太阳辐射的强弱相关;一种是液相氧化,主要与相对湿度和氧化剂有关[10]。硝酸盐的形成主要有气相形成和液相形成两种方式,气相形成是在白天有光照且存在羟基自由基的情况下,NO2与羟基自由基反应形成硝酸,并通过气固分配方式进入颗粒相,最终形成硝酸盐;液相形成是在夜晚无光照条件下、羟基自由基的生成被抑制,从而生成气态硝酸的途径也会被抑制,因此,在夜间NO2倾向于被臭氧氧化成N2O5,进而在颗粒物表面水解形成硝酸盐[11]。但因各地气象条件、能源结构等的不同,其组成结构和浓度水平存在较大差异[12]。利用ρ(${\rm{NO}}_3^{- } $ )/ρ(${\rm{SO}}_4^{2- } $ )可以定性判断移动源和固定源对大气污染的相对贡献[13];通过对PM2.5中水溶性离子的相关性分析和主成分分析,可以探讨水溶性离子的可能来源及其共存方式[14-16]。目前,我国对PM2.5中水溶性离子的研究主要集中在经济较发达地区,如京津冀[17]、珠三角地区[18]、四川盆地[19]等,有研究结果表明大气颗粒物中二次水溶性占主导作用[20],秸秆燃烧对大气颗粒物中的K+质量浓度有很大贡献[21],并且外来气团的传输对本地灰霾天气有很大的影响[22]。 北方城市纬度较高,冬季天气寒冷,在寒冷时期会进行采暖以便人们能够正常地生产生活。采暖期的能源来源一般都为煤燃烧,大量的煤在燃烧过程中所产生的颗粒物会对大气造成污染。葫芦岛市和朝阳市分别位于辽宁省的西南部及西部,辽宁省西南与河北接壤,西北与内蒙古毗连,东北与吉林为邻。地理位置特殊,受周边地区的影响较为严重。冬季实行供暖导致大量的煤烟污染物产生,同时机动车数量和密度也在逐年增长,机动车尾气排放包括了一次颗粒物和气态前体物(NOX、VOCS)也是大气中PM2.5的主要来源。
本文将针对辽宁省西南部典型城市冬季PM2.5中水溶性离子污染特征变化及来源进行研究解析,以期为改善辽宁省的空气质量提供有力依据。
辽宁西南典型城市冬季大气细颗粒物水溶性无机离子污染特征及来源解析
Characteristics and source analysis of water-soluble inorganic ion pollution of fine atmospheric particles in winter in typical cities of southwest Liaoning Province
-
摘要: 本研究于2018年12月3日—2019年1月1日在辽宁省西南典型城市葫芦岛市和朝阳市分别布设3个城区采样点,在区域传输点龙屯水库布设1个采样点,采集大气细颗粒物PM2.5样品(n=201)。使用离子色谱检测样品中的Na+、Mg2+、Ca2+、K+、
${{\rm{NH}}_4^{+ }} $ 、${{\rm{SO}}_4^{2- }} $ 、F−、Cl−和${{\rm{NO}}_3^{- }} $ 的质量浓度。观测期间PM2.5的平均浓度为葫芦岛市(54.25±26.14)μg·m−3>朝阳市(45.38±20.64)μg·m−3>区域背景点龙屯水库(33.73±21.64)μg·m−3。水溶性无机离子是PM2.5中的主要成分,朝阳市、葫芦岛市和龙屯水库中的水溶性离子分别占PM2.5质量浓度的49%,52%和49%。其中${{\rm{NH}}_4^{+ } } $ 、${{\rm{NO}}_3^{- } }$ 、${{\rm{SO}}_4^{2-} } $ 是PM2.5中最主要的水溶性离子.葫芦岛市和朝阳市的SOR(硫氧化率)、NOR(氮氧化率)值均大于0.1,说明两个城市存在明显的气溶胶二次转化过程。在不同污染状况下,朝阳市污染天中F−、${{\rm{NH}}_4^{+ }} $ 、Cl−和K+均为清洁天的2.5倍左右,葫芦岛市污染天中${{\rm{NH}}_4^{+ }} $ 、${{\rm{SO}}_4^{2- }} $ 和${{\rm{NO}}_3^{- } } $ 均为清洁天的3倍左右。朝阳市和葫芦岛市污染天SOR分别为0.13和0.18,分别为清洁天的0.76倍和1.5倍;NOR值分别为0.17和0.23,分别是清洁天的1.13倍和1.91倍,除朝阳市SOR外,污染天的SOR和NOR均大于清洁天,表明污染天中SO2和NO2向${{\rm{SO}}_4^{2- }} $ 和${{\rm{NO}}_3^{- }} $ 的二次转化增强。主成分分析结果表明,葫芦岛市和朝阳市PM2.5 的主要污染源来自于二次转化和燃煤、生物质燃烧;龙屯水库的主要污染源来自于二次转化。后向轨迹说明气团主要由内蒙古、俄罗斯及蒙古国传输至辽宁省。