-
氯(胺)消毒是饮用水中消灭病原体微生物、保护水质安全的重要方式,但在消毒时原水中存在的有机或无机物会与消毒剂发生反应,产生了一系列对人类健康存在威胁的消毒副产物(DBPs)[1].自从饮用水中发现三卤甲烷(THMs)以后,卤乙酸(HAAs)、卤乙腈(HANs)、卤代硝基甲烷(HNMs)、卤代乙酰胺(HAcAms)和亚硝胺(NAs)等一系列DBPs逐渐出现在人们的视野中[2-3].流行病学研究一致认为,饮用水中的DBPs与患膀胱癌风险以及其它不利健康影响之间存在潜在的关联[4-5].目前各国已经对THMs和HAAs等常规DBPs的浓度水平进行了规范控制,但细胞毒性和遗传毒性更高的N-DBPs如HANs、HNMs、HAcAms等却很少被纳入水质控制指标中[6-8].
HNMs在饮用水中常有检出,通常以μg·L−1水平存在[3, 9].我国在《生活饮用水卫生标准》(GB5749-2006)中明确规定了THMs、二氯乙酸(DCAA)、三氯乙酸(TCAA)、溴酸盐等DBPs的限制标准,但对HNMs尚未作出限制要求[10].HNMs是一种新兴N-DBPs,主要包括一氯硝基甲烷(CNM)、二氯硝基甲烷(DCNM)、三氯硝基甲烷(TCNM)、一溴硝基甲烷(BNM)、二溴硝基甲烷(DBNM)、三溴硝基甲烷(TBNM)、一溴一氯硝基甲烷(BCNM)、一溴二氯硝基甲烷(BDCNM)和二溴一氯硝基甲烷(DBCNM),其中溴代硝基甲烷(尤其是DBNM)和溴氯硝基甲烷比氯代硝基甲烷具有更强的细胞毒性和遗传毒性[11-12].近年来,城市水源受藻类和污水中有机物等影响,导致水中HNMs浓度水平显著增大[13],造成水质安全隐患.本文简述了HNMs在水中分布特点、来源、毒性效应及毒性机制的研究进展,以期引起广大人群对HNMs的关注,为饮用水安全保障和HNMs控制提供科学参考依据.
-
HNMs是一种新兴的N-DBPs,在中国31个城市70家自来水厂的水样调查中发现80%的水厂存在CNM,7%的水厂存在TCNM,其最大浓度分别为0.96 μg·L−1和0.28 μg·L−1,HNMs的中值和最大值浓度分别为0.05 μg·L−1和0.96 μg·L−1[9].近期,Zhou等[14]在我国浙江省金华市64个自来水样品调查中也发现了HNMs,检测出HNMs的中值和最大浓度分别为0.6 μg·L−1和2.6 μg·L−1.这些研究检测到的HNMs浓度均低于美国[15]和英国[16],与澳大利亚[17]相近(见表1).同时,研究中发现TCNM并不总是含量最高的HNMs,说明HNMs的种类分布规律还不够明确,这可能与HNMs前体物种类和消毒工艺之间存在关联[16-18].
HNMs浓度水平具有较强的季节性和地域性.Zhou等[14]在我国浙江省金华市8个县(或县级城市)的自来水样品调查中发现HNMs夏季浓度水平通常高于冬季和春季,永康、东阳和义乌这些经济较发达地区HNMs浓度高于其它5个城市,表明发达城市可能会存在更多的HNMs前体物,从而使饮用水中HNMs水平增加.董蕾等[19]在对我国的6个城市饮用水的现状调查中也发现,枯水期TCNM浓度均大于丰水期,沿海地区TCNM浓度高于内陆地区,其浓度分布具有季节性(见表2).这些季节和地域特性可能与水源温度、藻类以及微生物繁殖等因素有关.一般来说,温度越高,产生的HNMs浓度越大;藻类以及微生物繁殖能够释放含氮化合物,有利于HNMs的生成.
-
饮用水中HNMs来源广泛,主要是水中HNMs的前体物与氯(胺)消毒剂发生化学反应而产生.HNMs前体物种类繁多,具体包括下面几个方面. 1)氨基酸类物质.游离或结合的氨基酸是亲水性NOM的重要部分,地表水中总溶解氨基酸浓度范围为100 μg·L−1至500 μg·L−1,占总NOM的2%—3%,在富营养化的湖泊中,氨基酸浓度甚至可达300 μg·L−1至6000 μg·L−1[13, 20].大部分氨基酸都可以生成HNMs,生成浓度与氨基酸种类和消毒方式密切相关(见表3).氨基酸在氯化过程中产生HNMs效率在0—0.3%之间,在臭氧+氯化过程中产生HNMs效率明显升高,最高可达8.56%.在消毒过程中,甘氨酸、赖氨酸和色氨酸普遍表现出较大的生成势[20-23]. 2)藻类有机物.城市水源受藻类影响严重,藻类大量繁殖会向水中释放大量的藻类有机物(AOM),这种AOM是HNMs的重要来源[24].以铜绿微囊藻为前体物的氯(胺)化实验中发现HNMs生成势可达0.80 μg·mg−1,胞内有机物(IOM)比胞外有机物(EOM)贡献更大[25-26].Goslan等[27]选取了2种硅藻和3种蓝藻进行了HNMs生成势对比,结果显示硅藻比蓝藻的HNMs生成势更大,而Liao等[25]研究显示硅藻和蓝藻的HNMs生成势相差不大,这可能与所选取的藻种不同有关(见表3). 3)胺类物质.胺类物质含有的氨基官能团可以转化为硝基,也是HNMs的重要前体物.研究人员在胺类物质氯(胺)化过程中发现了HNMs的生成[28-31].McCurry等[32]在臭氧+氯条件下评估了一系列胺类物质的HNMs生成势,结果显示单乙醇胺、二乙醇胺和N-甲基丙胺等物质的HNMs产率可达50%以上.Shi等[33]对含N-甲胺基官能团药物进行了氯(胺)化实验,结果发现HNMs产率在2.5%—83%之间(见表3),尽管水中该类物质通常以ng·L−1浓度水平存在,但其对HNMs的贡献仍值得深入研究. 4)亚硝酸盐和硝酸盐.在氯的作用下,亚硝酸盐会生成ClNO2,然后进一步反应形成N2O4,再与水中有机物反应生成HNMs[34].而在紫外/氯(胺)作用下,由于硝酸盐和亚硝酸盐的吸收光谱与紫外的发射光谱广泛重叠,在紫外作用下生成一氧化氮自由基(NO·)和羟基自由基(·OH),然后反应生成二氧化氮自由基(NO2·)和过氧亚硝酸(ONOOH),其中起关键作用的NO2·会将溶解性有机物(DOM)转化为硝基酚,进而与氯反应生成HNMs[35-36].除了上述四类物质外,其它相关研究也提到氨基糖[20]、偶氮化合物[37]、嘧啶和嘌呤[30, 38]等物质在氯(胺)化过程中也会产生HNMs.因此,目前HNMs的前体物种类仍然不够清晰,仍需有待探究[13].
