-
农药可以有效地控制害虫、杂草以及其他有害生物,以确保作物的生长[1-2]。为提高农产品产量,减少病虫害造成的损失,杀虫剂的使用量在全球范围呈连续性显著增加[3]。然而,盲目的选择以及不合理的滥用导致环境中大量的农药残留,沿着食物链富集,对人类健康和食品安全构成严重威胁[4]。环境与农产品中残留的有机磷,有机氯类农药通常具有难降解,易在生物体内富集等性质,该污染物的毒性在影响人类智力发育与神经系统的同时,还伴随着致癌,致畸,致突变的“三致效应”[5-6]。许多国家政府陆续采取了相关措施来调节和限制农药的使用,并确定农产品和食品中农药的最大残留水平[3]。尽管如此,农药的使用现状也不容乐观。国家对于如何正确选择农药缺乏指导作用,也未对农民展开关于农药使用方法的系统培训[4]。自有机氯农药禁用以来,农药市场中出现了大量残留毒性大,成分复杂的农药,以有机磷、氨基甲酸酯等具有高毒性以及“三致”毒性的品种为代表[7]。单一作物的种植使得病虫害更容易传播,导致农药施用的种类和数量增加,甚至带来各种各样的负面影响,如耐药性等[3-4]。目前已开发了多种农药定量检测的方法,包括酶联免疫吸附法(ELISA)和以色谱为基础的薄层色谱、气相色谱、高效液相色谱(HPLC)和气相色谱-质谱(GC-MS)等。这些技术具有高灵敏度和分辨率等优点,但通常需要复杂的样品预处理,耗时的检测过程,昂贵的仪器和训练有素的专业工作人员来操作[8]。因此,亟需开发出一种灵敏、便捷、经济的检测方法来检测环境介质和食品中的农药残留[9]。
荧光传感检测已逐渐成为农药快速定量检测的一个发展方向,近年来因其灵敏度高、检出限低、操作简单、快速检测和成本低而受到广泛关注[10]。例如,Tao等[11]通过在四戊二烯(TPE)分子上合成多肽形成聚集诱导发射荧光探针(TPE-肽),测定有机磷农药。在Kazemifard等[12]的研究中,用分子印迹聚合物(MIP)修饰由迷迭香树叶合成的碳量子点,作为荧光团用于测定果汁中的噻苯达唑(TBZ)。然而,传统的特异性荧光传感只能对单一种类的污染物进行检测,忽略了真实环境样品的复杂性以及污染物结构和性质的高度相似性,导致特异性传感检测难以实现,或需要复杂的设计和合成过程才能保证较高的特异性。
荧光传感器阵列可以有效地解决上述问题。传感器阵列的设计源于对哺乳动物嗅觉系统的模拟。研究表明,嗅觉系统不是一个受体对一个特定分析物作出反应,而是一个受体同时对多个分析物作出反应,反之亦然[13]。因此,阵列传感检测不需要复杂的设计和合成过程就可以获得选择性高的传感器元件,每个元件能够响应多种分析物,从而降低了对传感器设计的要求,扩大了传感平台检测分析物的范围[14]。通过收集每个传感元件对每种分析物的不同响应信息,可获得一个独特的响应模式,然后通过该模式识别分析物,从而达到在复杂的环境中同时检测和区分多种物质的目标[15-16]。传感阵列方法因其在检测复杂样本方面的优势而受到研究者的关注和青睐。目前,传感阵列检测已广泛应用于各类农药的检测。一些研究人员使用酶介导的传感方法或合成多种量子点来构建多通道传感器,以同时检测多种农药[17]。
本文将就荧光传感阵列技术在农药监测中的应用进行综述。总结荧光传感器阵列的设计和构造方法,对目前广泛使用的数据处理方法进行评价,并对可能存在的问题提出相应的解决方案。通过回顾优秀研究成果,详细讨论荧光传感技术,重点介绍各传感器的优缺点。总结荧光传感器阵列在农药监测中的研究进展以及尚未解决的问题,并对其未来的实际应用提出一些见解。
荧光传感器阵列检测农药污染物研究进展
Advances in the detection of pesticide contaminants by fluorescence sensor array
-
摘要: 农药的滥用已造成严重的环境污染,因此开发高效、简便和灵敏的农药检测技术是环境科学领域的研究焦点。荧光传感检测因其灵敏度高,检出限低,操作简单,成本低,目前已逐渐成为农药快速定量检测的一个发展方向。然而,在真实样品检测环境中,污染物不是单独存在的,常伴随结构或化学性质上与待检测分析物相似的污染物进行干扰。而基于阵列的荧光传感器检测技术能够在复杂环境中同时识别和预测多种分析物,已广泛应用于环境样品中农药残留的监测。荧光传感器阵列包含多个传感器元件,它们与目标分析物进行不同程度的交互,最终生成特定的识别模式,结合机器学习算法,实现对多种污染物的识别和预测。本文回顾了荧光传感器阵列检测在农药监测中的研究进展,重点介绍了荧光传感器阵列检测技术在环境样品(如河水、蔬菜、药品等)中的应用。分析现有阵列传感器在设计、构建、数据处理等方面的优点和问题,并提出了相关解决方案。最后,讨论了未来可能改进的方向,促进其潜在商业价值应用研究。Abstract: The misuse of pesticides can lead to serious environmental pollution problems, and therefore, the development of efficient, simple, and sensitive pesticide detection technology would be valuable for managing such risks. Fluorescence sensing technology, with its many advantages such a high sensitivity, low detection limit, simple operation procedure, and low cost, represents a promising development direction for the rapid, quantitative detection of pesticides. However, in a real sample testing