Abstract: In this study, three urban sampling sites were set up in Huludao and Chaoyang of typical cities in southwestern Liaoning Province, of China. And one regional transportation site was at Longtun reservoir. A total of 201 samples of atmospheric fine particulate (PM2.5) were collected at these sampling sites from December 3, 2018 to January 1, 2019. The mass concentrations of Na+, Mg2+, Ca2+, K+,${\rm{NH}}_4^{+ } $ ,${\rm{SO}}_4^{2- } $ , F−, Cl− and${\rm{NO}}_3^{- } $ in the samples were detected by ion chromatography. During the sampling period, the average mass concentration of PM2.5 showed as Huludao City (54.25±26.14) μg·m−3) > Chaoyang City (45.38±20.64 )μg·m−3) > Longtun Reservoir (33.73±21.64 )μg·m−3).Water-soluble inorganic ions are the main components of PM2.5 accounting for 49%, 52% and 49% of PM2.5 mass concentrations in Chaoyang City, Huludao City and Longtun reservoir, respectively.${\rm{NH}}_4^{+ } $ ,${\rm{NO}}_3^{- } $ and${\rm{SO}}_4^{2- } $ were the major components of the water-soluble ions in PM2.5; The sulfur oxidation rate (SOR) and nitrogen oxidation rate (NOR) were both greater than 0.1 in Huludao City and Chaoyang City, indicating that there was an obvious secondary aerosol transformation process in the two cities. The concentrations of F−,${\rm{NH}}_4^{+ } $ , Cl−and K+ in PM2.5 during polluted periods in Chaoyang city are about 2.5 times higher than clean periods;${\rm{NH}}_4^{+ } $ ,${\rm{SO}}_4^{2- } $ and${\rm{NO}}_3^{- } $ in pollution periods in Huludao City are about three times than clean periods. The values of SOR were 0.13 and 0.18 during pollution periods in Chaoyang City and Huludao city, which were 0.76 and 1.13 times than those values during clean periods. NOR values during polluted periods were 0.17 and 0.23, respectively, which were 1.5 and 1.91 times than that of clean days. Except SOR in Chaoyang city, SOR and NOR in the polluted days were both larger than those in the clean days, indicating that the secondary transformation of SO2 and NO2 to${\rm{SO}}_4^{2- } $ and${\rm{NO}}_3^{- } $ in the polluted day was enhanced; The results of principal analysis showed that the main sources of PM2.5 in Huludao City and Chaoyang City were secondary transformation, coal combustion and biomass burning, while the main pollution source in Longtun reservoir was secondary transformation. The backward trajectories showed that the air masses are mainly originated from Inner Mongolia and Russia to Liaoning Province.-
Key words:
- water-soluble ion /
