水体中抗生素污染现状及其对氮转化过程的影响研究进展

张焕军, 王席席, 李轶. 水体中抗生素污染现状及其对氮转化过程的影响研究进展[J]. 环境化学, 2022, 41(4): 1168-1181. doi: 10.7524/j.issn.0254-6108.2021102405
引用本文: 张焕军, 王席席, 李轶. 水体中抗生素污染现状及其对氮转化过程的影响研究进展[J]. 环境化学, 2022, 41(4): 1168-1181. doi: 10.7524/j.issn.0254-6108.2021102405
ZHANG Huanjun, WANG Xixi, LI Yi. Progress in current pollution status of antibiotics and their influences on the nitrogen transformation in water[J]. Environmental Chemistry, 2022, 41(4): 1168-1181. doi: 10.7524/j.issn.0254-6108.2021102405
Citation: ZHANG Huanjun, WANG Xixi, LI Yi. Progress in current pollution status of antibiotics and their influences on the nitrogen transformation in water[J]. Environmental Chemistry, 2022, 41(4): 1168-1181. doi: 10.7524/j.issn.0254-6108.2021102405

水体中抗生素污染现状及其对氮转化过程的影响研究进展

    通讯作者: Tel:15051886185,E-mail:zhanghuanjun@hhu.edu.cn
  • 基金项目:
    国家自然科学基金(52070071)和中央高校基本科研业务费(B200202104)资助.

Progress in current pollution status of antibiotics and their influences on the nitrogen transformation in water

    Corresponding author: ZHANG Huanjun, zhanghuanjun@hhu.edu.cn
  • Fund Project: the National Natural Science Foundation of China(52070071)and the Fundamental Research Funds for the Central Universities (B200202104).
  • 摘要: 近年来,抗生素引起的环境污染和生态风险备受关注。作为抗生素最重要的归宿地之一,自然水体中的抗生素污染日益加剧。逐渐累积的抗生素给水生生态系统带来风险,并会改变微生物群落的结构和功能,已成为水体中物质循环过程的重要影响因子。该文总结了我国河流和湖泊中抗生素的污染现状及其对水生生态系统产生的风险,综述了抗生素对水体中微生物群落以及硝化、反硝化和厌氧氨氧化等氮转化过程的影响。我国主要河流和湖泊中均有抗生素检出,类型包括磺胺类、四环素类、喹诺酮类和大环内酯类等,不同水体中抗生素的污染类型及浓度差异显著。目前,有关抗生素给水生生态系统造成的生态风险和对微生物群落的影响研究较多,而抗生素抗性基因在水环境中的传播扩散机制还需要更全面和深入的探索。抗生素可以通过改变氮循环功能微生物、酶活性和功能基因等影响水体中氮转化过程。对反硝化过程主要表现为抑制作用,对硝化过程的影响与其浓度和类型有关,而对厌氧氨氧化和硝酸盐异化还原为铵过程的影响研究相对匮乏。后续研究中还应探索水动力,盐度,水深和氧化还原梯度等典型水环境条件下,氮转化过程对抗生素的响应,为全面揭示抗生素对水体氮转化过程的影响提供依据。
  • 加载中
  • 表 1  中国主要流域上覆水中抗生素的浓度(ng·L−1

    Table 1.  The concentrations of antibiotics in the overlying water of major river basins in China(ng·L−1