environment, contaminants do not exist alone and are often accompanied by other compounds with similar structural or chemical properties to the analyte to be tested. Array based fluorescence sensor detection technology can be used to simultaneously identify and distinguish multiple analytes in complex environment samples and has been used widely for the monitoring of pesticide residues in real samples. The fluorescent array sensor consists of multiple sensor elements that interact with the target analytes to varying degrees, and the technology ultimately generates specific recognition patterns for the array. Combined with machine learning algorithms, the recognition and prediction of multiple pollutants can be realized. In this study, the progress achieved with fluorescence array sensor detection technology in regard to pesticide monitoring was reviewed, and the application of fluorescence array sensor detection technology to various types of environmental samples (e.g., river water, vegetables, pharmaceuticals) was discussed. Furthermore, the advantages and limitations of existing array sensors in terms of the design, construction, and data processing were analyzed and relevant solutions were proposed. Finally, in consideration of the unique advantages of array research for practical production and environmental health applications, possible future directions for improvements are discussed to promote its commercial application value.
-
Key words:
- sensor array /
- machine learning /
- fluorescence /
- pesticide
-
图 1 基于三种分析方法的荧光示意图(a)CDs为荧光团直接与分析物Pb2+通过交互作用改变荧光信号[29]; (b)Ag+(左)和Hg2+(右)为连接臂,改善荧光团与分析物间亲和力检测硫化物 [30];(c)基于IDA分析方法的荧光传感示意图[32]
Figure 1. Fluorescence schematic diagram based on three analytical methods (a) CDs means that the fluorophore directly interacts with the analyte Pb2+ to change the fluorescence signal [29]; (b) Ag+ (left) and Hg2+ (right) were used as connecting arms to improve the affinity between fluorophore and analyte to detect sulfide [30]; (c) Schematic diagram of fluorescence sensing based on IDA analysis method [32]
表 1 不同荧光阵列检测方法用于监测多种农药的比较
Table 1. Different fluorescence array detection methods were used to monitor the comparison of various pesticides
分析物
Analytes研究方法
Methods检出限
Limit of detection数据处理方法
Data processing methods真实样品
Real samples参考文献
Reference多菌灵,二嗪,苯戊酸,
五氯硝基苯100 μg·L−1 HCA, PCA, wavelet analysis 甘蓝菜 [8] 噻虫嗪,硝苯吡胺,甲萘酚,
鱼藤酮,氯氰菊酯固有荧光检测 — — 松花江 [9] 氟乐灵、异丙灵、草甘膦、
杀螨硫磷、吡虫啉和氯氰菊酯— — 湖水 [44] 百草枯,毒死蜱,敌百虫,
甲基硫菌灵,杀螟丹20 nmol·L−1 PLSDA,MWPLSDA,
PSO-OSWLS-SVM废水,茶叶和水