- SNA /
- SOR /
- NOR /
- backward trajectory /
- PM2.5 /
- Liaoning /
- winter atmospheric
-
表 1 采样点位分布
Table 1. Distribution of sampling points
城市City 采样点Point 经度Longitude 纬度Latitude 周边污染源Pollution sources
葫芦岛市新区 E120°50′1.27″ N40°42′28.26″ 房地 产、交通、生活 龙港区 E120°54′43.4″ N40°42′28.26″ 工业园区 化工街 E120°50′17.7″ N40°42′28.26″ 生活
朝阳市河畔小区 E120°27′9.22″ N40°42′28.26″ 生活 西梁 E120°25′52.6″ N40°42′28.26″ 交通、生活 农业园 E120°22′44.3″ N41°33′28.26″ 景区 葫芦岛市 龙屯水库 E120°05′56.4″ N40°21′54.91″ 无明显污染源 表 2 DX-120离子色谱的准确度和检出限
Table 2. Accuracy and detection limit of DX-120 ion chromatography
Na+ ${\rm{NH}}_4^{+ } $ K+ Mg2+ Ca2+ Cl− ${\rm{NO}}_4^{- } $ ${\rm{SO}}_4^{2- } $ 检出限/(µmol·L−1) 12.45 1.95 3.15 2.625 4.95 7.2 38.5 69.6 相对偏差/% 0.245 0.09 0.09 0.47 0.49 0.18 2.37 0.71 表 3 辽宁省与其他城市大气PM2.5及离子质量浓度水平对比(μg·m−3 )
Table 3. Comparison of atmospheric PM2.5 and ion mass concentration levels between Liaoning Province and other cities
日期Date PM2.5 Na+ ${\rm{NH}}_4^{+ } $ K+ Mg2 Ca2+ Cl− ${\rm{NO}}_3^{- } $ ${\rm{SO}}_4^{2- } $ 盘锦[24] 2017 91.0 0.37 6.10 1.13 0.30 0.40 3.47 7.07 7.70 沈阳[25] 2018 0.40 5.5 1.2 0.3 1.9 4.0 6.4 8.8 齐齐哈尔[26] 2014 62.34 0.4 1.3 1.6 0.1 0.4 1.0 1.5 3.5 北京[27] 2018 94.28 3.12 4.56 3.13 2.78 10.97 4.38 21.57 15.11 朝阳(本研究) 2018 45.38 1.24 3.91 0.78 0.12 1.24 4.06 5.51 4.15 葫芦岛 (本研究) 2018 54.25 1.38 5.82 0.82 0.1 1.18 4.73 7.78 7.69 表 4 不同时期PM2.5及水溶性无机离子的质量浓度
Table 4. Mass concentrations of PM2.5 and water-soluble inorganic ions in different periods
朝阳市(Chaoyang City) 葫芦岛市(Huludao City) 龙屯水库(Longtun reservoir) 污染天Polluted days 清洁天Clean days 污染天Polluted days 清洁天Clean days 污染天Polluted days 清洁天Clean days PM2.5 90.81±9.11 40.09±15.65 105.25±31.38 47.25±15.54 113.17 29.32±10.21 ${\rm{SO}}_4^{2- } $ 5.92±3.65 3.89±2.54 11.94±4.53 6.65±2.04 13.35 4.00±0.95 ${\rm{NO}}_3^{- } $ 8.18±1.98 4.90±2.53 16.73±13.92 5.94±3.34 37.59 4.00±1.88 ${\rm{NH}}_4^{+ } $ 7.38±2.84 3.06±1.96 11.93±6.05 4.54±2.40 21.40 2.31±1.10 Cl− 7.11±4.10 3.26±2.08 8.03±2.11 3.98±1.76 3.55 1.94±1.00 Na+ 1.50±0.15 1.18±0.18 1.87±0.52 1.24±0.42 0.69 0.98±0.63 K+ 1.32±0.32 0.66±0.35 1.46±0.40 0.68±0.33 1.32 0.44±0.18 Mg2+ 0.16±0.03 0.10±0.03 0.16±0.07 0.09±0.07 0.09 0.07±0.02 Ca2+ 1.56±0.33 1.13±0.26 1.61±0.62 1.06±0.34 1.31 1.12±0.35 F− 2.58±0.58 1.29±0.78 0.46±0.16 0.29±0.07 0.39 0.28±0.02 表 5 朝阳市PM2.5中水溶性离子组分的正交旋转因子荷载矩阵
