-
应对全球气候变暖,对二氧化碳(CO2)实施控制与减排已成为所有国家的共同责任。2020年9月,习总书记在第七十五届联合国大会中提出,我国力争于2030年前使CO2排放达到峰值,努力争取2060年前实现碳中和。碳捕集和封存技术是实现碳中和目标的重要途径。CO2排放主要来源于燃煤电厂,对电厂烟气实施CO2捕集是实现碳减排的有效手段。化学吸收法是烟气CO2捕集最有效的方法之一[1-2]。以乙醇胺(MEA)为代表的有机胺是目前研究最为成熟的一类化学吸收剂,其具有CO2吸收迅速、选择性好等特点[3-4]。但传统有机胺吸收剂通常为水溶液,其存在解吸能耗高、设备腐蚀大等问题,工业化推广受到一定限制[5]。
对于传统有机胺水溶液而言,过高的解吸能耗主要是溶剂水较大的比热和蒸发焓所致[6]。同水相比,有机溶剂具有较低的比热和蒸发焓,在解吸方面有较大的节能优势。因此,用有机试剂作为溶剂构建无水吸收剂是降低CO2捕集能耗行之有效的手段。Yu等[7]构建了MEA/甲醇吸收剂用于CO2捕集,相比MEA水溶液,MEA/甲醇的解吸能耗可降低7%—24%。Rashidi等[8]利用吸收-解吸塔模拟MEA/甲醇和MEA/H2O的CO2捕集过程,发现MEA/甲醇的解吸能耗比MEA/H2O低12%。此外,研究者陆续开发了N-乙基乙醇胺(EMEA)/乙醇[9]、2-乙醇吡啶(2-PE)/乙二醇[10]等无水吸收剂,这些吸收剂均具有良好的节能潜力,同时对设备的腐蚀性低。但醇溶剂普遍存在沸点低、易挥发损失的缺陷。为避免醇类溶剂易损失的难题,研究者们用沸点高、蒸气压低的醇醚类试剂作为溶剂,开发了MEA/乙二醇单甲醚(2ME)[11]、2-乙基己烷-1-胺(EHA)/四乙二醇二甲醚(TGDE)[12]、EMEA/二乙胺基乙醇(DEEA)[13]等无水吸收剂。然而,上述无水吸收剂所使用的胺大多为一元胺(只含1个氨基),其CO2吸收负荷较低(约为0.5 mol·mol−1),CO2捕集效率欠佳。
胺溶液吸收CO2是基于胺分子中的氨基基团与CO2之间的化学反应,胺分子中氨基个数越多,其CO2负荷就越大。因此,利用二元或多元胺构建无水吸收剂可提高CO2负荷。陶梦娜[14]构建了三乙烯四胺(TETA)/聚乙二醇200(PEG200)吸收体系,发现TETA/PEG200的CO2吸收负荷可达1.63 mol·mol−1 (CO2/胺)。Zhang等[15]用二乙烯三胺(DETA)/N-甲基吡咯烷酮(NMP)无水吸收剂吸收CO2,发现DETA可与CO2发生等摩尔反应。但上述吸收剂吸收CO2后易产生固体不溶物甚至黏稠的胶状物质,可能会引起设备结垢、管道堵塞等问题。目前,关于CO2吸收负荷高且无固体不溶物析出的无水吸收剂仍鲜有报道。基于前期大量筛选工作,本研究小组发现二元胺羟乙基乙二胺(AEEA)/二甲基亚砜(DMSO)溶液吸收CO2过程中能始终保持均相状态,且其具有较高的CO2吸收负荷,是一种颇具应用潜力的CO2吸收剂。因此,本文拟对AEEA/DMSO捕集CO2的吸收和解吸性能进行全面研究,并通过核磁共振碳谱(13C NMR)分析其捕集CO2的反应机理。
羟乙基乙二胺/二甲基亚砜溶液高效捕集二氧化碳的性能及机理
2-(2-Aminoethylamino)ethanol/dimethyl sulfoxide solution for highly-efficient carbon dioxide capture: Performance and mechanism
-
摘要: 无水吸收剂用于CO2捕集具有解吸能耗低、腐蚀性小的优点。本文以羟乙基乙二胺(AEEA)为吸收活性组分,二甲基亚砜(DMSO)为溶剂,构建了一种高效AEEA/DMSO无水吸收剂用于CO2捕集,并考察了CO2捕集反应机理。实验结果表明,在40 ℃下,AEEA/DMSO的CO2吸收负荷高达1.40 mol·mol−1,在120 ℃下,解吸负荷可达0.91 mol·mol−1,远优于传统的MEA水溶液。此外,AEEA/DMSO具有良好的重复使用稳定性,经过5次吸收-解吸循环,其吸收负荷仍能保持0.85 mol·mol−1。反应机理研究表明,AEEA/DMSO吸收CO2后可生成氨基甲酸盐和氨基甲酸,两种产物间可发生分子间质子交换。