提取液药物[46] 噻虫嗪,氟苯二胺,
乐果,双蝶酯和毒死蜱基于量子点的
检测方法10 ng·mL−1 PCA 橙汁 [47] 丙腈、对硫磷、乐果、毒死蜱 2.5 mg·L−1 LDA 胡萝卜和橙子 [48] 敌草隆,毒死蜱,儿茶酚 酶介导 1.1 ng·kg−1 for diuron,
0.6 μL·L−1 for chlorpyrifosANOVA 牛奶 [50] 草甘膦,甲基膦酸盐,
无机膦酸盐10 μmol·L−1 PCA, LDA 湖水 [52] 草甘膦和其他生物磷酸盐 指示剂置换方法 0.2 mg·L−1 LDA, SVM 饮用水 [53] -
[1] NSIBANDE S A, FORBES P B C. Fluorescence detection of pesticides using quantum dot materials–A review [J]. Analytica Chimica Acta, 2016, 945: 9-22. doi: 10.1016/j.aca.2016.10.002 [2] YAN X, LI H X, SU X G. Review of optical sensors for pesticides [J]. TrAC Trends in Analytical Chemistry, 2018, 103: 1-20. doi: 10.1016/j.trac.2018.03.004 [3] EPSTEIN L. Fifty years since silent spring [J]. Annual Review of Phytopathology, 2014, 52(1): 377-402. doi: 10.1146/annurev-phyto-102313-045900 [4] SAPBAMRER F, RATANA H. Pesticide Use, poisoning, and knowledge and unsafe occupational practices in Thailand [J]. New Solut, 2018, 28(2): 283-302. doi: 10.1177/1048291118759311 [5] 王静. 有机氯农药残留的危害及改善措施 [J]. 湖南农业, 2020(8): 36. doi: 10.3969/j.issn.1005-362X.2020.08.038 WANG J. Harm of organochlorine pesticide residue and improvement measures [J]. Hunan Agriculture, 2020(8): 36(in Chinese). doi: 10.3969/j.issn.1005-362X.2020.08.038
[6] 贾玉玲, 蔡强, 彭惠民, 等. 乙酰胆碱酯酶和发光菌检测有机磷农药毒性研究 [J]. 环境科学, 2011, 32(6): 1820-1824. JIA Y L, CAI Q, PENG H M, et al. Detection of the toxicity of organophosphorus pesticide with acetylcholinesterase and luminescent bacterium [J]. Environmental Science, 2011, 32(6): 1820-1824(in Chinese).
[7] 华小梅, 江希流. 我国农药环境污染与危害的特点及控制对策 [J]. 环境科学研究, 2000, 13(3): 40-43. doi: 10.3321/j.issn:1001-6929.2000.03.012 HUA X M, JIANG X L. Characteristics and control countermeasures of pesticide pollution and its damage on environment in China [J]. Research of Environmental Science , 2000, 13(3): 40-43(in Chinese). doi: 10.3321/j.issn:1001-6929.2000.03.012
[8] HUANG J, HOU C J, LEI J C, et al. A novel device based on a fluorescent cross-responsive sensor array for detecting pesticide residue [J]. Measurement Science & Technology, 2016, 27(11): 115104. [9] YANG L, LIU L Y, LIU C G, et al. Two luminescent dye@MOFs systems as dual-emitting platforms for efficient pesticides detection [J]. Journal of Hazardous Materials, 2020, 381(5): 120966. [10] 张鹏, 张有明, 林奇, 等. 金属离子响应型荧光传感分子的设计原理及研究进展 [J]. 有机化学, 2014, 34(7): 1300-1321. ZHANG P, ZHANG Y M, LIN Q, et al. Principle and the research progress of metal ion responsive fluorescent chemosensors for cations recognition [J]. Chinese Journal of Organic Chemistry, 2014, 34(7): 1300-1321(in Chinese).
