-
氨(NH3)挥发是农田生态系统化肥氮损失的重要途径[1],占农业源NH3排放的40%[2]. NH3挥发不仅降低氮肥利用率,造成资源浪费,而且挥发到大气中,通过干湿沉降再次回到地表,引发土壤酸化、地表水富营养化、地下水污染及空气质量退化等环境问题[3-5].
水肥管理是影响土壤NH3挥发的重要因素,然而,当前研究较多集中于稻田和典型旱地作物系统如玉米、小麦、黄瓜、棉田和番茄等常规施肥传统沟灌、减量控制沟灌试验处理上[6-9].滴灌和沟灌不同施肥灌溉模式比较研究资料甚少,且研究结果具有很大不一致性. 一些观测结果显示,常规施肥滴灌农田NH3挥发量低于传统沟灌农田NH3排放量. 例如:马腾飞等[10]利用室内土柱模拟实验研究表明,不同施肥处理沟灌土壤NH3挥发量高于滴灌土壤. 王娟等[11]模拟土柱实验测定滴灌土壤氮流失量比传统沟灌土壤少7.16%. 然而,有的研究结果显示滴灌农田土壤NH3排放量比传统沟灌农田土壤排放高. 王肖娟等[12]研究不同施氮量滴灌土壤NH3-N排放损失量0.06%—0.14%,高于沟灌土壤.
综合现有资料发现,不同环境条件NH3排放研究已经取得一些成果. 然而,农田土壤NH3排放具有明显时空变异性,我国幅员辽阔,土壤、作物和气候类型多样,区域经济发展不平衡导致农田NH3排放有明显地域性差异[13],限制了不同生产模式农田NH3排放总量科学估算,很难评估更大尺度、更长时间NH3排放趋势,这已成为农田NH3排放总量估算不确定性因素[14].
内蒙古地处干旱半干旱区,是我国马铃薯最大主产地[15]. 生产过程不合理灌溉和过量氮肥施用,增加了水肥损失,加重了环境污染风险[16-17]. 我国西北干旱半干旱区节水灌溉面积不断增加,本文以滴灌水肥一体化和传统沟灌马铃薯田为研究对象,通过对NH3挥发通量原位观测比较,了解不同施肥灌溉模式马铃薯田土壤NH3挥发过程和特征影响规律,评估不同施肥灌溉模式土壤NH3挥发强度,为构建干旱半干旱区不同施肥灌溉模式马铃薯田生产和NH3减排双赢的农业生产体系提供数据支撑.
我国半干旱区滴灌水肥一体化马铃薯田土壤NH3挥发特征和强度及影响因素
Characteristics and intensity of soil ammonia volatilization and study on influencing factors in potato fields under drip integration water and fertilizer integration in semi-arid region of China
-
摘要: 氨(NH3)挥发是农业生态系统氮肥损失的重要途经,然而,北方干旱半干旱地区水肥耦合马铃薯田土壤NH3挥发规律缺少数据支撑. 该研究利用通气法田间原位观测我国西北滴灌水肥一体化和传统沟灌施肥马铃薯田水肥耦合土壤NH3挥发特征,设置滴灌施肥500 kg·hm−2(DDF)、滴灌施肥1000 kg·hm−2(DGF)、滴灌不施肥(DCK)、沟灌施肥500 kg·hm−2(FDF) 、沟灌施肥1000 kg·hm−2(FGF)、沟灌不施肥(FCK) 6个处理. 结果表明,NH3挥发速率峰值出现在施用氮肥后1—2周,不同水肥处理土壤NH3挥发存在显著差异(P<0.01). 2018年DDF、DGF、DCK、FDF、FGF 、FCK土壤NH3累积挥发量分别为21.50、28.14、7.20、37.06、66.25 、11.88 kg·hm−2;2019年,分别为9.42、15.25、7.24、34.73、76.81、8.56 kg·hm−2. 2018年和2019年,沟灌FDF处理的NH3挥发损失率分别是滴灌DDF处理的1.76倍和11.89倍;沟灌FGF处理分别是滴灌DGF的2.60倍和8.54倍. 滴灌DGF处理NH3挥发强度比滴灌DDF处理分别增加27.03%和52.94%,沟灌FGF处理比沟灌FDF处理分别增加76.04%和118.37%. 随施肥量增加,传统沟灌马铃薯田土壤NH3挥发损失率和NH3挥发强度的增量高于滴灌水肥一体化模式. NH3挥发速率与土壤体积含水量、
${{\rm{NH}}_4^{+} }$ -N和${{\rm{NO}}_3^{-}} $ -N呈极显著相关(P<0.01). 和传统沟灌比较,滴灌水肥一体化技术降低马铃薯田土壤NH3挥发损失率,减轻NH3挥发强度,提高马铃薯水肥利用率,减轻环境污染.Abstract: Ammonia (NH3) volatilization is an important way of nitrogen loss in agricultural ecosystem. However, there is a lack of data to support the rule of NH3 volatilization in the soil of water and fertilizer coupled potato field in arid and semi-arid areas of Northern China. In this study, aeration method was used to observe the NH3 volatilization characteristics from the soil of potato fields with water and fertilizer coupling in drip fertigation and connvention furrow irrigation in Northwest China. Six experimental conditions were designed, including drip fertigation 500 kg·hm−2(DDF), drip fertigation 1000 kg·hm−2(DGF), drip irrigation without fertilization (DCK), furrow irrigation and fertilition 500 kg·hm−2(FDF), furrow irrigation and fertilition 1000 kg·hm−2(FGF), furrow irrigation without fertilization (FCK). The results showed that the peak value of ammonia volatilization rate appeared in 1—2 weeks after nitrogen fertilizer application, and there were significant differences in NH3 volatilization among different water and fertilizer treatments(P<0.01) ;In 2018, the