Abstract: Nonaqueous absorbents have advantages of low regeneration energy consumption and equipment corrosion for CO2 capture. In this study, a novel nonaqueous absorbent comprising of 2-(2-aminoethylamino)ethanol (AEEA) and dimethyl sulfoxide (DMSO) was proposed for CO2 capture. Experimental results showed that the AEEA/DMSO absorbent could realize a high CO2 absorption loading of 1.40 mol·mol−1 at 40 ℃ and a high desortpion loading of 0.91 mol·mol−1 at 120 ℃, which were much higher than those of the conventional MEA aqueous solution under the same conditions. Moreover, AEEA/DMSO could be used repeatedly. After 5 absorption-desorption recycles, the absorption loading of AEEA/DMSO was still as high as 0.85 mol·mol−1. The analysis of reaction mechanism indicated that AEEA/DMSO could absorb CO2 to form both carbamate and carbamic acid species. These two reaction products could transfer protons from one to another.
-
Key words:
- CO2 capture /
- 2-(2-aminoethylamino)ethanol /
- dimethyl sulfoxide /
- reaction mechanism
-
-
[1] FANG M, YI N, DI W, et al. Emission and control of flue gas pollutants in CO2 chemical absorption system–A review [J]. International Journal of Greenhouse Gas Control, 2020, 93: 102904. doi: 10.1016/j.ijggc.2019.102904 [2] 王金意, 牛红伟, 刘练波, 等. 燃煤电厂烟气新型CO2吸收剂开发与工程应用 [J]. 热力发电, 2021, 50(1): 54-61. WANG J Y, NIU H W, LIU L B, et al. Development and application of new absorption solvent for CO2 capture fromflue gas ofcoal-fired power plant [J]. Thermal Power Generation, 2021, 50(1): 54-61(in Chinese).
[3] 穆艾伟, 樊俊杰, 江砚池, 等. 混合胺复配溶液对二氧化碳的吸收/解吸 [J]. 环境化学, 2020, 39(2): 409-415. doi: 10.7524/j.issn.0254-6108.2019031001 MU A W, FAN J J, JIANG Y C, et al. CO2 absorption/desorption using aqueous solution blended with mixed amine [J]. Environmental Chemistry, 2020, 39(2): 409-415(in Chinese). doi: 10.7524/j.issn.0254-6108.2019031001
[4] 高洁. 混合乙醇胺吸收剂体系对烟气中CO2捕集性能的研究[D]. 上海: 华东理工大学, 2018. GAO J. Research on carbon capture performance of flue gas by mixed monoethanolamine solvent system[D]. Shanghai: East China University of Science and Technology, 2018 (in Chinese).
