-
地球上储存的可利用资源有限,若一直依靠石油和天然气等不可再生能源为原料合成高分子材料以及相关有机化工产品等,材料发展终将会面临原料逐渐枯竭的困境。硫酸钙晶须(calcium sulfate whisker,CSW)是以废石膏为原料制备的一种良好的合成材料添加剂,除了可以改善合成产品的各项性能指标之外,还能缓解目前废石膏大量堆存的问题。目前,我国各类工业副产废石膏存储量为704.3亿吨,石膏年产量1.53亿吨,但每年利用率仅为36%,约为0.56亿吨[1]。其中,磷石膏作为一种大宗固体废物,其年均排放量达8000余万吨,全球累计堆存量达60亿吨以上,但是利用率仅为40%[2-4]。此外,全球约有20个国家和地区的火电厂使用烟气脱硫系统控制SO2排放;据统计显示,在2010年,全球已有超过90多个国家产生脱硫石膏,脱硫石膏的生产量已超过2000万吨[5-6],对环境造成了不小的负担,因此亟须找寻一种合适的资源化方法以解决废石膏大量堆积问题。
废石膏成分较复杂,主要含有二水硫酸钙、半水硫酸钙、硫酸钙、二氧化硅及少量结晶金属等;其中结晶二水硫酸钙(CaSO4·2H2O)含量达到70%—80%[7],因此用废石膏制备硫酸钙晶须是石膏固体废弃物高附加值利用以及减少资源浪费的一种可行方式[8],也是废石膏资源化利用最具有研究价值的方向之一。若能将我国每年产出的废石膏制备成硫酸钙晶须资源化利用,不仅能解决大量堆积废石膏的去向问题,同时还能产生良好的经济效应。然而,当前废石膏的资源化利用范围较窄、利用率低、成本较高、市场前景堪忧、对环境影响突出等问题限制了其资源化进程。目前,大部分的废石膏被用作水泥缓凝剂[9]、石膏板[10]、土壤改良[11]、重金属稳定固化[12],用于矿井与路基回填,建筑石膏粉与石膏砌块[13]、砂浆[14]、建筑用材[15]等方面,总利用率不到30%,余下的废石膏大量堆积。由于废石膏组分的不确定性及多样性,大部分废石膏中的有害成分会对地表水和地下水体造成污染威胁、影响环境卫生。
本文总结了几种目前废石膏的资源化利用途径,并对比了其优缺点,提出利用废石膏制备硫酸钙晶须的高附加值利用途径,为废石膏的处理处置提供一种新的解决思路。
废石膏制备硫酸钙晶须的高附加值利用前景
The high value-added utilization prospect of calcium sulfate whiskers prepared from waste gypsum
-
摘要: 目前全球范围内石膏资源储量丰富,种类繁多,但开发利用率低。特别是脱硫石膏、磷石膏固有堆存量大,其每年年产量逐渐剧增,大部分废石膏中含有大量有害组分,不仅会对地表水和地下水体造成污染威胁、影响环境卫生,而且会造成资源的极大浪费;由于其处理成本高、具有较大的潜在风险,截至目前,仍没有较好的石膏处理途径。石膏的主要成分是硫酸钙,硫酸钙晶须是一种良好的材料合成添加剂,对材料的各项性能均有改善作用,因而具有广阔的研究价值和市场前景。本文通过对比石膏的多种处理方法和硫酸钙晶须的制备方法,突出硫酸钙晶须的运用前景、市场前景,表明其市场价值和环境价值,提出运用石膏制备硫酸钙晶须的新控制理论,为石膏制备硫酸钙晶须的高附加值资源化利用提供理论支撑。Abstract: At present, the global reserves of gypsum resources are abundant, but the development utilization rate is still in a low level. Especially for the large production and inherent stockpiles of desulfurized gypsum and phosphogypsum, and most of the waste gypsum poses a threat to surface water and groundwater, affects environmental sanitation, but it also a huge waste of energy resource. However, due to the high processing cost and high potential risk of gypsum, there hardly find an efficient way to treat them. In general, the main component of desulfurized gypsum is calcium sulfate, and the calcium sulfate whiskers is a promising additive, which could reach a promising improvement to the performance of materials with a broad research value and market prospects. In this paper, we compared several treatment methods of desulfurization gypsum and the preparation methods of calcium sulfate whiskers, highlights the application prospects and market prospects of calcium sulfate whiskers, and shows its social and environmental values, then proposes the use of desulfurization gypsum to prepare calcium sulfate whiskers. The new control theory shows that the use of flue gas desulfurization gypsum to prepare calcium sulfate whiskers is an efficient way to treat high value-added resources of desulfurization gypsum solid waste.