[11] HU T, HU J, YE Y, et al. Visual detection of mixed organophosphorous pesticide using QD-AChE aerogel based microfluidic arrays sensor. [J]. Biosensors & Bioelectronics, 2019, 136: 112-117. [12] KAZEMIFARD N, ENSAFI A A, REZAEI B. Green synthesized carbon dots embedded in silica molecularly imprinted polymers, characterization and application as a rapid and selective fluorimetric sensor for determination of thiabendazole in juices[J]. Food Chemistry, 2020, 310(4): 125812. [13] ANZENBACHER P, PŘEMYSL L, PAVEL B, et al. A practical approach to optical cross-reactive sensor arrays [J]. Chemical Society Reviews, 2010, 39(10): 3954-3979. doi: 10.1039/b926220m [14] 黄丽娟, 张欣, 张卓勇, 等. 基于纳米金显色反应的阵列传感器结合化学计量学检测重金属离子 [J]. 光谱学与光谱分析, 2018, 38(S1): 361-362. HUANG L J, ZHANG X, ZHANG Z Y, et al. Sensor array for qualitative and quantitative analysis of metal ions and metal oxyanion based on colorimetric and chemometrics [J]. Spectroscopy and Spectral Analysis, 2018, 38(S1): 361-362(in Chinese).
[15] DICKINSON T. A. , WHITE J, KAUER J. S, et al. A chemeical-detedting system based on a cross-reactive optical sensor array[J]. Nature, 1996, 382 (6593), 697-700. [16] FOLMER J F, KITAMURA M, ANSLYN E V, et al. Pattern-based discrimination of enantiomeric and structurally similar amino acids: an optical mimic of the mammalian taste response [J]. Journal of the American Chemical Society, 2006, 128(17): 5652-5653. doi: 10.1021/ja061313i [17] IJAZ G, SHEERAZ M, SAQLAN M, et al. Polyphenol oxidase (PPO) based biosensors for detection of phenolic compounds: A review [J]. Journal of Applied Biology & Biotechnology, 2017, 5(3): 72-85. [18] POTYRAILO R A, LEACH A M , et al. Selective gas nanosensors with multisize CdSe nanocrystal/polymer composite films and dynamic pattern recognition[J]. Applied Physics Letters, 2006, 88(13): 338-315. [19] CHEN L F,LI L,WU D, et al. Construction of multi-channel fluorescence sensor array and its application for accurate identification and sensitive quantification of multiple metal ions [J]. Sensors and Actuators B:Chemical, 2020, 303: 127277. doi: 10.1016/j.snb.2019.127277 [20] THOMAS W, JOLY G D,SWAGER T M. Chemical sensors based on amplifying fluorescent conjugated polymers. [J]. Chemical Reviews, 2007, 107(4): 1339-1386. doi: 10.1021/cr0501339 [21] TIAN J, WANG H F, YAN X P, et al. Discrimination of saccharides with a fluorescent molecular imprinting sensor array based on phenylboronic acid functionalized mesoporous silica. [J]. Analytical Chemistry, 2009, 81(13): 5273-5280. doi: 10.1021/ac900484x [22] 孙嫚. 碳量子点构建传感器阵列用于胺和咪唑类化合物的检测[D]. 沈阳: 辽宁大学, 2019. SUN M. Construction of carbon-based quantum dot sensor arrays for the detection of amines and imidazoles [D]. Shenyang : Liaoning University, 2019(in Chinese).
[23] 龙亿涛, 樊春海. 纳米传感器 [J]. 化学学报, 2017, 75(11): 1021-1022. LONG Y T, FAN C H. Nanosensor [J]. Chinese Journal of Chemistry, 2017, 75(11): 1021-1022(in Chinese).