cumulative NH3 volatilization amounts in DDF, DGF, DCK, FDF, FGF and FCK soils were 21.50, 28.14, 7.20, 37.06, 66.25 , 11.88 kg·hm−2, respectively. And in 2019, they were 9.42 , 15.25, 7.24 , 34.73 , 76.81, 8.56 kg·hm−2, respectively. The NH3 volatilization loss rate of furrow irrigation with FDF treatment was 1.76 times in 2018 and 11.89 times in 2019 that of drip fertigation with DDF treatment, and that of ffurrow irrigation with FGF treatment was 2.60 times in 2018 and 8.54 times in 2019 that of drip fertigation with DGF treatment. The NH3 volatilization intensity of drip fertigation with DGF treatment increased by 27.03% in 2018 and 52.94% in 2019 compared with drip fertigation with DDF treatment, that of furrow irrigation with FGF treatment increased by 76.04% in 2018 and 118.37% in 2019 compared with furrow irrigation with FDF treatment. With the increase of fertilizer amount, the increases of soil NH3 volatilization loss rate and NH3 volatilization intensity in potato field of traditional furrow irrigation is higher than those in the integrated mode of drip fertigation.The volatilization rate of ammonia was significantly correlated with soil volumetric water content,${\rm{NH}}_4^{+} $ -N and${\rm{NO}}_3^{-} $ -N concentration (P<0.01). Compared with traditional furrow irrigation, drip fertigation with water and fertilizer integration technology can reduce the rate of NH3 volatilization loss, reduce the intensity of NH3 volatilization, improve utilization rate of water and fertilizer in potato field, and reduce the environmental pollution. -
表 1 2018年和2019年 NH3 净挥发量和NH3挥发损失率
Table 1. Cumulative ammonia volatilization and emission factor in 2018 and 2019
处理 Treatment DDF DGF DCK FDF FGF FCK 2018 基肥期/(kg·hm−2) 9.41±0.25 16.99±1.02 14.62±0.85 21.82±1.01 追肥期/(kg·hm−2) 12.09±0.79 11.15±0.99 22.44±1.47 44.43±2.12 NH3总挥发量/
(kg·hm−2)21.50±1.01d 28.14±2.03c 7.20±0.52f 37.06±2.30b 66.25±3.02a 11.88±2.03e NH3净挥发量/
(kg·hm−2)14.30 20.94 25.18 54.37 产量/(t·hm−2) 58.47 59.49 27.93 38.79 39.12 22.34 损失率/% 2.86 2.09 5.04 5.44 2019 基肥期/(kg·hm−2) 3.24±0.73 7.50±1.51 2.62±0.67 13.16±1.01 追肥期/(kg·hm−2) 6.18±1.62 7.75±1.49 32.11±1.35 63.65±2.33 NH3总挥发量/
(kg·hm−2)9.42±2.60d 15.25±3.00c 7.24±0.84f 34.73±2.01b 76.81±3.30a 8.56±0.53e NH3净挥发量/
(kg·hm−2)2.18 8.01 26.17 68.25 产量/(t·hm−2) 56.99 57.80 26.04 35.48 35.96 21.09 损失率/% 0.44 0.80 5.23 6.83 注:净NH3挥发量(kg·hm−2)=施氮处理NH3挥发量(kg·hm−2)-不施氮处理NH3挥发量(kg·hm−2)。不同字母代表显著差异(P<0.05)
Note:Net NH3 volatilization (kg·hm−2) = NH3 volatilization (kg·hm−2) with nitrogen application - NH3 volatilization (kg·hm−2) without nitrogen application表 2 不同灌溉方式和施氮量对农田土壤NH3挥发影响双因素方差分析
Table 2. ANOVA for NH3 volatilization from farmland soil under different irrigation methodsand N addition levels
F P 灌溉方式 48.858 0.000 施氮量 67.041 0.000 灌溉方式×施氮量 21.267 0.000 表 3 土壤NH3挥发速率和影响因素相关性分析
Table 3. Correlation Analysis of ammonia volatilization rate and influencing factors
NH3 体积含水量
Volumetricmoisture content温度