-
表 1 废石膏的主要成分(%)
Table 1. Main components of desulfurized gypsum (%)
CaSO4 Al2O3 Fe2O3 MgO SiO2 天然石膏 72.60 1.73 1.15 1.30 4.30 废石膏 74.00—80 0.70—1.00 0.50—1.00 1.00—2.00 2.70—3.00 表 2 脱硫石膏在不同类型水处理中的应用
Table 2. Application details of desulfurized gypsum in different types of water treatment
表 3 常见硫酸钙晶须的制备方法
Table 3. Preparation methods of common calcium sulfate whiskers
制备方法
Preparation methods制备机理
Preparation mechanism优缺点
Advantages and disadvantages溶液法生长 把硫酸钙基元溶于溶剂中,通过外加条件引发晶体和晶须生长的方法[35]。 是最为常见的方法,但产率低。平均长径比可达91左右[36]。 熔体法生长 把硫酸钙基元在高温下熔融,在冷却刺激晶体和晶须生长的方法。 对反应釜要求较高。 气相法生长 把硫酸钙基元汽化,通过外加条件,时汽化基元固化在晶核上的过程。 需要的温度较高。 微波合成 微波时控制晶核形成和晶核生长的唯一外加物理条件,为晶须生长提供能量[37]。 是一种比较前沿的研究方法,明显提高晶须产率。 水热合成 温控的溶液生长法[38],在外添加剂的作用下,改变结晶过程中的动力学以及结晶机理,常见的加酸、盐、有机物等。 温度是晶须生长所需能量的唯一外加条件,所需反应釜要求温度较高,且产率较低[33],目前最为常见的合成方法。一般制备的晶须直径为2 μm至6 μm,长径比大于80 μm [39]。 常压外添加剂酸化法 用酸酸化,如使用不同浓度的CuCl2在硫酸溶液中水热合成半水合硫酸钙晶须(HH-CSWs)[40]。 可以调节生成的晶须形体,但无法调节晶须的生长速率和方向,产率较低。 反应性结晶[41] 制造化学反应(添加结晶剂)。 在添加结晶剂的基础上,引发结晶。 浓硝酸钙溶液法 通过在大气压下将硫酸溶液滴加到浓硝酸钙溶液中,开发了一种合成硫酸钙晶须的创新方法[42]。 在合成晶须的同时,生成硝酸。 表 4 常见的水热合成法以及制备效果
Table 4. Common hydrothermal synthesis methods and preparation effects
具体方法
Specific Method制备效果
Preparation Effect以纯净废石膏为原料,以AlCl3为晶体改性剂,通过水热法制备硫酸钙晶须(CSWs) CSW的直径为2 μm至6 μm,长径比大于80 μm [37] 甘油-水反应体系中实现了石膏的晶相和形貌控制的结晶 产生了具有高纵横比(类似于1∶200)的α-CSH晶须[37] 通过在大气压下将硫酸溶液滴加到浓硝酸钙溶液中 生成了高纵横比(约93.5)的硫酸钙晶须,再生了硝酸(浓度为170 g·L−1)[42] 在固溶比为1∶60的20%H2SO4水热1 h溶液中 获得了具有光滑表面和高纵横比的晶须[43] 采用大气酸化法,由烟气脱硫(FGD)石膏合成了硫酸钙晶须(CSW) CSW的宽度范围是3—22 μm,长宽比范围是25—80[41] 以废石膏为原料,研究了CuCl2对 溶液中水热结晶制备的水热产物的结晶形态$ {\rm{H}}_2 {\rm{SO}}_4^ - {\rm{H}}_2 {\rm{O}} $ 生产的硫酸钙晶须的直径范围为1—3 m,平均长径比大于200[44] 在 系统中水热结晶从废石膏制备硫酸钙晶须,当在${\rm{H}}_2 {\rm{SO}}_4^ - {\rm{H}}_2 {\rm{O}} {\rm{NaCl}}^ - {\rm{H}}_2 {\rm{O}} $
130 ℃下使用10—70 g NaCl·kg-1石膏−0.01 mol·L−1 制备60 min[45]${\rm{H}}_2 {\rm{SO}}_4^ - {\rm{H}}_2 {\rm{O}} $ 硫酸钙晶须的直径为3—5 pm,长度为200 μm至600 μm 反应性结晶利用废氯化钙制备硫酸钙晶须 使用废CaCl2制备具有稳定且结构化的微晶(长宽比高达190)的硫酸钙晶须[41] -
[1] 高强. 大型石膏制硫酸装置处理废硫酸和废石膏运行实践 [J]. 磷肥与复肥, 2020, 35(8): 41-43. doi: 10.3969/j.issn.1007-6220.2020.08.013 GAO Q. Operation practice of treating waste acid and waste gypsum in large sulfuric acid plant based gypsum [J]. Phosphate & Compound Fertilizer, 2020, 35(8): 41-43(in Chinese). doi: 10.3969/j.issn.1007-6220.2020.08.013
[2] 李纯, 薛鹏丽, 张文静, 等. 我国磷石膏处置现状及绿色发展对策 [J]. 化工环保, 2021, 1: 1-6. LI C, XUE P L, ZHANG W J. Disposal status of phosphogypsum in China and countermeasures of green development [J]. Environmental Protection of Chemical Industry, 2021, 1: 1-6(in Chinese).
[3] 罗大鹏, 雍毅, 侯江, 等. 磷石膏基α-半水石膏的制备及其在绿色建材中的应用 [J]. 磷肥与复肥, 2020, 35(11): 32-36. doi: 10.3969/j.issn.1007-6220.2020.11.011 LUO D P, YONG Y, HOU J, et al. Preparation on α-hemihydrate gypsum from phosphogypsum and its application in the green building materials [J]. Phosphate & Compound Fertilizer, 2020, 35(11): 32-36(in Chinese). doi: 10.3969/j.issn.1007-6220.2020.11.011
[4] 叶学东. 磷石膏综合利用现状及分析 [J]. 磷肥与复肥, 2013, 28(6): 5-8. doi: 10.3969/j.issn.1007-6220.2013.06.002 YE X D. Status and analysis of comprehensive utilization of phosphogypsum [J]. Phosphate & Compound Fertilizer, 2013, 28(6): 5-8(in Chinese). doi: 10.3969/j.issn.1007-6220.2013.06.002