[24] ZHANG H Y, WANG Y, XIAO S, et al. Rapid detection of Cr(VI) ions based on cobalt(II)-doped carbon dots [J]. Biosensors and Bioelectronics, 2017, 87: 46-52. doi: 10.1016/j.bios.2016.08.010 [25] BURYAK A, ZAUBITZER F, POZDNOUKHOV A, et al. Indicator displacement assays as molecular timers [J]. Journal of the American Chemical Society, 2008, 130(34): 11260-11261. doi: 10.1021/ja8037118 [26] PHILLIPS R L, MIRANDA O R,YOU C C et al. Rapid and efficient identification of bacteria using gold-nanoparticle-poly (Para-phenyleneethynylene) constructs [J]. Angewandte Chemie International Edition, 2008, 47(14): 2590-2594. doi: 10.1002/anie.200703369 [27] WU Y P, LIU X, WU Q H, et al. Differentiation and determination of metal ions using fluorescent sensor array based on carbon nanodots [J]. Sensors and Actuators B:Chemical, 2017, 246: 680-685. doi: 10.1016/j.snb.2017.02.132 [28] ASKIM J R, MAHMOUDI M, SUSLICK K S. Optical sensor arrays for chemical sensing: The optoelectronic nose [J]. Chemical Society Reviews, 2013, 42(22): 8649-8682. doi: 10.1039/c3cs60179j [29] ZU F L, YAN F Y, BAI Z J, et al. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications [J]. Microchimica Acta, 2017, 184(7): 1899-1914. doi: 10.1007/s00604-017-2318-9 [30] BARATI A, SHAMSIPUR M, ABDOLLAHI H. Metal-ion-mediated fluorescent carbon dots for indirect detection of sulfide ions [J]. Sensors & Actuators B: Chemical, 2016, 230: 289-297. [31] JING W J, LU Y X, YANG G C, et al. Fluorescence sensor array based on amino acids-modulating quantum dots for the discrimination of metal ions. [J]. Analytica Chimica Acta, 2017, 985: 175-182. doi: 10.1016/j.aca.2017.07.011 [32] BURYAK A, POZDNOUKHOV A, SEVERIN K, et al. Pattern-based sensing of nucleotides in aqueous solution with a multicomponent indicator displacement assay [J]. Chemical Communications (Cambridge, England), 2007, 23: 2366-2368. [33] ROCHAT S, GAO J,QIAN X H, et al. Cross-reactive sensor arrays for the detection of peptides in aqueous solution by fluorescence spectroscopy [J]. Chemistry, 2010, 16(1): 104-113. doi: 10.1002/chem.200902202 [34] WU Y P, LIU X, WU Q H, et al. Carbon nanodots-based fluorescent turn-on sensor array for biothiols. [J]. Analytical Chemistry, 2017, 89(13): 7084-7089. doi: 10.1021/acs.analchem.7b00956 [35] XU Z J, WANG Z K, LIU M Y, et al. Machine learning assisted dual-channel carbon quantum dots-based fluorescence sensor array for detection of tetracyclines [J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2020, 232: 118147. doi: 10.1016/j.saa.2020.118147 [36] PAU C P, PATONAY G, MOSS C W, et al. A rapid enzymatic procedure for “fingerprinting” bacteria by using pattern recognition of two-dimensional fluorescence data. [J]. Clinical Chemistry, 1986, 32(6): 987-991. doi: 10.1093/clinchem/32.6.987 [37] WANG Z, XU C, LU Y X, et al. Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions [J]. Sensors and Actuators B Chemical, 2016, 241: 1324-1330. [38] SUN S, JIANG K, QIAN S H, et al. Applying carbon dots-metal ions ensembles as a multichannel fluorescent sensor array: detection and discrimination of phosphate anions [J]. Analytical Chemistry, 2017, 89(10): 5542-5548. doi: 10.1021/acs.analchem.7b00602 [39] XIN Y, KONG L S, LIU Z, et al. Machine learning and deep learning methods for cybersecurity [J]. IEEE Access, 2018, 6: 35365-35381. doi: 10.1109/ACCESS.2018.2836950 [40] ABDI H, WILLIAMS L J, et al. Principal component analysis [J]. Wiley Interdiplinary Reviews: Computational Statistics, 2010, 2(4): 433-459. doi: 10.1002/wics.101 [41] YU H,YANG J. A direct LDA algorithm for high-dimensional data — with application to face recognition [J]. Pattern Recognition, 2001, 34(10): 2067-2070. doi: 10.1016/S0031-3203(00)00162-X [42] LI L L, ZHAO X, TSENG M L, et al. Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm [J]. Journal of Cleaner Production, 2020, 242(1): 118447.1-118447.12. [43] RAMANATHAN M, SIMONIAN A L, et al. Array biosensor based on enzyme kinetics monitoring by fluorescence spectroscopy: Application for neurotoxins detection [J]. Biosensors & Bioelectronics, 2007, 22(12): 3001-3007. [44] ZHANG B, LI B, WANG Z G, et al. Creation of carbazole-based fluorescent porous polymers for recognition and detection of various pesticides in water [J]. ACS Sensors, 2020, 5(1): 162-170. doi: 10.1021/acssensors.9b01954 [45] 邵彩云, 杨华勇, 杜毅, 等. 金属有机框架材料用于去除环境污染物研究进展 [J]. 化学研究, 2019, 30(5): 537-546. SHAO C Y, YANG H Y, DU Y, et al. Recent study on the application of metal-organic frameworks materials in the removal of environmental pollutants [J]. Chemical Research, 2019, 30(5): 537-546(in Chinese).
[46] FAN Y, LIU L, SUN D L, et al. “Turn-off” fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides [J]. Analytica Chimica Acta, 2016, 916: 84-91. doi: 10.1016/j.aca.2016.02.021 [47] GAO L F, JU L, CUI H, et al. Chemiluminescent and fluorescent dual-signal graphene quantum dots and their application in pesticide sensing arrays [J]. Journal of Materials Chemistry, 2017, 5(31): 7753-7758. [48] CARNEIRO S V, QUEIROZ V H R, CRUZ A A C, et al. Sensing strategy based on Carbon Quantum Dots obtained from riboflavin for the identification of pesticides [J]. Sensors and Actuators B:Chemical, 2019, 301: 127149. doi: 10.1016/j.snb.2019.127149 [49] 杨清如, 李琳, 刘续威, 等. 新鲜果蔬有机磷农药快速检测技术研究进展 [J]. 当代化工, 2019, 48(12): 2919-2924. YANG Q R, LI L, LIU X W, et al. Research progress in the rapid detection technology of organophosphorus pesticides in fresh fruits and vegetables [J]. Contemporary Chemical Industry, 2019, 48(12): 2919-2924(in Chinese).
[50] SILLETTI S, RODIO G, PEZZOTT G,et al. An optical biosensor based on a multiarray of enzymes for monitoring a large set of chemical classes in milk [J]. Sensors and Actuators B: Chemical, 2015, 215: 607-617. doi: 10.1016/j.snb.2015.03.092 [51] SCOGNAMIGLIO V, PEZZOTTI I, PEZZOTTI G, et al. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals [J]. Analytica Chimica Acta, 2012, 751: 161-170. doi: 10.1016/j.aca.2012.09.010 [52] LIU Y L, BONIZZONI M. A supramolecular sensing array for qualitative and quantitative analysis of organophosphates in water [J]. Journal of the American Chemical Society, 2014, 136(40): 14223-14229. doi: 10.1021/ja507905r [53] MINAMI T, LIU Y L, AKDENIZ A, et al. Intramolecular indicator displacement assay for anions: Supramolecular sensor for glyphosate [J]. Journal of the American Chemical Society, 2014, 136(32): 11396-11401. doi: 10.1021/ja504535q [54] LIN B X, YU Y, LI R Y, et al. Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer [J]. Sensors and Actuators B:Chemical, 2016, 229: 100-109. doi: 10.1016/j.snb.2016.01.114