TemperatureNH4+-N 体积含水量 0.458** 温度 0.273 0.438** NH4+-N 0.526** 0.164 0.365* NO3−-N 0.521** −0.081 0.258 0.741** 注:** 在0.01 水平(双侧)上显著相关;* 在0.05 水平(双侧)上显著相关。
Note:** Significant correlation at 0.01 level ; *. Significantcorrelation at 0.05 level -
[1] 李婧羿. 不同灌溉和施肥条件下土壤氨挥发特性研究 [J]. 山西水利, 2011, 27(10): 31-32. doi: 10.3969/j.issn.1004-7042.2011.10.023 LI J Y. Study on ammonia volatilization characteristics of soil under different irrigation and fertilization conditions [J]. Shanxi Water Resources, 2011, 27(10): 31-32(in Chinese). doi: 10.3969/j.issn.1004-7042.2011.10.023
[2] CAO Y S, TIAN Y H, YIN B, et al. Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency [J]. Field Crops Research, 2013, 147: 23-31. doi: 10.1016/j.fcr.2013.03.015 [3] 李雨繁. 不同类型高氮复混(合)肥氨挥发特性及氮素转化研究[D]. 长春: 吉林农业大学, 2014 LI Y F. Ammonia volatilization characteristics and nitrogen transformation of different kinds of high-nitrogen compound fertilizers[D]. Changchun: Jilin Agricultural University, 2014(in Chinese).
[4] 杨洁, 焦燕, 杨文柱, 等. 喷灌和沟灌方式对农田土壤NH3挥发的影响 [J]. 中国环境科学, 2019, 39(3): 960-968. doi: 10.3969/j.issn.1000-6923.2019.03.008 YANG J, JIAO Y, YANG W Z, et al. Effects of ammonia volatilization from farmland under sprinkler and furrow irrigation [J]. China Environmental Science, 2019, 39(3): 960-968(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.03.008
[5] 周静, 崔键, 王霞. 红壤不同含水量对尿素氨挥发的影响 [J]. 土壤, 2008, 40(6): 930-933. doi: 10.3321/j.issn:0253-9829.2008.06.014 ZHOU J, CUI J, WANG X. Effects of red soil moisture on ammonia volatilization of urea [J]. Soils, 2008, 40(6): 930-933(in Chinese). doi: 10.3321/j.issn:0253-9829.2008.06.014
[6] 张翀, 韩晓阳, 李雪倩, 等. 川中丘陵区紫色土冬小麦/夏玉米轮作氨挥发研究 [J]. 中国生态农业学报, 2015, 23(11): 1359-1366. ZHANG C, HAN X Y, LI X Q, et al. Ammonia volatilization in winter wheat/summer maize rotation system of purple soil in hilly area of Central Sichuan Basin [J]. Chinese Journal of Eco-Agriculture, 2015, 23(11): 1359-1366(in Chinese).
[7] XU J Z, PENG S Z, YANG S H, et al. Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements [J]. Agricultural Water Management, 2012, 104: 184-192. doi: 10.1016/j.agwat.2011.12.013 [8] HAN K, ZHOU C J, WANG L Q. Reducing ammonia volatilization from maize fields with separation of nitrogen fertilizer and water in an alternating furrow irrigation system [J]. Journal of Integrative Agriculture, 2014, 13(5): 1099-1112. doi: 10.1016/S2095-3119(13)60493-1 [9] GUO Y J, LI B W, DI H J, et al. Effects of dicyandiamide (DCD) on nitrate leaching, gaseous emissions of ammonia and nitrous oxide in a greenhouse vegetable production system in Northern China [J]. Soil Science and Plant Nutrition, 2012, 58(5): 647-658. doi: 10.1080/00380768.2012.726921 [10] 马腾飞, 危常州, 王娟, 等. 不同灌溉方式下土壤中氨挥发损失及动态变化 [J]. 石河子大学学报(自然科学版), 2010, 28(3): 294-298. MA T F, WEI C Z, WANG J, et al. Nitrogen loss and dynamic change of soil ammonia volatilization in different irrigation methods [J]. Journal of Shihezi University (Natural Science), 2010, 28(3): 294-298(in Chinese).