Table 5. Load matrix of orthogonal rotation factor of water-soluble ion components in PM2.5 of Chaoyang City
因子1(Factor 1) 因子2(Factor 2) 因子3(Factor 3) Na+ 0.759 0.020 0.521 ${\rm{NH}}_4^{+ } $ 0.531 0.770 0.178 K+ 0.722 0.562 0.066 Mg2+ 0.675 0.330 0.108 Ca2+ 0.209 0.249 0.919 F− 0.786 0.401 0.181 Cl− 0.773 0.320 0.285 ${\rm{NO}}_3^{- } $ 0.205 0.914 0.211 ${\rm{SO}}_4^{2- } $ 0.635 0.593 0.194 累积贡献率/% 39% 67% 82% 表 6 葫芦岛市PM2.5中水溶性离子组分的正交旋转因子荷载矩阵
Table 6. Load matrix of orthogonal rotation factor of water-soluble ion components in PM2.5 of Huludao City
因子1(Factor 1) 因子2(Factor 2) 因子3(Factor 3) Na+ 0.361 0.506 0.474 ${\rm{NH}}_4^{+ } $ 0.823 0.499 0.158 K+ 0.370 0.820 0.275 Mg2+ -0.014 0.296 0.811 Ca2+ 0.547 0.087 0.713 F− 0.480 0.453 0.659 Cl− 0.304 0.829 0.278 ${\rm{NO}}_3^{- } $ 0.909 0.288 0.137 ${\rm{SO}}_4^{2- } $ 0.704 0.445 0.476 累积贡献率/% 32% 59% 84% 表 7 龙屯水库PM2.5中水溶性离子组分的正交旋转因子荷载矩阵
Table 7. Orthogonal rotation factor load matrix of water-soluble ion components in PM2.5 of Longtun reservoir
因子1(Factor 1) 因子2(Factor 2) 因子3(Factor 3) Na+ −0.057 0.336 0.926 ${\rm{NH}}_4^{+ } $ 0.976 0.161 0.043 K+ 0.852 0.384 0.210 Mg2+ 0.260 0.893 0.260 Ca2+ 0.097 0.911 0.291 F− 0.434 0.745 0.291 Cl− 0.463 0.391 0.772 ${\rm{NO}}_3^{- } $ 0.974 0.109 0.039 ${\rm{SO}}_4^{2- } $ 0.914 0.300 0.132 累积贡献率/% 55% 74% 92% 表 8 监测点位不同污染状况下SOR和NOR
Table 8. SOR and NOR under different pollution conditions
朝阳市Chaoyang City 葫芦岛市Huludao City 龙屯水库Longtun reservoir 清洁天
Clean days污染天
Polluted days清洁天
Clean days污染天
Polluted days清洁天
Clean days污染天
Polluted daysSOR 0.17 0.13 0.12 0.18 0.29 NOR 0.15 0.17 0.12 0.23 0.21 表 9 朝阳市和葫芦岛市48h后向轨迹聚类分析
Table 9. Cluster Analysis of 48 hour backward trajectory in Chaoyang City and Huludao City
城市
City类型
Type途径区域
Route area轨迹占比/%
Proportion of tracks
朝阳市1 蒙古国→内蒙古 48.28 2 蒙古国→内蒙古→河北省 17.24 3 俄罗斯→蒙古国→内蒙古 31.03 4 哈萨克斯坦→新疆→蒙古国→内蒙古 3.45
葫芦岛市1 蒙古国→内蒙古 41.38 2 蒙古国→内蒙古→河北省 34.14 3 俄罗斯→蒙古国→内蒙古 24.14 -
[1] 胡敏. 北京大气细粒子和超细粒子理化特征、来源及形成机制 [M]. 北京: 科学出版社, 2009. HU M. Physical and chemical characteristics, origin and formation mechanism of atmospheric fine and ultra-fine particles in Beijing [M]. Beijing: Science Press, 2009(in Chinese).