[5] KORALEGEDARA N H, PINTO P X, DIONYSIOU D D, et al. Recent advances in flue gas desulfurization gypsum processes and applications-A review [J]. Journal of Environmental Management, 2019, 251: 12380. [6] PAN D, WU H, YANG L J. Investigation on the relationship between the fine particle emission and crystallization characteristics of gypsum during wet flue gas desulfurization process [J]. Journal of Environmental Sciences, 2017, 55: 303-310. doi: 10.1016/j.jes.2016.08.020 [7] SEO S K, KIM Y, CHU Y S, et al. Experimental study on the carbonation properties of dry desulfurized gypsum [J]. Journal of the Korean Ceramic Society, 2018, 55(1): 44-49. doi: 10.4191/kcers.2018.55.1.11 [8] TENG W L, WANG J S, WU J S, et al. Rapid synthesis of alpha calcium sulfate hemihydrate whiskers in glycerol-water solution by using flue-gas-desulfurization gypsum solid waste [J]. Journal of Crystal Growth, 2018, 496/497: 24-30. doi: 10.1016/j.jcrysgro.2018.05.008 [9] SHEN J S, XU Y D, YOU W G. Stabilized effect of desulfurized gypsum and steel slag blended clinker free cement on soft clay [J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3888-3891. [10] XU Z Y, WANG X, JIN B, et al. Study on mechanical properties of desulphurized gypsum-fly ash brick [J]. Non-metallic Mines, 2018, 41(6): 89-91. [11] TANG Y, ZHANG Q, WANG B, et al. Environmental effect of the amelioration of heavy soda saline soil using desulfurized gypsum [J]. Journal of Soil and Water Conservation, 2017, 31(2): 317-321. [12] WU C, CHEN C, TIAN M, et al. Study on mercury stability in desulfurized gypsum at coal-fired power plants [J]. Environmental Science and Technology, 2016, 39(8): 159-163. [13] YANG J F, CHENG J P, ZHAI W, et al. Study on aseismic performance of a new type of favricated steel frame with internal desulfurizition gypsum block wall [J]. Engineering Mechanics, 2019, 36(6): 147-156. [14] 张倩. 燃煤电厂烟气脱硫石膏的特征及综合利用途径分析 [J]. 资源信息与工程, 2017, 32(6): 103-104. doi: 10.3969/j.issn.2095-5391.2017.06.047 ZHANG Q. Analysis of characteristics and comprehensive utilization of flue gas desulfurization gypsum in coal-fired power plants [J]. Resource Information and Engineering, 2017, 32(6): 103-104(in Chinese). doi: 10.3969/j.issn.2095-5391.2017.06.047
[15] LIU Y X, ZHANG C M, ZHAO J, et al. Hydration characteristics and mechanism analysis of fgd gypsum [J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8): 2583-2587. [16] YANG Y, ZHANG Q, CAI W, et al. Formation and application of hierarchical calcium silicate-calcium sulfate whiskers [J]. Materials & Design, 2018, 146: 172-179. [17] KORALEGEDARA N H, PINTO P X, DIONYSIOU D D, et al. Recent advances in flue gas desulfurization gypsum processes and applications-A review [J]. Journal of Environmental Management, 2019, 251: 1-13. [18] 李彦, 衣怀峰, 赵博, 等. 燃煤烟气脱硫石膏在新疆盐碱土壤改良中的应用研究 [J]. 生态环境学报, 2010, 19(7): 1682-1685. doi: 10.3969/j.issn.1674-5906.2010.07.029 LI Y, YI H F, ZHAO B, et al. Study on improving Xinjiang sodic soils amelioration with desulfurized gypsum [J]. Ecology and Environmental Sciences, 2010, 19(7): 1682-1685(in Chinese). doi: 10.3969/j.issn.1674-5906.2010.07.029