在研究前体物种类的过程中,人们更想进一步探究HNMs的前体物是否有一些共性的内容,溶解有机氮(DON)和溶解有机碳(DOC)进入了研究人员的视野.当城市水源中DON逐渐增多时,在氯(胺)化过程中HNMs浓度水平显著增大,表明HNMs生成势与DON有很好的相关性[13, 39].天然水在氯化和臭氧+氯化消毒过程中,也发现HNMs的产量随DOC/DON值的降低而增加,表明DON在HNMs生成中起重要作用[40-42].Hu等[41]研究发现亲水性NOM组分具有更高的HNMs生成势.虽然很多学者认为在氯(胺)消毒过程中DON与HNMs生成有一定的相关性,但是在不同的前体物中,这种相关性也会发生变化.另外,消毒方式对HNMs的生成也有很大的影响,实验中显示各种消毒方式下的HNMs生成势大小顺序如下:臭氧+氯»臭氧+氯胺>氯>氯胺[20, 23, 43].
-
在近几十年中,随着研究的深入,DBPs的种类越来越多,其毒性研究也越来越广,如细胞毒性、遗传毒性、三致效应和内分泌干扰效应等[44-45].HNMs作为一类新兴的N-DBPs,因其致突变性、高细胞毒性、遗传毒性和致癌性而备受关注.
-
有研究表明,在沙门氏菌系统中TCNM和TBNM具有致突变性[46-48].在此基础上,Kundu等[49]在沙门氏菌预孵育试验中系统评估了HNMs的致突变性.结果显示,在沙门氏菌代谢活化(+S9)条件下,HNMs致突变性等级顺序为(TBNM≈BCNM>BNM)>(BDCNM≈DBNM≈CNM)>(DCNM≈TCNM).此顺序与Kundu等[50]在沙门氏菌平板掺入试验+S9情况下观察到的顺序相似.两种测定中BCNM致突变能力都是最强的,而DCNM和TCNM致突变能力是最弱的,溴代硝基甲烷比氯代硝基甲烷更具致突变性.与其它常规DBPs进行对比,HNMs比THMs和HAAs致突变性更强,但比3-氯-4(二氯甲基)-5-羟基-2(5H)-呋喃酮(MX)的致突变力低3个数量级,然而大部分HNMs的致突变力<1000 rev·μmol−1(见表4),因此HNMs对沙门氏菌而言是一种较弱的致突变剂.除沙门氏菌外,Lv等[51]在铜绿假单胞菌(P. aeruginosa)中对TBNM的致突变性进行了研究,实验结果中发现TBNM可以通过诱变提高P. aeruginosa对抗生素的耐药性,并表现出比溴乙酰胺(BAcAm)和三氯乙腈(TCAN)更高的致突变性,推断TBNM可能也会引起饮用水中其它细菌(包括水生病原体)抗生素耐药性增加,对饮用水安全造成隐患.此外,Liviac等[52]在哺乳动物细胞中使用小鼠淋巴瘤测定(MLA)研究了BNM和TCNM对胸苷激酶基因(Tk)的诱变潜力,结果表明BNM和TCNM在MLA中不具有致突变性,这与在沙门氏菌实验中的结果存在一定差异,说明HNMs对不同细胞有不同的致突变效应.
-
细胞毒性是对细胞有毒的性质.使用DBPs处理的细胞可能会发生坏死、细胞膜完整性丧失以及细胞裂解而迅速死亡,因而细胞毒性被广泛用于评估DBPs的不利生物学效应[53].在+S9和非代谢活化(-S9)两种情况下,Kundu等[49]在沙门氏菌预孵育试验中确定了HNMs的最低细胞毒性浓度,结果显示HNMs的细胞毒性的排序为DBCNM≈TBNM≈DBNM>BNM>BDCNM≈BCNM>TCNM> CNM>DCNM,该结果与沙门氏菌平板掺入试验中所测得细胞毒性等级相似.在这两项测定中,DBNM和TBNM是HNMs中细胞毒性最高的,而DCNM细胞毒性最低[49-50].
Plewa等[11]在中国仓鼠卵巢(CHO)细胞中使用微孔板细胞毒性测定法评估了HNMs的细胞毒性,这是首次使用哺乳动物细胞体外实验对HNMs细胞毒性进行全面评估.结果显示HNMs对CHO细胞毒性的等级顺序为DBNM>DBCNM>BNM>TBNM>BDCNM>BCNM>DCNM>CNM>TCNM,溴代硝基甲烷比氯代硝基甲烷细胞毒性更高,这与其它细胞毒性试验中发现的结论一致[54-55].此外,对比CHO细胞毒性试验发现,HNMs比受管制的THMs和HAAs具有更高的细胞毒性(见表4).
THMs的LC50值普遍比HNMs的LC50值大两到三个数量级.BNM和CNM的细胞毒性分别是溴乙酸(BAA)和氯乙酸(CAA)的1.3倍和1.8倍,DCNM和TCNM的细胞毒性分别是DCAA和TCAA的30.8倍和32.6倍,更值得注意的是,DBNM和TBNM的细胞毒性是二溴乙酸(DBAA)和三溴乙酸(TBAA)的82.1倍和116.7倍.HNMs在CHO细胞和沙门氏菌中细胞毒性等级没有显著的相关性,这与在HAAs中的研究结果一致[11, 49-50],表明不能使用沙门氏菌的细胞毒性数据来预测哺乳动物的细胞毒性[56-57].但两项结果都显示DBNM在HNMs中最具细胞毒性,DCNM在沙门氏菌中细胞毒性最低,TCNM在CHO细胞中细胞毒性最低[49].
由此可知在HNMs中,溴代硝基甲烷比氯代硝基甲烷细胞毒性更高,但作用到不同的细胞,各个HNMs的细胞毒性大小和等级又有所不同.