[2] CHEN R, CHU C, TAN J, et al. Ambient air pollution and hospital admission in Shanghai, China [J]. Journal of Hazardous Materials, 2010, 181 (1 /3): 234-240. [3] GARCIA-CHEVESICH P A, ALVARADO S, NEARY D G, et al. Respiratory disease andparticulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments [J]. Environmental Pollution, 2014, 187: 202-205. doi: 10.1016/j.envpol.2013.12.028 [4] 刘庆阳, 刘艳菊, 杨峥, 等. 北京城郊冬季一次大气重污染过程颗粒物的污染特征 [J]. 环境科学学报, 2014, 34(1): 12-18. LIU QY, LIU YJ, YANG Z, et al. Particulate pollution characteristics of a heavy atmospheric pollution process in the suburbs of Beijing in winter [J]. Journal of Environmental Science, 2014, 34(1): 12-18(in Chinese).
[5] KHAN M F, SHIRASUNA Y, HIRANO K, et al. Characterization of PM2.5, PM2.5-10 and PM>10 in ambient air, Yokohama, Japan [J]. Atmospheric Research, 2010, 96(1): 159-172. doi: 10.1016/j.atmosres.2009.12.009 [6] YIN L Q, NIU Z C, CHEN X Q, et al. Characteristics of water-soluble inorganic ions in PM2.5 and PM2.5-10 in the coastal urban agglomeration along the western Taiwan Strait Region, China [J]. Environmental Science and Pollution Research, 2014, 21(7): 5141-5156. doi: 10.1007/s11356-013-2134-7 [7] SHEN Z X, CAO J J, ARIMOTO R, et al. Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi'an, China [J]. Atmospheric Environment, 2009, 43(18): 2911-2918. doi: 10.1016/j.atmosenv.2009.03.005 [8] ZHANG J Q, WANG S L, LUO D T, et al. Characterization and source analysis of PM2.5 and water-soluble ions during winter in Liaocheng City [J]. Research of Environmental Sciences, 2018, 31(10): 1712-1718. [9] WANG Y, ZHUANG G S, TANG A H, et al. The ionchemistry and the source of PM2.5 aerosol in Beijing [J]. Atmospheric Environment, 2005, 39(21): 3771-3784. doi: 10.1016/j.atmosenv.2005.03.013 [10] 郑敬茹, 翟厚淑, 付山, 等. 黄石市大气PM2.5中水溶性离子浓度特征及来源分析 [J]. 环境科学研究, 2019, 32(7): 1170-1177. ZHENG J R, ZHAI H S, FU S, et al. Concentration characteristics and source analysis of water-soluble ions in atmospheric PM2.5 in Huangshi City [J]. Environmental Science Research, 2019, 32(7): 1170-1177(in Chinese).
[11] 陈程, 张丽, 姚瑶, 等. 连云港春季PM2.5中主要水溶性无机离子污染特征及来源解析 [J]. 环境监测与预警, 2019, 11(6): 41-46. CHEN C, ZHANG L, YAO Y, et al. Pollution characteristics and source analysis of main water-soluble inorganic ions in spring PM2.5 of Lianyungang [J]. Environmental Monitoring and Early Warning, 2019, 11 (6): 41-46(in Chinese).
[12] YANG D Y, LIU B X, ZHANG D W, et al. Correlation, seasonal and temporal variation of water-soluble ions of PM2.5 in Beijing during 2012-2013 [J]. Environmental Science, 2015, 36(3): 768-773. [13] 杜青清, 吴丽萍, 赵雪艳, 等. 临沂市冬季环境空气 PM2.5 中水溶性离子污染特征及来源分析 [J]. 环境科学研究, 2019 , 32 (8): 1348 - 1357 . DU Qingqing, WU Liping, ZHAO Xueyan, et al. Characteristics and sources analysis of water-soluble inorganic ions of ambient air PM2.5 in winter in Linyi City [J]. Research of Environmental Sciences, 2019, 32(8): 1348-1357.