[19] ZHAO Y, WANG S, LI Y, et al. Effects of straw layer and flue gas desulfurization gypsum treatments on soil salinity and sodicity in relation to sunflower yield [J]. Geoderma, 2019, 352: 13-21. doi: 10.1016/j.geoderma.2019.06.004 [20] WU S, WANG W, REN C, et al. Calcination of calcium sulphoaluminate cement using flue gas desulfurization gypsum as whole calcium oxide source [J]. Construction and Building Materials, 2019, 228: 7-15. [21] XU L, WU K, LI N, et al. Utilization of flue gas desulfurization gypsum for producing calcium sulfoaluminate cement [J]. Journal of Cleaner Production, 2017, 161: 803-811. doi: 10.1016/j.jclepro.2017.05.055 [22] LEI D, GUO L, SUN W, et al. Study on properties of untreated FGD gypsum-based high-strength building materials [J]. Construction and Building Materials, 2017, 153: 765-773. doi: 10.1016/j.conbuildmat.2017.07.166 [23] WU Q, MA H, CHEN Q, et al. Preparation of waterproof block by silicate clinker modified FGD gypsum [J]. Construction and Building Materials, 2019, 214: 318-325. doi: 10.1016/j.conbuildmat.2019.04.053 [24] MA Y, NIE Q, XIAO R, et al. Experimental investigation of utilizing waste flue gas desulfurized gypsum as backfill materials [J]. Construction and Building Materials, 2020, 245: 234-245. [25] LI Z F, ZHANG J, LI S C, et al. Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials [J]. Journal of Cleaner Production, 2020, 245: 132-156. [26] KANG J H, GOU X Q, HU Y H, et al. Efficient utilisation of flue gas desulfurization gypsum as a potential material for fluoride removal [J]. Science of The Total Environment, 2019, 649: 344-352. doi: 10.1016/j.scitotenv.2018.08.416 [27] LI R, LI Q, SUN X, et al. Efficient and rapid removal of EDTA-chelated Pb(Ⅱ) by the Fe(Ⅲ)/flue gas desulfurization gypsum (FGDG) system [J]. Journal of Colloid and Interface Science, 2019, 542: 379-386. doi: 10.1016/j.jcis.2019.01.129 [28] FANG D, LIAO X, ZHANG X, et al. A novel resource utilization of the calcium-based semi-dry flue gas desulfurization ash: As a reductant to remove chromium and vanadium from vanadium industrial wastewater [J]. Journal of Hazardous Materials, 2018, 342: 436-445. doi: 10.1016/j.jhazmat.2017.08.060 [29] YAN Y, LI Q, SUN X, et al. Recycling flue gas desulphurization (FGD) gypsum for removal of Pb(Ⅲ) and Cd(Ⅱ) from wastewater [J]. Journal of Colloid and Interface Science, 2015, 457: 86-95. doi: 10.1016/j.jcis.2015.06.035 [30] VARCOE J, VAN LEEUWEN J A, CHITTLEBOROUGH D J, et al. Changes in water quality following gypsum application to catchment soils of the Mount Lofty Ranges, South Australia [J]. Organic Geochemistry, 2010, 41(2): 116-123. doi: 10.1016/j.orggeochem.2009.09.010 [31] JENKINS M B, SCHOMBERG H H, ENDALE D M, et al. Hydrologic transport of fecal bacteria attenuated by flue gas desulfurization gypsum [J]. Journal of Environmental Quality, 2014, 43(1): 297-302. doi: 10.2134/jeq2012.0132 [32] WANG B, PAN Z, DU Z, et al. Effect of impure components in flue gas