[11] 王娟, 马腾飞, 危常州, 等. 不同灌溉方式对棉花氮素吸收利用和氮肥利用率的影响 [J]. 石河子大学学报(自然科学版), 2011, 29(6): 670-673. WANG J, MA T F, WEI C Z, et al. Effect of different rrrigation patterns on cotton nitrogen absorption and nitrogen fertilizer use efficiency [J]. Journal of Shihezi University (Natural Science), 2011, 29(6): 670-673(in Chinese).
[12] 王肖娟, 危常州, 张君, 等. 灌溉方式和施氮量对棉田氮肥利用率及损失的影响 [J]. 应用生态学报, 2012, 23(10): 2751-2758. WANG X J, WEI C Z, ZHANG J, et al. Effects of irrigation mode and N application rate on cotton field fertilizer N use efficiency and N losses [J]. Chinese Journal of Applied Ecology, 2012, 23(10): 2751-2758(in Chinese).
[13] HUANG X, SONG Y, LI M M, et al. A high-resolution ammonia emission inventory in China [J]. Global Biogeochemical Cycles, 2012, 26(1): GB1030. doi: 10.1029/2011gb004161 [14] HUCKABY E C K, WOOD C W, GUERTAL E A. Nitrogen source effects on ammonia volatilization from warm-season sod [J]. Crop Science, 2012, 52(3): 1379-1384. doi: 10.2135/cropsci2011.04.0198 [15] 李志平. 内蒙古马铃薯产业发展现状及制约因素分析 [J]. 内蒙古农业科技, 2010, 38(6): 7-9,14. LI Z P. Analysis on the development status and constraints of agricultural industry in Inner Mongolia [J]. Inner Mongolia Agricultural Science and Technology, 2010, 38(6): 7-9,14(in Chinese).
[16] HUANG J, DUAN Y H, XU M G, et al. Nitrogen mobility, ammonia volatilization, and estimated leaching loss from long-term manure incorporation in red soil [J]. Journal of Integrative Agriculture, 2017, 16(9): 2082-2092. doi: 10.1016/S2095-3119(16)61498-3 [17] 周雪青, 李洪文, 何进, 等. 土壤容重测定用分段式原状取土器的设计 [J]. 农业工程学报, 2008, 24(8): 127-130. doi: 10.3321/j.issn:1002-6819.2008.08.027 ZHOU X Q, LI H W, HE J, et al. Design of multi-segment in situ soil sampler testing bulk density [J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(8): 127-130(in Chinese). doi: 10.3321/j.issn:1002-6819.2008.08.027
[18] 谢方媛. 浅析比重瓶法测定土粒比重 [J]. 绿色环保建材, 2019(9): 11. XIE F Y. Determination of soil particle specific gravity by pycnometer [J]. Green Environmental Protection Building Materials, 2019(9): 11(in Chinese).
[19] YEOM J C, 莫治雄. 一种快速精确测定土壤有机碳的常规方法 [J]. 土壤学进展, 1992, 20(1): 46-48. YEOM J C, MO Z X. A conventional method for rapid and accurate determination of soil organic carbon [J]. Advances in Soil Science, 1992, 20(1): 46-48(in Chinese).
[20] 雷杨莉, 王林权, 薛亮, 等. 交替灌溉施肥对夏玉米土壤氨挥发的影响 [J]. 农业工程学报, 2009, 25(4): 41-46. LEI Y L, WANG L Q, XUE L, et al. Effect of alternative irrigation and fertilization on soil ammonia volatilization of summer maize [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(4): 41-46(in Chinese).