-
遗传毒性是指由物理或化学因素引起的DNA损伤,与致癌性密切相关.因为使用哺乳动物进行长期致癌研究会带来社会复杂性和道德问题,所以常用体外遗传毒性试验来评估潜在的致癌风险[3].Plewa等[11]在CHO细胞的彗星试验中发现HNMs的遗传毒性等级次序为DBNM>BDCNM>TBNM>TCNM>BNM>DBCNM>BCNM>DCNM>CNM,溴代硝基甲烷比氯代硝基甲烷更具遗传毒性,BNM、DBNM和TBNM的遗传毒性分别是CNM、DCNM和TCNM的16倍,16倍和1.3倍.研究中显示,9种HNMs的遗传毒性均超过了甲基磺酸乙酯(EMS),其毒性是EMS的3倍至231倍.已有研究表明溴酸钾是一种可诱导氧化应激的基因毒素和动物致癌物,而在CHO细胞实验中发现HNMs的遗传毒性是溴酸钾的3倍至275倍[11, 56].这些数据表明HNMs具有较高的遗传毒性,其破坏DNA的能力比EMS和溴酸钾更强.与常规DBPs遗传毒性的对比中也显示,在CHO细胞中DBNM的遗传毒性是DBAA的67.2倍,TBNM的遗传毒性是TBAA的35.2倍,其它种类的HNMs遗传毒性虽略低于HAAs,但相差不大(见表4).此外,HNMs在沙门氏菌中的致突变性和在CHO细胞中的对DNA损伤没有显著相关性[11, 49-50].这些数据也表明沙门氏菌的致突变性无法预测哺乳动物细胞的遗传毒性,这一结论与在HAAs实验中发现的结果一致[56-57].
研究人员在人类淋巴母细胞TK6和果蝇体内对TCNM和BNM的遗传毒性进行了深入评估.Liviac等[58]在人类淋巴母细胞TK6彗星实验中发现TCNM和BNM均具有遗传毒性,可诱导高水平的DNA损伤,在DNA损伤中碱基氧化占有很大比例,但这种DNA损伤会随着时间的推移而得到很好的修复,同时在微核试验中没有检测到TCNM和BNM对DNA的固定损伤.这与果蝇体内翼点测定中观察到的结果一致,TCNM和BNM被认为没有诱导固定遗传损伤[59].虽然HNMs表现出较高的遗传毒性,但TCNM和BNM诱导损伤的可恢复性表明HNMs的毒性仍需进一步研究,更多不同毒性终点的实验有待开展,以确认HNMs的真实毒性大小.
-
流行病学数据表明,长期暴露于DBPs中可能导致癌症风险增加[60].但是,单个DBPs的真正致癌潜力尚未清楚[61].由于HNMs可以通过呼吸系统进入人体产生潜在的健康风险,Marsà等[54]使用体外细胞转化法(CTA)在人肺BEAS-2B细胞中对TCNM和BNM的致癌潜力进行了评估.实验中未发现细胞的形态和增殖变化,基质金属蛋白酶(MMP)分泌水平也无变化,并且没有增加非贴附性细胞生长能力,由此表明长期暴露于低剂量的TCNM和BNM不会引起致癌转化.Yin等[62]以BNM、BCNM和TCNM为代表,对HNMs的体内毒性及其潜在机制进行了进一步探讨.在研究中发现受BNM、BCNM和TCNM影响的肝脏重量显著降低,表明肝脏是其靶器官之一,并认为这种作用与导致肝损伤甚至肝癌的卤代DBPs相似[63].目前,HNMs的致癌潜能尚不明确,相关致癌性研究较少,更多的细胞转化指标有待分析,此外,长期暴露于DBPs导致的癌症风险也可能与两个或多个DBPs之间的累加和协同作用有关[45, 64].
-
HNMs的高细胞毒性和遗传毒性与其分子结构有一定关系.最近的研究表明,相比卤代甲烷(HM),HNMs具有更高的细胞毒性和遗传毒性是因为硝基相对于氢具有更大的吸附电子能力,从而导致离去的卤素更加不稳定,并且所形成的碳正离子具有更高的反应性[49].此外,在定量构效关系(QSAR)方法的研究中,发现BNM的量子化学描述符(Elumo)与分子毒性终点(TELImax)和表型毒性终点(EC5)相关性较强,其遗传毒性主要受量子化学参数影响,同时提供电子供体和受体的能力也可能与BNM的遗传毒性有关,这与Lan等[65]使用分子遗传毒性终点(PELI)对TCNM的分析中所得结论相似[66].
氧化应激是HNMs重要的毒性机制.基于代谢组学方法,Yin等[62]发现BNM、BCNM和TCNM使谷胱甘肽过氧化物酶(GSH-Px)和过氧化氢酶(CAT)活性显著降低[67],致使过量的活性氧自由基(ROS)超出了小鼠抗氧化系统的消除能力,小鼠体内氨基酸、脂质和碳水化合物代谢受到干扰,DNA氧化应激产物8-OHdG的水平显著增加,GPX1和HO-1基因下调,证实了HNMs暴露干扰了小鼠肝抗氧化防御系统.结合肝氧化应激和损伤的结果,推断出氧化应激是HNMs的毒性机制[68-70].这与彗星实验和微核试验的结果一致,HNMs在人体淋巴母细胞TK6中会通过氧化应激引起嘌呤和嘧啶的氧化损伤[58].基于毒理基因组学对BNM的分析中也显示出了氧化应激,同时在基因应激反应中显示出蛋白质应激,说明HNMs可能存在潜在的应激反应[66].在进一步的分析中发现,HNMs的氧化应激与其在生物系统中的脱卤作用以及与其它物质反应生成的产物有关.Yin等[55]利用人体肠道微生物生态系统模拟器(SHIME)对BNM、BCNM和TCNM在胃肠道的脱卤过程进行了研究,结果中发现-SH基团可以通过亲核反应与HNMs反应进行脱卤并生成硝基甲烷.而之前的研究表明硝基甲烷会对细胞色素P450反应进行抑制并生成甲醛和亚硝酸盐,从而诱发机体氧化损伤,动物研究也表明暴露于硝基甲烷还会产生血红细胞降解、小细胞性贫血和骨髓损伤等不利影响[71].脱卤过程中释放的氯也会对生物体造成影响,有研究发现TCNM释放的氯会与细胞反应生成自由基和次氯酸,这可能会产生多种反应性中间体,破坏细胞中的氧化还原平衡,从而导致细胞中ROS过量,诱导氧化应激[72-73].此外,沙门氏菌试验显示HNMs与GSH的反应产物是HNMs能够在鸟嘌呤-胞嘧啶(GC)碱基对、腺嘌呤-胸腺嘧啶(AT)碱基对位点诱导碱基缺失和/或碱基突变的可能机制[49-50].