desulfurization (FGD) gypsum on the generation of polymorph CaCO3 during carbonation reaction [J]. Journal of Hazardous Materials, 2019, 369: 236-243. doi: 10.1016/j.jhazmat.2019.02.002 [33] CORDOBA P, STAICU L C. Flue gas desulfurization effluents: An unexploited selenium resource [J]. Fuel, 2018, 223: 268-276. doi: 10.1016/j.fuel.2018.03.052 [34] QIN J, SHI W, YANG H, et al. Sonochemical activation calcium sulfate whisker with enhanced beta-nucleating ability for isotactic polypropylene [J]. Colloid and Polymer Science, 2013, 291(11): 2579-2587. doi: 10.1007/s00396-013-3004-z [35] LI Y, CHEN Y, TANG C, et al. Co-treatment of waste smelting slags and gypsum wastes via reductive-sulfurizing smelting for valuable metals recovery [J]. Journal of Hazardous Materials, 2017, 322: 402-412. doi: 10.1016/j.jhazmat.2016.10.028 [36] TENG W L, WANG J S, WU J S, et al. Rapid synthesis of alpha calcium sulfate hemihydrate whiskers in glycerol-water solution by using flue-gas-desulfurization gypsum solid waste [J]. Journal of Crystal Growth, 2018, 496: 24-30. [37] JIANG N, ZHANG C, XUE C, et al. In situ synthesis of hydrophobic calcium sulfate hemihydrate whiskers [J]. Materials Research Express, 2018, 5(7): 23-34. [38] FAN H, SONG X, LIU T, et al. Effect of Al3+ on crystal morphology and size of calcium sulfate hemihydrate: Experimental and molecular dynamics simulation study [J]. Journal of Crystal Growth, 2018, 495: 29-36. doi: 10.1016/j.jcrysgro.2018.05.013 [39] WANG X, JIN B, XU Z Y, et al. Effects of AlCl3 on the crystal morphology of calcium sulfate whisker prepared from FGD gypsum//WANG K (ed). 6th Annual International Conference on Material Science and Environmental Engineering[C]. 2019: 27-41. [40] ZHANG X T, WANG X, JIN B, et al. Crystal structure formation of hemihydrate calcium sulfate whiskers (HH-CSWs) prepared using FGD gypsum [J]. Polyhedron, 2019: 173. [41] SUN H, TAN D, PENG T, et al. Preparation of calcium sulfate whisker by atmospheric acidification method from flue gas desulfurization gypsum//LI J, DONG F (eds). Selected Proceedings of the Tenth International Conference on Waste Management and Technology[C]. 2016: 621-626 [42] MA B, XING P, WANG C, et al. A novel way to synthesize calcium sulfate whiskers with high aspect ratios from concentrated calcium nitrate solution [J]. Materials Letters, 2018, 219: 1-3. doi: 10.1016/j.matlet.2018.02.025 [43] TAN H, DONG F, BIAN L, et al. Preparation of anhydrous calcium sulfate whiskers from phosphogypsum in H2O-H2SO4 autoclave-free hydrothermal system [J]. Materials Transactions, 2017, 58(8): 1111-1117. doi: 10.2320/matertrans.M2017042 [44] WANG X, JIN B, YANG L, et al. Effect of CuCl2 on hydrothermal crystallization of calcium sulfate whiskers prepared from FGD gypsum [J]. Crystal Research and Technology, 2015, 50(8): 633-640. doi: 10.1002/crat.201500035 [45] WANG X, YANG L, ZHU X, et al. Preparation of calcium sulfate whiskers from FGD gypsum via hydrothermal crystallization in the H2SO4-NaCl-H2O system [J]. Particuology, 2014, 17: 42-48. doi: 10.1016/j.partic.2013.12.001 [46] 秦善. 晶体学基础[M]. 北京: 北京大学出版社, 2006: 134-144 QING S. Fundamentals of crystallography[M]. Beijing: Peking University Press, 2006: 134-144 (in Chinese).