[14] HONG Y, LI C, LI X, et al. Analysis of compositional variation and source characteristics of water-soluble ions in PM2.5 during several winter-haze pollution episodes in Shenyang, China [J]. Atmosphere, 2018, 9(7): 280. doi: 10.3390/atmos9070280 [15] CALVO A I, ALVES C, CASTRO A, et al. Research on aerosol sources and chemical composition: Past current and emerging issues [J]. Atmospheric Research, 2013, 120-121(5): 1-28. [16] SEKINE Y, TAKAHASHI N, OHKOSHI Y, et al. Measurement of PM2.5 and water-soluble ions at central Tokyo, Japan and source apportionment [J]. The Global Environmental Engineers, 2015, 2(2): 71-78. [17] ZHAO P S, DONG F, HE D, et al. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China [J]. Atmospheric Chemistry& Physics, 2013, 13(1): 4631-4644. [18] TAO J, CHENG T T, ZHANG R J. Chemical composition of summertime PM and its relationship to aerosol optical properties in Guangzhou, China [J]. Atmospheric& Oceanic Science Letters, 2015, 5(2): 88-94. [19] TAO J, GAO J, ZHANG L, et al. PM2.5 pollution in a megacity of southwest China: source apportionment and implication [J]. Atmospheric Chemistry& Physics, 2014, 14(4): 8679-8699. [20] 刀谞, 张霖琳, 王超, 等. 京津冀冬季与夏季PM2.5 /PM10及其水溶性离子组分区域性污染特征分析 [J]. 环境化学, 2015, 34(1): 60-69. doi: 10.7524/j.issn.0254-6108.2015.01.2014032603 DAO K, ZHANG LL, WANG C, et al. Analysis of regional pollution characteristics of PM2.5/PM10 and its water-soluble ion groups in Beijing, Tianjin and Hebei in winter and summer [J]. Environmental Chemistry, 2015, 34(1): 60-69(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.01.2014032603
[21] 唐喜斌, 黄成, 楼晟荣, 等. 长三角地区秸秆燃烧排放因子与颗粒物成分谱研究 [J]. 环境科学, 2014, 35(5): 1623-1632. TANG X B, HUANG C, LOU S R, et al. Study on emission factors and particulate matter composition spectrum of straw combustion in Yangtze River Delta [J]. Environmental Science, 2014, 35(5): 1623-1632(in Chinese).
[22] 张礁石, 陆亦怀, 桂华侨, 等. APEC会议前后北京地区PM2. 5污染特征及气象影响因素 [J]. 环境科学研究, 2016, 29(5): 646-653. ZHANG J S, LU Y H, GUI H Q, et al. Beijing area PM2.5 before and after APEC meeting pollution characteristics and meteorological influencing factors [J]. Environmental Science Research, 2016, June 29 (5): 646-653(in Chinese).
[23] 李英红. 兰州市大气细颗粒物( PM2. 5)化学成分污染特征及来源分析 [D]. 兰州: 兰州大学, 2015. LI Y H. Pollution characteristics and sources of atmospheric fine particles (PM2.5) in Lanzhou [D]. Lanzhou: Lanzhou University, 2015(in Chinese).
[24] 张 蕾, 姬亚芹, 王士宝, 等. 盘锦市冬季PM2.5水溶性离子特征及来源分析 [J]. 环境科学, 2018, 39(6): 2527-2527. ZHANG L, JI Y Q, WANG S B, et al. Analysis on the characteristics and sources of water-soluble ions of PM2.5 in winter in Panjin [J]. Environmental Science, 2018, 39(6): 2527-2527(in Chinese).