-
HNMs是一类新兴的N-DBPs,在水中的浓度不仅与水处理工艺相关,还与地域和季节相关,更与水中含氮有机或无机物密切相关,因为含氮有机或无机物都可能是其重要的前体物.HNMs具有较高的细胞毒性和遗传毒性,其致突变性较弱,致癌潜能尚不明确,其中溴代硝基甲烷比氯代硝基甲烷毒性更高.HNMs的高细胞毒性和遗传毒性与其分子结构有关.氧化应激是HNMs重要的毒性机制,HNMs的氧化应激与其在生物系统中的脱卤作用以及与其它物质反应生成的产物有一定关联,可能存在潜在的应激反应.
目前针对饮用水中HNMs的研究还比较零碎,缺乏系统性,对HNMs前体物种类、生成机制、毒性评价及机制等相关的研究仍主要集中在部分HNMs,对整体HNMs的研究仍有待深入.HNMs毒性研究体系并不完善,不能很好地反映HNMs对人体的真实损伤。不同毒性终点的实验以及包括生殖发育毒性、神经毒性等方面的研究都有待开展,逐步完善HNMs相关毒性研究,进一步研究多种HNMs间可能存在的累加协同毒性作用。此外,需发展能够快速、真实反映HNMs对人类健康影响的毒理学方法,以揭示HNMs在人体内的毒性作用机制,为相关水质指标的制定提供依据.在饮用水消毒过程中,重点研究HNMs优化控制方案,包括消毒的方式、消毒剂的计量和时间、减少前体物的浓度和控制pH值等,尽量减少HNMs的浓度,规避人类的暴露风险.
饮用水中卤代硝基甲烷的分布特点、来源及毒性研究进展
Research progress on distribution characteristics, source and toxicity of halonitromethanes in drinking water
-
摘要: 卤代硝基甲烷(HNMs)是饮用水消毒过程中常见的一类含氮消毒副产物(N-DBPs),相比已受监管的消毒副产物(DBPs)具有更强的细胞毒性和遗传毒性.本文简述了HNMs在水中分布特点和来源,并从致突变性、细胞毒性、遗传毒性、致癌性等方面总结了其毒性效应和毒性机制,以期引起广大人群对HNMs的关注,为饮用水安全保障和HNMs控制提供科学参考依据.Abstract: Halonitromethanes(HNMs) are one group of nitrogenous disinfection by-products (N-DBPs) formed during the disinfection of drinking water, which have stronger cytotoxicity and genotoxicity than regulated disinfection by-products (DBPs). In this paper, the distribution characteristics in water and the source of HNMs were briefly introduced. The toxicological effect and mechanisms of HNMs were systematically summarized on the aspects of mutagenicity, cytotoxicity, genotoxicity and carcinogenicity to arouse the public's attention to HNMs. It will provide the appropriate scientific reference for drinking water safety and HNMs control.
-
-
表 1 各国饮用水中HNMs分布水平
Table 1. Distribution levels of HNMs in drinking water in different countries
国家
Country成分
Composition浓度水平/(μg·L−1)
Concentration levels消毒工艺
Disinfection mode参考文献
References中值
Median最大值
Maximum中国 HNMs(9) 0.05 0.96 — [9] CNM 0.05 0.96 TCNM ND 0.28 TCNM 0.05 1.21 氯、臭氧+氯 [19] HNMs(9) 0.60 2.60 氯 [14] CNM ND 0.42 DCNM 0.03 0.09 BNM ND ND BCNM ND ND TCNM 0.37 0.94 BDCNM ND 0.01 DBNM 0.10 0.33 DBCNM ND ND TBNM ND 1.35 美国 HNMs(9) 1.00 10.00 氯/氯胺、氯+氯胺、臭氧+氯/氯胺、二氧化氯+氯/氯胺 [15] TCNM 0.20 2.00 TBNM ND 5.00 英国 HNMs(9) 0.20 3.60 氯/氯胺、臭氧+氯/氯胺、UV+氯 [16] CNM 1.30 3.50 BNM 0.20 0.50 BCNM 0.10 0.20 DCNM 0.30 0.30 英国 DBNM 0.10 0.30 氯/氯胺、臭氧+氯/氯胺、UV+氯 [16] TCNM 0.10 0.40 DBCNM 1.30 1.40 澳大利亚 HNMs(9) 0.69 0.97 氯 [17] ND,未检出. not detected. – 无数据.data not available.HNMs(9)为9种HNMs的总和. The sum of the 9 HNMs. 表 2 中国各地区饮用水中HNMs分布水平
Table 2. Distribution levels of HNMs in drinking water in different regions of China
地区
Region成分
Composition浓度水平/(μg·L−1)
Concentration levels消毒工艺
Disinfection mode参考文献
References中值
Median最大值
Maximum厦门 TCNM(丰水期/枯水期) 1.21/0.28 — 氯、臭氧+氯 [19] 哈尔滨 TCNM(丰水期/枯水期) 0.12/0.07 — 广州 TCNM ND — 深圳 TCNM 0.03 — 福州 TCNM ND — 成都 TCNM ND — 兰溪 HNMs(9)(夏季/冬季/春季) 1.35/0.33/0.41 1.37/0.38/0.45 氯 [14] 金华 HNMs(9)(夏季/冬季/春季) 0.78/0.28/0.24 0.94/0.31/0.36 武义 HNMs(9)(夏季/冬季/春季) 0.92/0.27/0.42 1.04/0.44/0.57 永康 HNMs(9)(夏季/冬季/春季) 2.56/0.75/0.77 2.62/0.98/0.78 东阳 HNMs(9)(夏季/冬季/春季) 2.02/0.67/0.57 2.08/0.71/0.91 义乌 HNMs(9)(夏季/冬季/春季) 1.42/0.63/0.55 1.75/0.67/0.72 浦江 HNMs(9)(夏季/冬季/春季) 1.49/0.47/0.44 1.50/0.47/0.45 磐安 HNMs(9)(夏季/冬季/春季) 1.42/0.61/0.54 1.45/0.63/0.59 ND,未检出. not detected. –,无数据. data not available. HNMs(9)为9种HNMs的总和. The sum of the 9 HNMs. 表 3 不同前体物的HNMs生成势
Table 3. HNMs formation potential in different precursors
前体物
PrecursorsHNMs生成势 /%
HNMs formation potential消毒工艺
Disinfection mode参考文献
References前体物
PrecursorsHNMs生成势/%
HNMs formation potential消毒工艺