[47] LI W Y, YANG S, LI Y A, et al. Synthesis of an MOF-based Hg2+-fluorescent probe via stepwise post-synthetic modification in a single-crystal-to-single-crystal fashion and its application in bioimaging [J]. Dalton Transactions, 2019, 48(44): 16502-16508. doi: 10.1039/C9DT02866H [48] YANG H C, TSAI T P. Microwave-assisted synthesis and thermal resistance of calcium sulfate whiskers [J]. Chemical Engineering Communications, 2017, 204(2): 232-237. doi: 10.1080/00986445.2016.1260010 [49] LIU C, ZHAO Q, WANG Y, et al. Hydrothermal synthesis of calcium sulfate whisker from flue gas desulfurization gypsum [J]. Chinese Journal of Chemical Engineering, 2016, 24(11): 1552-1560. doi: 10.1016/j.cjche.2016.04.024 [50] SONG X, ZHANG L, ZHAO J, et al. Preparation of calcium sulfate whiskers using waste calcium chloride by reactive crystallization [J]. Crystal Research and Technology, 2011, 46(2): 166-172. doi: 10.1002/crat.201000420 [51] WANG S, CHEN D, ZHANG K. Preparation, characterization, and formation mechanism of calcium sulfate hemihydrate whiskers [J]. Journal of Wuhan University of Technology-Materials Science Edition, 2018, 33(6): 1407-1415. doi: 10.1007/s11595-018-1983-9 [52] LIU C, ZHAO Q, WANG Y, et al. Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum [J]. Applied Surface Science, 2016, 360: 263-269. doi: 10.1016/j.apsusc.2015.11.032 [53] SUN X, ZHANG G, CUI P. Aspect ratio-controlled preparation of alpha-CaSO4 center dot 0.5H(2)O from phosphogypsum in potassium tartrate aqueous solution [J]. Rsc Advances, 2019, 9(38): 21601-21607. doi: 10.1039/C9RA03569A [54] MIAO M, FENG X, WANG G, et al. Direct transformation of FGD gypsum to calcium sulfate hemihydrate whiskers: Preparation, simulations, and process analysis [J]. Particuology, 2015, 19: 53-59. doi: 10.1016/j.partic.2014.04.010 [55] FENG X, ZHANG Y, WANG G, et al. Dual-surface modification of calcium sulfate whisker with sodium hexametaphosphate/silica and use as new water-resistant reinforcing fillers in papermaking [J]. Powder Technology, 2015, 271: 1-6. doi: 10.1016/j.powtec.2014.11.015 [56] ZHAO W, WU Y, XU J, et al. RETRACTED: Effect of ethylene glycol on hydrothermal formation of calcium sulfate hemihydrate whiskers with high aspect ratios [J]. Rsc Advances, 2015, 5(62): 50544-50548. doi: 10.1039/C5RA07712E [57] HAN Q, LUO K, LI H, et al. Influence of disodium hydrogen phosphate dodecahydrate on hydrothermal formation of hemihydrate calcium sulfate whiskers [J]. Particuology, 2014, 17: 131-135. doi: 10.1016/j.partic.2013.10.002 [58] MAO X, SONG X, LU G, et al. Effects of metal ions on crystal morphology and size of calcium sulfate whiskers in aqueous HCl solutions [J]. Industrial & Engineering Chemistry Research, 2014, 53(45): 17625-17635. [59] LU P, FEI D, DANG Y. Effects of calcium monohydrogenphosphate on the morphology of calcium sulfate whisker by hydrothermal synthesis [J]. Canadian Journal of Chemical Engineering, 