[25] 张永运, 王宏青, 肖浩. 等. 东北亚冬季PM2.5水溶性离子空间分布特征及来源 [J]. 中国环境科学, 2019, 39(6): 2291-2298. doi: 10.3969/j.issn.1000-6923.2019.06.007 ZHANG Y Y, WANG H Q, XIAO H,et al. Wait. Spatial distribution characteristics and sources of water-soluble ions of PM2.5 in Northeast Asia in winter [J]. China Environmental Science, 2019, 39(6): 2291-2298(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.06.007
[26] 田景芝, 吕健, 郑永杰, 等. 齐齐哈尔市PM2.5 中水溶性离子的测定及来源分析 [J]. 科技通报, 2016, 32(8): 221-226. doi: 10.3969/j.issn.1001-7119.2016.08.050 TIAN J Z, LU J, ZHENG Y J, et al. Determination and source analysis of water-soluble ions in PM2.5 in Qiqihar [J]. Science and Technology Bulletin, 2016, 32(8): 221-226(in Chinese). doi: 10.3969/j.issn.1001-7119.2016.08.050
[27] 施云云, 杨欧, 杨巧文, 等. 北京市典型城区冬季PM2.5水溶性离子特征 [J]. 矿业科学学报, 2020, 5(2): 219-231. SHI Y Y, YANG O, YANG Q W, et al. Characteristics of water-soluble ions of PM2.5 in typical urban areas of Beijing in winter [J]. Journal of Mining Science, 2020, 5(2): 219-231(in Chinese).
[28] 贺克斌, 杨复沫, 段凤魁, 等. 大气颗粒物与区域复合污染 [M]. 北京: 科学出版社, 2011: 234-235. HE K B, YANG F M, DUAN F K, et al. Atmospheric particulate matter and regional compound pollution [M]. Beijing: Science Press, 2011 234-235(in Chinese).
[29] 马金珠, 刘永春, 马庆鑫, 等. 大气非均相反应及其环境效应 [J]. 环境化学, 2011, 30(1): 97-119. MA J Z, LIU Y C, MA Q X, et al. Atmospheric heterogeneous reaction and its environmental effects [J]. Environmental Chemistry, 2011 Jol 30 (1): 97-119(in Chinese).
[30] 张棕巍, 胡恭任, 于瑞莲, 等. 厦门市大气PM2. 5中水溶性离子污染特征及来源解析 [J]. 中国环境科学, 2016, 36(7): 1947-1 954. ZhANG Z W, HU G R, YU R L, et al. Pollution characteristics and source analysis of water-soluble ions in atmospheric PM2.5 in Xiamen [J]. China Environmental Science, 2016. 36 (7): 1947-1954(in Chinese).
[31] 张立盛, 石广玉. 相对湿度对气溶胶辐射特性和辐射强迫的影响 [J]. 气象学报. ZhANG LS, SHI G Y. Effect of relative humidity on radiative characteristics and radiative forcing of aerosols [J]. Journal of Meteorology(in Chinese).
[32] HUANG X J, LIU Z R, ZHANG J K, et al. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing [J]. Atmospheric Research, 2016, 168: 70-79. doi: 10.1016/j.atmosres.2015.08.021 [33] WATSON J G, CHOW J C, LURMANN F W, et al. Ammonium nitrate, nitric acid, and ammoniaequilibrium in wintertime phoenix, Arizona [J]. Journal of the Air & Waste Management Association, 1994, 44(4): 405-412. [34] SHON Z, KIM K, SONG S, et al. Relationship between water-soluble ions in PM2.5 and their precursor gases in seoul megacity [J]. Atmospheric Environment, 2012, 59: 540-550. doi: 10.1016/j.atmosenv.2012.04.033 [35] 李华, 范淑霞, 张勇, 等. 南京市区和郊区PM10和PM2.1中多环芳烃的特征及影响因素 [J]. 中国环境科学, 2017, (1): 60 - 68. Li H, Fan S X, Zhang Y, et al. Characteristics and influence factors of PAHs in PM10 and PM2. 1 in urban and suburban Nanjing, China [J]. China Environmental Science, 2017, 37(1) : 60-68.
[36] ZHAO K L, LIU X C, LU H, et al. Characteristics and sources of water-soluble ions of PM2.5 in winter in Urumqi [J]. Journal of Desert Research, 2015, 35(3): 707-714. [37] WANGY Q, ZHANG X Y, DRAXLER R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data [J]. Environmental Modelling and Software, 2009, 24(8): 938-939. doi: 10.1016/j.envsoft.2009.01.004