Disinfection mode参考文献References 甘氨酸 8.56 臭氧+氯 [20] 梅尼小环藻 0.83 a 氯 [25] 0.08 氯 [23] 甲胺 0.12 UV+氯 [29] 0.04 氯胺 [23] 二甲胺 0.10 UV+氯 [29] 丙氨酸 0.06 臭氧+氯 [20] 聚二烯丙基二甲基氯化铵 0.05 UV+氯 [29] 0.02 氯 [20] 单乙醇胺 59 臭氧+氯 [32] 丝氨酸 0.19 臭氧+氯 [20] 双甘氨肽 0.06 臭氧+氯 [32] 0.05 氯 [23] 乙二胺 0.36 臭氧+氯 [32] ND 氯胺 [23] 苯胺 0.22 臭氧+氯 [32] 半胱氨酸 0.11 臭氧+氯 [20] 2/3/4-羟基苯胺 <0.1 臭氧+氯 [32] 0.04 氯 [20] 肌氨酸 51 臭氧+氯 [32] 天冬氨酸 0.08 臭氧+氯 [20] N-甲基乙醇胺 52 臭氧+氯 [32] 0.08 氯 [23] N-乙基甲基胺 29 臭氧+氯 [32] ND 氯胺 [23] N-甲基丙胺 53 臭氧+氯 [32] 0.02 UV+氯 [21] 二乙胺 0.09 臭氧+氯 [32] <0.01 氯 [21] <0.1 氯 [30] 谷氨酸 0.11 臭氧+氯 [20] ND 氯胺 [30] 0.05 氯 [20] 二乙醇胺 56 臭氧+氯 [32] 赖氨酸 0.58 臭氧+氯 [20] 三乙醇胺 3.4 臭氧+氯 [32] 0.07 氯 [23] 麻黄碱 80 臭氧+氯 [33] ND 氯胺 [23] 伪麻黄碱 83 臭氧+氯 [33] 组氨酸 0.03 臭氧+氯 [20] α-(甲氨甲基)苯甲醇 71 臭氧+氯 [33] 0.02 氯 [20] 苯肾上腺素 63 臭氧+氯 [33] 酪氨酸 0.1 氯 [23] 肾上腺素 34 臭氧+氯 [33] 0.06 氯胺 [23] N-甲基苯乙胺 37 臭氧+氯 [33] 蛋氨酸 0.12 氯 [23] 氟西汀 33 臭氧+氯 [33] 0.05 氯胺 [23] 舍曲林 10 臭氧+氯 [33] 色氨酸 0.3 氯 [23] 甲基苯丙胺 8.1 臭氧+氯 [33] 0.14 氯胺 [23] N-甲基-1-(3,4-亚甲二氧基苯基)-2-丁胺 2.5 臭氧+氯 [33] <0.01 氯 [22] 氨基葡萄糖 0.13 臭氧+氯 [20] 0.05 UV+氯 [22] 0.09 氯 [20] 天冬酰胺 0.11 氯 [23] 半乳糖胺 0.16 臭氧+氯 [20] 0.07 氯胺 [23] 0.05 氯 [20] 水华束丝藻 0.11 a 氯 [27] N-乙酰氨基葡萄糖 0.11 臭氧+氯 [20] 水华鱼腥藻 0.16 a 氯 [27] 0.08 氯 [20] 铜绿微囊藻 0.13 a 氯 [27] N-乙酰神经氨酸 0.22 臭氧+氯 [20] 0.8 a 氯 [25] 0.09 氯 [20] 星杆藻 0.24 a 氯 [27] 偶氮化合物 1—2.5 氯 [37] 硅藻 0.37 a 氯 [27] 嘌呤和嘧啶 <0.1 氯 [30, 38] ND,未检出. not detected.
a 藻类有机物HNMs生成势单位以μg·mg-1 C计. a AOM HNMs formation potential is calculated in μg·mg-1 C.表 4 DBPs的沙门氏菌致突变力、细胞毒性以及CHO细胞毒性、遗传毒性表
Table 4. DBPs-Induced Mutagenicity and Cytotoxicity in Salmonella and Cytotoxicity and Genotoxicity in CHO Cells
沙门氏菌致突变力
(-S9/+S9)/(rev·μmol−1)
Salmonella
mutagenic potency(-S9/+S9)沙门氏菌最小细胞毒性浓度或半致死浓度/(mol·L−1)
Salmonella Lowest
Cytotoxicity Conc or LC50CHO细胞半致死浓度/(mol·L−1)
CHO cells LC50CHO细胞遗传毒性效力a/(mol·L−1)
CHO cells genotoxic potency a参考文献
ReferencesBNM 347.45/964.25 >0.29 μmol·plate−1 7.06 × 10−6 1.36 × 10−4 [11] CNM 718.7/691.65 1.84 μmol·plate−1 5.29 × 10−4 2.15 × 10−3 [11] DBNM NS/712.7 0.14 μmol·plate−1 6.09 × 10−6 2.62 × 10−5 [11] DCNM NS/266.95 3.39 μmol·plate−1 3.73 × 10−4 4.21 × 10−4 [11] BCNM NS/1804 0.49 μmol·plate−1 4.05 × 10−5 1.65 × 10−4 [11] TBNM NS/1907 0.1 μmol·plate−1 8.57 × 10−6 6.99 × 10−5 [11] TCNM NS/238.9 0.65 μmol·plate−1 5.36 × 10−4 9.34 × 10−5 [11] BDCNM NS/727.75 0.47 μmol·plate−1 1.32 × 10−5 6.32 × 10−5 [11] DBCNM NS/2937.5 0.07 μmol·plate−1 6.88 × 10−6 1.43 × 10−4 [11] BAA 6588/2642 5.22×10−4 mol·L−1 8.90 × 10−6 1.70 × 10−5 [56-57] CAA 44/63 1.62×10−2 mol·L−1 9.44 × 10−4 4.11 × 10−4 [56-57] DBAA 183/165 1.54×10−2 mol·L−1 5.00 × 10−4 1.76 × 10−3 [56-57] DCAA 36/13 7.42×10−2 mol·L−1 1.15 × 10−2 NA [56-57] TBAA NS 2.02×10−2 mol·L−1 1.00 × 10−3 2.46 × 10−3 [56-57] TCAA NS 4.25×10−2 mol·L−1 1.75 × 10−2 NA [56-57] TBM NS 4.12 μmol·plate−1 3.96 × 10−3 NA [11-12] DBCM NS 7.20 μmol·plate−1 5.36 × 10−3 NA [11-12] TCM NS 12.57 μmol·plate−1 9.62 × 10−3 NA [11-12] BDCM NS 6.01 μmol·plate−1 1.15 × 10−2 NA [11-12] 溴酸钾 NA 4.54×10−1 mol·L−1 9.63 × 10−5 7.20 × 10−3 [56-57] EMS 349/NA 3.72×10−2 mol·L−1 4.25 × 10−3 6.06 × 10−3 [56-57] NS,与负控制组相比没有统计学意义. NS, not significantly different from the negative control. NA,暂无数据. NA, not applicable or data not available.a CHO细胞遗传毒性效力以CHO细胞50%彗尾DNA值或尾矩中值计. a The CHO cells genotoxic potency is calculated on the CHO cells 50% TDNA or midpoint of Tail moment. -