[5] ZHANG S, SHEN Y, WANG L, et al. Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenge [J]. Applied Energy, 2019, 239: 876-897. doi: 10.1016/j.apenergy.2019.01.242 [6] FERRARA G, LANZINI A, LEONE P, et al. Exergetic and exergoeconomic analysis of post-combustion CO2 capture using MEA-solvent chemical absorption [J]. Energy, 2017, 130: 113-128. doi: 10.1016/j.energy.2017.04.096 [7] YU Y S, LU H F, ZHANG T T, et al. Determining the performance of an efficient nonaqueous CO2 capture process at desorption temperatures below 373 K [J]. Industrial & Engineering Chemistry Research, 2013, 52(35): 12622-12634. [8] RASHIDI H, VALEH-E-SHEYDA P, SAHRAIE S. A multiobjective experimental based optimization to the CO2 captureprocess using hybrid solvents of MEA-MeOH and MEA-water [J]. Energy, 2020, 190: 116430. doi: 10.1016/j.energy.2019.116430 [9] CHEN S M, CHEN S Y, ZHANG Y C, et al. Species distribution of CO2 absorption/desorption in aqueous and non-aqueous N-ethylmonoethanolamine solutions [J]. International Journal of Greenhouse Gas Control, 2016, 47: 151-158. doi: 10.1016/j.ijggc.2016.01.046 [10] YANG D, LV M, CHEN J. Efficient non-aqueous solvent formed by 2-piperidineethanol and ethylene glycol for CO2 absorption [J]. Chemical Communications, 2019, 55: 12483-12486. doi: 10.1039/C9CC06320J [11] 郭晖. 有机胺/醇醚非水混合体系吸收CO2过程特性研究[D]. 石家庄: 河北科技大学, 2019. GUO H. Research on CO2 absorption process using organic amine/glycol ether non-aqueous blends. Shijiazhuang: Hebei University of Science & Technology, 2019 (in Chinese).
[12] FU K, ZHANG P, WANG L, et al. Viscosity of 2-ethylhexan-1-amine (EHA)-diglyme, EHA-triglyme and EHA-tetraglyme non-aqueous solutions and its effect on initial absorption rate [J]. Journal of Molecular Liquids, 2020, 302: 112518. doi: 10.1016/j.molliq.2020.112518 [13] 陈思铭. 基于乙基乙醇胺的非水溶液法捕集二氧化碳[D]. 大连: 大连理工大学, 2018. CHEN S M. Carbon dioxide capture by ethylethanolamine based nonaqueous solution[D]. Dalian: Dalian University of Technology, 2018 (in Chinese).
[14] 陶梦娜. 非水溶剂/多元胺体系的CO2液固相变吸收基础研究[D]. 杭州: 浙江大学, 2018. TAO M N. The basic study of CO2 liquid-solid phase change absorption with non-aqueous solvent/polyamine system[D]. Hangzhou: Zhejiang University, 2018 (in Chinese).
[15] ZHANG Z, ZHAO W B, NONG J J, et al. Liquid-solid phase-change behavior of diethylenetriamine in nonaqueous systems for carbon dioxide absorption [J]. Energy Technology, 2017, 5(3): 461-468. doi: 10.1002/ente.201600351 [16] 沈遥. TETA-DMCA吸收烟气中二氧化碳的动力学、热力学及机理研究[D]. 杭州: 浙江工业大学, 2019. SHEN Y. Kinetics, thermodynamics and mechanism of TETA-DMCA for carbon dioxide absorption from flue gas[D]. Hangzhou: Zhejiang University of Technology, 2019 (in Chinese).
[17] 郭超, 陈绍云, 陈思铭, 等. 13C NMR定量分析一乙醇胺(MEA)与CO2的吸收和解吸特性 [J]. 化工进展, 2014, 33(11): 3101-3106. GUO C, CHEN S Y, CHEN S M, et al. Quantitative analysis on CO2 absorption and desorption in monoethanolamine (MEA) solution by using 13C NMR [J]. Chemical Industry and Engineering Process, 2014, 33(11): 3101-3106(in Chinese).
[18] KORTUNOV P V, SISKIN M, BAUGH L S, et al. In situ nuclear magnetic resonance mechanistic studies of carbon dioxide reactions with liquid amines in non-aqueous systems: Evidence for the formation of carbamic acids and zwitterionic species [J]. Energy & Fuels, 2015, 29: 5940-5966.