2014, 92(10): 1709-1713. doi: 10.1002/cjce.22037 [60] CHEN C, WANG Y, YU L, et al. Hydration ability of hemihydrate calcium sulphate whiskers with different content of sodium phosphate// LIANG J, WU X, YANG W, et al. (eds). Progress in industrial and civil engineering Ⅲ, Pt 1[J]. Applied Mechanics and Materials 2014, 638-640: 1346-1349 [61] WANG X, LI X, LI X, et al. Influence of sodium oleate on morphology of semi-hydrated calcium sulfate whiskers and its infrared adsorption performance//LIU H, KURODA SI, ZHENG L (eds). Advances in textile engineering and materials Ⅳ[J]. Advanced Materials Research 2014, 1048: 479-482 [62] LIU H, WANG Y. Effect of stabilizer on morphology and stability of hemihydrate calcium sulfate whiskers//LI H, LIU Y F, GUO M, et al. (eds). Sustainable development of urban environment and building material, Pts 1-4[J]. Advanced Materials Research, 2012, 374-377: 1495. [63] LUO K B, LI C M, XIANG L, et al. Hydrothermal formation of hemi-hydrate calcium sulfate whiskers in the presence of additives//JIN F M, ZHOU Q, WU B, et al. (eds). 2nd International Symposium on Aqua Science, Water Resource and Low Carbon Energy[C]. 2010: 296. [64] WANG X, ZHU Y, HAN Y, et al. Toughening of polypropylene with calcium sulfate whiskers treated by coupling agents//GAI G (ed). Powder Technology and Application[C]. 2009: 225. [65] TAS A C. X-ray diffraction data for flux-grown calcium hydroxyapatite whiskers [J]. Powder Diffraction, 2001, 16(2): 102-106. doi: 10.1154/1.1330273 [66] CHEN R S, HOU S C, WANG J, et al. Influence of alkyl trimethyl ammonium bromides on hydrothermal formation of alpha-CaSO4 center dot 0.5H2O whiskers with high aspect ratios [J]. Crystals, 2017, 7(1): 56-64. [67] HOU S, WANG J, WANG X, et al. Effect of Mg2+ on hydrothermal formation of alpha-CaSO4 center dot 0.5H2O whiskers with high aspect ratios [J]. Langmuir, 2014, 30(32): 9804-9810. doi: 10.1021/la502451f [68] WANG Y, TAN D, LI X, et al. Research on affecting factor of preparation of calcium sulfate whisker with FGD gypsum//QIANG L (ed). Advanced development in automation, materials and manufacturing[J]. Applied Mechanics and Materials, 2014, 624: 82-85 [69] HAZRA C, BARI S, KUNDU D, et al. Ultrasound-assisted/biosurfactant-templated size-tunable synthesis of nano-calcium sulfate with controllable crystal morphology [J]. Ultrasonics Sonochemistry, 2014, 21(3): 1117-1131. doi: 10.1016/j.ultsonch.2013.12.020 [70] GUILLON O, ELSAESSER C, GUTFLEISCH O, et al. Manipulation of matter by electric and magnetic fields: Toward novel synthesis and processing routes of inorganic materials [J]. Materials Today, 2018, 21(5): 527-536. doi: 10.1016/j.mattod.2018.03.026 [71] DALVI-ISFAHAN M, HAMDAMI N, XANTHAKIS E, et al. Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields [J]. Journal of Food Engineering, 2017, 195: 222-234. doi: 10.1016/j.jfoodeng.2016.10.001 [72] ZHANG X, WANG L. Study of calcium sulfate whiskers [J]. Asian Journal of Chemistry, 2014, 26(1): 17-20. doi: 10.14233/ajchem.2014.15192 [73] LI G, DU M, SU Y, et al. Research progress on preparation technology of calcium sulfate//ZENG J, LI J, ZHU H (eds). Chemical, Material and Metallurgical Engineering Ⅲ, Pts 1-3[J]. Advanced Materials Research, 2014: 998-1002. [74] LU Y, LI X, WU C, et al. Comparison between polyether titanate and commercial coupling agents on the properties of calcium sulfate whisker/poly (vinyl chloride) composites [J]. Journal of Alloys and Compounds, 2018, 750: 197-205. doi: 10.1016/j.jallcom.2018.03.301 [75] SHENG Z, ZHOU J, SHU Z, et al. Calcium sulfate whisker reinforced non-fired ceramic tiles prepared from phosphogypsum [J]. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2018, 57(2): 73-78. doi: 10.1016/j.bsecv.2017.09.005 [76] YANG J, NIE S. Effects of calcium sulfate whisker on the mechanical property, morphological structure and thermal degradation of poly (lactic acid) composites [J]. Polymer Degradation and Stability, 2017, 144: 270-280. doi: 10.1016/j.polymdegradstab.2017.08.031 [77] ZHANG Q, MA P, YANG Y, et al. Reinforcement of recycled paint slag hybrid-filled lightweight calcium sulphate whisker/PVC foam composites [J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 520-526. doi: 10.1016/j.jece.2017.12.025 [78] YUAN W, CUI J, XU S. Mechanical properties and interfacial interaction of modified calcium sulfate whisker/poly (vinyl chloride) Composites [J]. Journal of Materials Science & Technology, 2016, 32(12): 1352-1360. [79] ZHU Z, XU L, CHEN G. Effect of different whiskers on the physical and tribological properties of non-metallic friction materials [J]. Materials & Design, 2011, 32(1): 54-61. [80] JEGANMOHAN S R, CHRISTY T V, SOLOMON D G, et al. Influence of calcium sulfate whiskers on the tribological characteristics of automotive brake friction materials [J]. Engineering Science and Technology-an International Journal-Jestech, 2020, 23(2): 445-451. doi: 10.1016/j.jestch.2019.06.007 [81] CHEN X, YANG L, ZHANG J, et al. Exploration of As(Ⅲ)/As(Ⅴ) uptake from aqueous solution by synthesized calcium sulfate whisker [J]. Chinese Journal of Chemical Engineering, 2014, 22(11-12): 1340-1346. doi: 10.1016/j.cjche.2014.09.018 [82] FAN T, WANG X, GAO Y, et al. Investigating the interaction mechanism and effect of different calcium sulfate whiskers on performance of asphalt binder [J]. Construction and Building Materials, 2019, 224: 515-533. doi: 10.1016/j.conbuildmat.2019.07.093 [83] 师存杰, 张兴儒, 郭祖鹏, 等. 硫酸钙晶须的制备及其应用进展 [J]. 当代化工, 2010, 39(4): 436-438,441. doi: 10.3969/j.issn.1671-0460.2010.04.029 SHI C J, ZHANG X R, GUO Z P, et al. Preparation and application development of calcium sulfate whisker [J]. Contemporary Chemical Industry, 2010, 39(4): 436-438,441(in Chinese). doi: 10.3969/j.issn.1671-0460.2010.04.029
[84] 王泽红, 韩跃新, 袁致涛, 等. CaSO4晶须制备技术及应用研究 [J]. 矿冶, 2005(2): 38-41. doi: 10.3969/j.issn.1005-7854.2005.02.010 WANG Z H, HAN Y X, YUAN Z T, et al. Calcium sulfate whiskers preparation and its application [J]. Mining and Metallurgy, 2005(2): 38-41(in Chinese). doi: 10.3969/j.issn.1005-7854.2005.02.010
[85] HAAS K, LOTHAT P, HANS T, et al. Calcium sulfate whiskers: DE[P]. [1978-07-20]