[1] BELLAR T A, LICHTENBERG J J, KRONER R C. Occurrence of organohalides in chlorinated drinking waters [J]. Journal / American Water Works Association, 1974, 66(12): 703-706. doi: 10.1002/j.1551-8833.1974.tb02129.x [2] RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research [J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1): 178-242. [3] SUN X, CHEN M, WEI D, et al. Research progress of disinfection and disinfection by-products in China [J]. Journal of Environmental Sciences, 2019, 81: 52-67. doi: 10.1016/j.jes.2019.02.003 [4] HRUDEY S E. Chlorination disinfection by-products, public health risk tradeoffs and me [J]. Water Research, 2009, 43(8): 2057-2092. doi: 10.1016/j.watres.2009.02.011 [5] HRUDEY S E, FAWELL J. 40 years on: what do we know about drinking water disinfection by-products (DBPs) and human health? [J]. Water Supply, 2015, 15(4): 667-674. doi: 10.2166/ws.2015.036 [6] ALEXANDROU L, MEEHAN B J, JONES O A H. Regulated and emerging disinfection by-products in recycled waters [J]. Science of The Total Environment, 2018, 637: 1607-1616. [7] PLEWA M J, WAGNER E D, MUELLNER M G, et al. Comparative mammalian cell toxicity of N-DBPs and C-DBPs [A]//KARANFIL T, KRASNER S W, XIE Y. Disinfection by-products in drinking water: Occurrence, formation, health effects, and control [C]. Washington; Amer Chemical Soc. 2008, 995: 36-50. [8] MONTESINOS I, GALLEGO M. Solvent-minimized extraction for determining halonitromethanes and trihalomethanes in water [J]. Journal of Chromatography A, 2012, 1248: 1-8. doi: 10.1016/j.chroma.2012.05.067 [9] DING H H, MENG L P, ZHANG H F, et al. Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China [J]. Environ Sci-Process Impacts, 2013, 15(7): 1424-1429. doi: 10.1039/c3em00110e [10] GB5749-2006生活饮用水卫生标准[S]. GB5749-2006 Sanitary Standard for Drinking Water[S].
[11] PLEWA M J, WAGNER E D, JAZWIERSKA P, et al. Halonitromethane drinking water disinfection byproducts: Chemical characterization and mammalian cell cytotoxicity and genotoxicity [J]. Environmental Science & Technology, 2004, 38(1): 62-68. [12] WAGNER E D, PLEWA M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review [J]. Journal of Environmental Sciences, 2017, 58: 64-76. doi: 10.1016/j.jes.2017.04.021 [13] BOND T, TEMPLETON M R, GRAHAM N. Precursors of nitrogenous disinfection by-products in drinking water––A critical review and analysis [J]. Journal of Hazardous Materials, 2012, 235-236: 1-16. doi: 10.1016/j.jhazmat.2012.07.017 [14] ZHOU X, ZHENG L, CHEN S, et al. Factors influencing DBPs occurrence in tap water of Jinhua Region in Zhejiang Province, China [J]. Ecotoxicology and Environmental Safety, 2019, 171: 813-822. doi: 10.1016/j.ecoenv.2018.12.106 [15] KRASNER S W, WEINBERG H S, RICHARDSON S D, et al. Occurrence of a new generation of disinfection byproducts [J]. Environmental Science & Technology, 2006, 40(23): 7175-7185. [16] BOND T, TEMPLETON M R, MOKHTAR KAMAL N H, et al. Nitrogenous disinfection byproducts in English drinking water supply systems: Occurrence, bromine substitution and correlation analysis [J]. Water Research, 2015, 85: 85-94. doi: 10.1016/j.watres.2015.08.015 [17] LIEW D, LINGE K L, JOLL C A, et al. Determination of halonitromethanes and haloacetamides: An evaluation of sample preservation and analyte stability in drinking water [J]. Journal of Chromatography A, 2012, 1241: 117-122. doi: 10.1016/j.chroma.2012.04.037 [18] 鲁金凤, 王琼, 冯瑛, 等. 典型含氮消毒副产物HNMs的最新研究进展 [J]. 中国给水排水, 2015, 31(4): 28-33. LU J F, WANG Q, FENG Y, et al. Latest research progress of typical nitrogenous disinfection by-products halonitromethanes in drinking water [J]. China Water & Wastewater, 2015, 31(4): 28-33(in Chinese).
[19] 董蕾, 王海燕, 蔡宏铨, 等. 我国六城市饮用水中含氮消毒副产物的现状调查 [J]. 环境与健康杂志, 2016, 33(3): 232-235. DONG L, WANG H Y, CAI H Q, et al. Investigation on nitrogenous disinfection by-products in drinking water in six cities, China [J]. Journal of Environment and Health, 2016, 33(3): 232-235(in Chinese).