[21] 吴腾超, 蓝增全, 胡正义, 等. 不同氮肥用量对滇池柴河流域蔬菜地土壤氨挥发及作物产量的影响 [J]. 现代农业科技, 2015(3): 205-208. doi: 10.3969/j.issn.1007-5739.2015.03.128 WU T C, LAN Z Q, HU Z Y, et al. Effect of different nitrogen fertilizer amount on soil ammonia volatilization and crop yield at vegetables field in Chaihe basin of Dianchi lake [J]. Modern Agricultural Science and Technology, 2015(3): 205-208(in Chinese). doi: 10.3969/j.issn.1007-5739.2015.03.128
[22] 王肖娟, 陈林, 王永强, 等. 滴灌条件下不同氮素水平对稻田氨挥发的影响 [J]. 新疆农垦科技, 2017, 40(4): 3-5. doi: 10.3969/j.issn.1001-361X.2017.04.001 WANG X J, CHEN L, WANG Y Q, et al. Effects of different nitrogen levels on ammonia volatilization in rice fields under drip irrigation [J]. Xinjiang Farm Research of Science and Technology, 2017, 40(4): 3-5(in Chinese). doi: 10.3969/j.issn.1001-361X.2017.04.001
[23] 卢艳艳, 宋付朋. 不同包膜控释尿素对农田土壤氨挥发的影响 [J]. 生态学报, 2011, 31(23): 148-155. LU Y Y, SONG F P. Effects of different coated controlled-release urea on soil ammonia volatilization in farmland [J]. Acta Ecologica Sinica, 2011, 31(23): 148-155(in Chinese).
[24] 王珏, 巨晓棠, 张丽娟, 等. 华北平原小麦季氮肥氨挥发损失及影响因素研究 [J]. 河北农业大学学报, 2009, 32(3): 5-11. doi: 10.3969/j.issn.1000-1573.2009.03.002 WANG J, JU X T, ZHANG L J, et al. Ammonia volatilization of N fertilizer and influencing factors in the North China Plain [J]. Journal of Agricultural University of Hebei, 2009, 32(3): 5-11(in Chinese). doi: 10.3969/j.issn.1000-1573.2009.03.002
[25] MCGARRY S J, OTOOLE P, MORGAN M A. Effects of soil temperature and moisture content on ammonia volatilization from urea-treated pasture and tillage soils [J]. An Foras Talúntais, 1987, 26(2/3): 173-182. [26] SHAN L N, HE Y F, CHEN J, et al. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China [J]. Journal of Environmental Sciences, 2015, 38: 14-23. doi: 10.1016/j.jes.2015.04.028 [27] 张庆忠, 陈欣, 沈善敏. 农田土壤硝酸盐积累与淋失研究进展 [J]. 应用生态学报, 2002, 13(2): 233-238. doi: 10.3321/j.issn:1001-9332.2002.02.026 ZHANG Q Z, CHEN X, SHEN S M. Advances in studies on accumulation and leaching of nitrate in farming soil [J]. Chinese Journal of Applied Ecology, 2002, 13(2): 233-238(in Chinese). doi: 10.3321/j.issn:1001-9332.2002.02.026
[28] HUSSAIN M Z, ROBERTSON G P, BASSO B, et al. Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest [J]. Science of the Total Environment, 2020, 734: 139379. doi: 10.1016/j.scitotenv.2020.139379 [29] 梁银丽, 翟胜, 陈志杰, 等. 黄土高原设施农业与土壤环境效应[J]. 沈阳农业大学学报, 2004, 35(增刊1): 580-582 LIANG Y L, ZHAI S, CHEN Z J, et al. Facility agriculture and its effects on soil environments in loess plateau[J]. Journal of Shenyang Agricultural University, 2004, 35(Sup 1): 580-582(in Chinese).
[30] 王晓英, 贺明荣, 刘永环, 等. 水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋溶的影响 [J]. 生态学报, 2008, 28(2): 685-694. doi: 10.3321/j.issn:1000-0933.2008.02.029 WANG X Y, HE M R, LIU Y H, et al. Interactive effects of irrigation and nitrogen fertilizer on nitrogen fertilizer recovery and nitrate-N movement across soil profile in a winter wheat field [J]. Acta Ecologica Sinica, 2008, 28(2): 685-694(in Chinese). doi: 10.3321/j.issn:1000-0933.2008.02.029
[31] YANG Y, NI X Y, LIU B M, et al. Measuring field ammonia emissions and canopy ammonia fluxes in agriculture using portable ammonia detector method [J]. Journal of Cleaner Production, 2019, 216: 542-551. doi: 10.1016/j.jclepro.2018.12.109 [32] 周广威. 咸水滴灌对棉田土壤氨挥发及氮肥利用率的影响[D]. 石河子: 石河子大学, 2016 ZHOU G W. Effects of saline water irrigation on NH3 volatilization and N use efficiency in A drip-irrigated cotton field[D]. Shihezi, China: Shihezi University, 2016(in Chinese).