[20] SHAN J, HU J, SULE KAPLAN-BEKAROGLU S, et al. The effects of pH, bromide and nitrite on halonitromethane and trihalomethane formation from amino acids and amino sugars [J]. Chemosphere, 2012, 86(4): 323-328. doi: 10.1016/j.chemosphere.2011.09.004 [21] DENG L, LIU B B, LIAO X Y, et al. Formation of trichloronitromethane from aspartic acid during UV/chlorine disinfection [J]. Fresenius Environ Bull, 2019, 28(5): 4297-4303. [22] DENG L, WEN L J, DAI W J, et al. Impact of tryptophan on the formation of TCNM in the process of UV/chlorine disinfection [J]. Environ Sci Pollut Res, 2018, 25(23): 23227-23235. doi: 10.1007/s11356-018-2397-0 [23] JIA A, WU C, DUAN Y. Precursors and factors affecting formation of haloacetonitriles and chloropicrin during chlor(am)ination of nitrogenous organic compounds in drinking water [J]. Journal of Hazardous Materials, 2016, 308: 411-418. doi: 10.1016/j.jhazmat.2016.01.037 [24] FANG J Y, MA J, YANG X, et al. Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa [J]. Water Research, 2010, 44(6): 1934-1940. doi: 10.1016/j.watres.2009.11.046 [25] LIAO X, LIU J, YANG M, et al. Evaluation of disinfection by-product formation potential (DBPFP) during chlorination of two algae species — Blue-green Microcystis aeruginosa and diatom Cyclotella meneghiniana [J]. Science of The Total Environment, 2015, 532: 540-547. doi: 10.1016/j.scitotenv.2015.06.038 [26] CHEN J X, GAO N Y, LI L, et al. Disinfection by-product formation during chlor(am)ination of algal organic matters (AOM) extracted from Microcystis aeruginosa: Effect of growth phases, AOM and bromide concentration [J]. Environ Sci Pollut Res, 2017, 24(9): 8469-8478. doi: 10.1007/s11356-017-8515-6 [27] GOSLAN E H, SEIGLE C, PURCELL D, et al. Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter [J]. Chemosphere, 2017, 170: 1-9. doi: 10.1016/j.chemosphere.2016.11.148 [28] DENG L, HUANG C H, WANG Y L. Effects of combined UV and chlorine treatment on the formation of trichloronitromethane from amine precursors [J]. Environmental Science & Technology, 2014, 48(5): 2697-2705. [29] DENG L, LIAO X Y, SHEN J X, et al. Effects of amines on the formation and photodegradation of DCNM under UV/chlorine disinfection [J]. Sci Rep, 2020, 10: 12602. doi: 10.1038/s41598-020-69426-9 [30] YANG X, SHEN Q, GUO W, et al. Precursors and nitrogen origins of trichloronitromethane and dichloroacetonitrile during chlorination/chloramination [J]. Chemosphere, 2012, 88(1): 25-32. doi: 10.1016/j.chemosphere.2012.02.035 [31] HAN C X, ZHAO H Y, DONG M, et al. The formation mechanism of chloropicrin from methylamine during chlorination: a DFT study [J]. Environ Sci-Process Impacts, 2019, 21(4): 761-770. doi: 10.1039/C8EM00581H [32] MCCURRY D L, QUAY A N, MITCH W A. Ozone promotes chloropicrin formation by oxidizing amines to nitro compounds [J]. Environmental Science & Technology, 2016, 50(3): 1209-1217. [33] SHI J L, MCCURRY D L. Transformation of n-methylamine drugs during wastewater ozonation: Formation of nitromethane, an efficient precursor to halonitromethanes [J]. Environmental Science & Technology, 2020, 54(4): 2182-2191. [34] SHAH A D, MITCH W A. Halonitroalkanes, halonitriles, haloamides, and n-nitrosamines: A critical review of nitrogenous disinfection byproduct formation pathways [J]. Environmental Science & Technology, 2012, 46(1): 119-131. [35] SHAH A D, DOTSON A D, LINDEN K G, et al. Impact of UV disinfection combined with chlorination/chloramination on the formation of halonitromethanes and haloacetonitriles in drinking water [J]. Environmental Science & Technology, 2011, 45(8): 3657-3664. [36] GUO Z B, LIN Y L, XU B, et al. Factors affecting THM, HAN and HNM formation during UV-chlor(am)ination of drinking water [J]. Chemical Engineering Journal, 2016, 306: 1180-1188. doi: 10.1016/j.cej.2016.08.051 [37] FU J, WANG X, BAI W, et al. Azo compound degradation kinetics and halonitromethane formation kinetics during chlorination [J]. Chemosphere, 2017, 174: 110-116. doi: 10.1016/j.chemosphere.2017.01.098 [38] ZHANG B, XIAN Q, GONG T, et al. DBPs formation and genotoxicity during chlorination of pyrimidines and purines bases [J]. Chemical Engineering Journal, 2017, 307: 884-890. doi: 10.1016/j.cej.2016.09.018 [39] BOND T, HUANG J, TEMPLETON M R, et al. Occurrence and control of nitrogenous disinfection by-products in drinking water – A review [J]. Water Research, 2011, 45(15): 4341-4354. doi: 10.1016/j.watres.2011.05.034 [40] LEE W, WESTERHOFF P, CROUé J P. Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, n-nitrosodimethylamine, and trichloronitromethane [J]. Environmental Science & Technology, 2007, 41(15): 5485-5490. [41] HU J, SONG H, ADDISON J W, et al. Halonitromethane formation potentials in drinking waters [J]. Water Research, 2010, 44(1): 105-114. doi: 10.1016/j.watres.2009.09.006 [42] DOTSON A, WESTERHOFF P, KRASNER S W. Nitrogen enriched dissolved organic matter (DOM) isolates and their affinity to form emerging disinfection by-products [J]. Water Science and Technology, 2009, 60(1): 135-143. doi: 10.2166/wst.2009.333 [43] SONG H, ADDISON J W, HU J, et al. Halonitromethanes formation in wastewater treatment plant effluents [J]. Chemosphere, 2010, 79(2): 174-179. doi: 10.1016/j.chemosphere.2010.01.001 [44] TANG Y, LONG X, WU M, et al. Bibliometric review of research trends on disinfection by-products in drinking water during 1975–2018 [J]. Separation and Purification Technology, 2020, 241: 116741. doi: 10.1016/j.seppur.2020.116741 [45] LAU S S, WEI X, BOKENKAMP K, et al. Assessing additivity of cytotoxicity associated with disinfection byproducts in potable reuse and conventional drinking waters [J]. Environmental Science & Technology, 2020, 54(9): 5729-5736. [46] GILLER S, LE CURIEUX F, GAUTHIER L, et al. Genotoxicity assay of chloral hydrate and chloropicrine [J]. Mutation Research Letters, 1995, 348(4): 147-152. doi: 10.1016/0165-7992(95)90002-0 [47] ZEIGER E, ANDERSON B, HAWORTH S, et al. Salmonella mutagenicity tests: V. Results from the testing of 311 chemicals [J]. Environmental and Molecular Mutagenesis, 1992, 19(21 S): 2-141. [48] 河合 昭, 後藤 純, 松本 由, 等. 脂肪族および芳香族ニトロ化合物の変異原性工業材料およびその関連物質 [J]. 産業医学, 1987, 29(1): 34-54. AKIRA K, JUN G, YU M, et al. Mutagenic industrial materials of aliphatic and aromatic nitro compounds and related substances [J]. Industrial Medicine, 1987, 29 (1): 34-54 (in Japanese).
[49] KUNDU B, RICHARDSON S D, GRANVILLE C A, et al. Comparative mutagenicity of halomethanes and halonitromethanes in Salmonella TA100: structure–activity analysis and mutation spectra [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 554(1): 335-350. [50] KUNDU B, RICHARDSON S D, SWARTZ P D, et al. Mutagenicity in Salmonella of halonitromethanes: a recently recognized class of disinfection by-products in drinking water [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2004, 562(1): 39-65. [51] LV L, YU X, XU Q, et al. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts [J]. Environmental Pollution, 2015, 205: 291-298. doi: 10.1016/j.envpol.2015.06.026 [52] LIVIAC D, CREUS A, MARCOS R. Mutagenic analysis of six disinfection by-products in the Tk gene of mouse lymphoma cells [J]. Journal of Hazardous Materials, 2011, 190(1): 1045-1052. [53] CHEN M, WEI D, DU Y. Toxicity-directed identification of disinfection by-products with high risk [J]. Scientia Sinica Chimica, 2018, 48(10): 1207-1216. doi: 10.1360/N032018-00094 [54] MARSà A, CORTéS C, TEIXIDó E, et al. In vitro studies on the tumorigenic potential of the halonitromethanes trichloronitromethane and bromonitromethane [J]. Toxicology in Vitro, 2017, 45: 72-80. doi: 10.1016/j.tiv.2017.08.013 [55] YIN J, WU B, LIU S, et al. Rapid and complete dehalogenation of halonitromethanes in simulated gastrointestinal tract and its influence on toxicity [J]. Chemosphere, 2018, 211: 1147-1155. doi: 10.1016/j.chemosphere.2018.08.039 [56] PLEWA M J, KARGALIOGLU Y, VANKERK D, et al. Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products [J]. Environ Mol Mutagen, 2002, 40(2): 134-142. doi: 10.1002/em.10092 [57] KARGALIOGLU Y, MCMILLAN B J, MINEAR R A, et al. Analysis of the cytotoxicity and mutagenicity of drinking water disinfection by-products in Salmonella typhimurium [J]. Teratogenesis Carcinog Mutagen, 2002, 22(2): 113-128. doi: 10.1002/tcm.10010 [58] LIVIAC D, CREUS A, MARCOS R. Genotoxicity analysis of two halonitromethanes, a novel group of disinfection by-products (DBPs), in human cells treated in vitro [J]. Environmental Research, 2009, 109(3): 232-238. doi: 10.1016/j.envres.2008.12.009 [59] GARCíA-QUISPES W A, CARMONA E R, CREUS A, et al. Genotoxic evaluation of two halonitromethane disinfection by-products in the Drosophila wing-spot test [J]. Chemosphere, 2009, 75(7): 906-909. doi: 10.1016/j.chemosphere.2009.01.007 [60] VILLANUEVA C M, CORDIER S, FONT-RIBERA L, et al. Overview of disinfection by-products and associated health effects [J]. Current Environmental Health Reports, 2015, 2(1): 107-115. doi: 10.1007/s40572-014-0032-x [61] BULL R J, CROOK J, WHITTAKER M, et al. Therapeutic dose as the point of departure in assessing potential health hazards from drugs in drinking water and recycled municipal wastewater [J]. Regulatory Toxicology and Pharmacology, 2011, 60(1): 1-19. doi: 10.1016/j.yrtph.2009.12.010 [62] YIN J, WU B, ZHANG X-X, et al. Comparative toxicity of chloro- and bromo-nitromethanes in mice based on a metabolomic method [J]. Chemosphere, 2017, 185: 20-28. doi: 10.1016/j.chemosphere.2017.06.116 [63] NAROTSKY M G, KLINEFELTER G R, GOLDMAN J M, et al. Comprehensive assessment of a chlorinated drinking water concentrate in a rat multigenerational reproductive toxicity study [J]. Environmental Science and Technology, 2013, 47(18): 10653-10659. [64] LI X-F, MITCH W A. Drinking water disinfection byproducts (DBPs) and human health effects: Multidisciplinary challenges and opportunities [J]. Environmental Science & Technology, 2018, 52(4): 1681-1689. [65] LAN J, RAHMAN S M, GOU N, et al. Genotoxicity assessment of drinking water disinfection byproducts by DNA damage and repair pathway profiling analysis [J]. Environmental Science & Technology, 2018, 52(11): 6565-6575. [66] 李冬. 新兴消毒副产物毒性识别及毒性作用机制研究 [D]. 西安: 西安理工大学, 2019. LI D. Study on toxicity identification and toxic action mechanism of emerging disinfection by-products [D]. Xi'an : Xi'an University of Technology, 2019 (in Chinese).
[67] BIRBEN E, SAHINER U M, SACKESEN C, et al. Oxidative stress and antioxidant defense [J]. World Allergy Organization Journal, 2012, 5(1): 9-19. doi: 10.1097/WOX.0b013e3182439613 [68] PAE H O, KIM E C, CHUNG H-T. Integrative survival response evoked by heme Oxygenase-1 and heme metabolites [J]. Journal of Clinical Biochemistry and Nutrition, 2008, 42(3): 197-203. doi: 10.3164/jcbn.2008029 [69] PADURARIU M, CIOBICA A, DOBRIN I, et al. Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics [J]. Neuroscience Letters, 2010, 479(3): 317-320. doi: 10.1016/j.neulet.2010.05.088 [70] 尹金宝. 饮用水消毒副产物卤代硝基甲烷的胃肠道代谢与致毒机制研究 [D]. 南京: 南京大学, 2017. YIN J B. Study on the gastrointestinal metabolism and toxicity mechanism of halonitromethanes as nitrogenous disinfection by-products [D]. Nanjing : Nanjing University, 2017 (in Chinese).
[71] PESONEN M, HäKKINEN M, RILLA K, et al. Chloropicrin-induced toxic responses in human lung epithelial cells [J]. Toxicology Letters, 2014, 226(2): 236-244. doi: 10.1016/j.toxlet.2014.02.006 [72] YADAV A K, BRACHER A, DORAN S F, et al. Mechanisms and modification of chlorine-induced lung injury in animals [J]. Proc Am Thorac Soc, 2010, 7(4): 278-283. doi: 10.1513/pats.201001-009SM [73] CASTRO C E, WADE R S, BELSER N O. Biodehalogenation: The metabolism of chloropicrin by Pseudomonas sp [J]. Journal of Agricultural and Food Chemistry, 1983, 31(6): 1184-2287. doi: 10.1021/jf00120a011 -