    抗生素
    Antibiotics
    松花江
    Songhua River
    M辽河
    MLiaohe River
    M海河
    MHaihe River
    黄河
    Yellow River
    淮河
    Huaihe River
    长江
    Yangtze River
    M珠江
    MPearl River
    磺胺类
    磺胺甲恶唑2.1—73.1670.364.1ND—56.02.6—11.00.43—37.6138.0
    磺胺嘧啶ND—13.9184.00.002—0.66ND—18.018.7
    磺胺二甲嘧啶15.9ND—1.70.24—218.0
    四环素类
    四环素39.016.13.7—64.9ND—1.7ND—13.1349.7
    土霉素188.5ND4.6—83.5ND—3.9ND—0.97359.4
    金霉素25.121.9ND—0.9533.0
    喹诺酮类
    诺氟沙星ND—2.4256.0188.017.1—79.0ND—136.054.2
    氧氟沙星0.01—1.8632.5374.01.5—23.4ND—15.8703.4
    恩诺沙星ND—1.170.4184.02.7—20.9ND—0.89ND
    大环内酯类
    红霉素ND—7.34.64.5—23.3ND—7.370.2
    脱水红霉素2834.4ND—102.0ND—121.0301.0
    罗红霉素741.0235.00.2—14.1ND—1.8366.0
    参考文献[12-13][14-15][16-17][18-19][20][21-22][23-24]
      注:“M”表示水体中抗生素浓度的最大值;“ND”表示未检出或低于检测限;“—”表示无数据(下同)。
      Note: "M" means maximum concentration of antibiotics in water; "ND" means not detected or below the detection limit; "—" means no data (the same below).
    抗生素
    Antibiotics
    松花江
    Songhua River
    M辽河
    MLiaohe River
    M海河
    MHaihe River
    黄河
    Yellow River
    淮河
    Huaihe River
    长江
    Yangtze River
    M珠江
    MPearl River
    磺胺类
    磺胺甲恶唑2.1—73.1670.364.1ND—56.02.6—11.00.43—37.6138.0
    磺胺嘧啶ND—13.9184.00.002—0.66ND—18.018.7
    磺胺二甲嘧啶15.9ND—1.70.24—218.0
    四环素类
    四环素39.016.13.7—64.9ND—1.7ND—13.1349.7
    土霉素188.5ND4.6—83.5ND—3.9ND—0.97359.4
    金霉素25.121.9ND—0.9533.0
    喹诺酮类
    诺氟沙星ND—2.4256.0188.017.1—79.0ND—136.054.2
    氧氟沙星0.01—1.8632.5374.01.5—23.4ND—15.8703.4
    恩诺沙星ND—1.170.4184.02.7—20.9ND—0.89ND
    大环内酯类
    红霉素ND—7.34.64.5—23.3ND—7.370.2
    脱水红霉素2834.4ND—102.0ND—121.0301.0
    罗红霉素741.0235.00.2—14.1ND—1.8366.0
    参考文献[12-13][14-15][16-17][18-19][20][21-22][23-24]
      注:“M”表示水体中抗生素浓度的最大值;“ND”表示未检出或低于检测限;“—”表示无数据(下同)。
      Note: "M" means maximum concentration of antibiotics in water; "ND" means not detected or below the detection limit; "—" means no data (the same below).
    下载: 导出CSV

    表 2  中国主要流域沉积物中抗生素的浓度(ng·g−1

    Table 2.  The concentrations of antibiotics in sediment of major river basins in China(ng·g−1

    抗生素
    Antibiotics
    M松花江
    MSonghua River
    辽河
    Liaohe River
    M海河
    MHaihe River
    黄河
    Yellow River
    淮河
    Huaihe River
    长江
    Yangtze River
    M珠江
    MPearl River
    磺胺类
    磺胺甲恶唑NDND—2.6ND—0.120.14—2.0ND
    磺胺嘧啶1.2ND—0.055ND—0.57ND
    磺胺二甲嘧啶ND—1.05.70.057—0.22ND—3.23.2
    四环素类
    四环素ND—8.0135.03.2—26.80.012—1.8ND—7.1206.0
    土霉素ND—384.6422.01.2—11.5ND0.16—0.9399.0
    金霉素ND—12.310.9ND—0.9523.2
    喹诺酮类
    诺氟沙星10.4ND—52.55770.04.5—104.80.15—20.5444.0
    氧氟沙星10.0ND—51.4635.05.1—49.70.29—84.2157.0
    恩诺沙星15.1ND—25.71.4—29.50.31—1.41.4
    大环内脂类
    红霉素63.8ND—175.40.95—5.462.4
    脱水红霉素67.7ND—14.097.3
    罗红霉素ND—229.311.70.87—3.7ND—13.5141.0
    参考文献[13][25][26][18][20][21-22][23-24]
    抗生素
    Antibiotics
    M松花江
    MSonghua River
    辽河
    Liaohe River
    M海河
    MHaihe River
    黄河
    Yellow River
    淮河
    Huaihe River
    长江
    Yangtze River
    M珠江
    MPearl River
    磺胺类
    磺胺甲恶唑NDND—2.6ND—0.120.14—2.0ND
    磺胺嘧啶1.2ND—0.055ND—0.57ND
    磺胺二甲嘧啶ND—1.05.70.057—0.22ND—3.23.2
    四环素类
    四环素ND—8.0135.03.2—26.80.012—1.8ND—7.1206.0
    土霉素ND—384.6422.01.2—11.5ND0.16—0.9399.0
    金霉素ND—12.310.9ND—0.9523.2
    喹诺酮类
    诺氟沙星10.4ND—52.55770.04.5—104.80.15—20.5444.0
    氧氟沙星10.0ND—51.4635.05.1—49.70.29—84.2157.0
    恩诺沙星15.1ND—25.71.4—29.50.31—1.41.4
    大环内脂类
    红霉素63.8ND—175.40.95—5.462.4
    脱水红霉素67.7ND—14.097.3
    罗红霉素ND—229.311.70.87—3.7ND—13.5141.0
    参考文献[13][25][26][18][20][21-22][23-24]
    下载: 导出CSV

    表 3  中国典型湖泊上覆水中抗生素的浓度(ng·L−1

    Table 3.  The concentrations of antibiotics in the overlying water of typical lakes in China(ng·L−1

    抗生素
    Antibiotics
    太湖
    Taihu Lake
    巢湖
    Chaohu Lake
    洞庭湖
    Dongting Lake
    洪湖
    Honghu Lake
    白洋淀
    Baiyang Lake
    南四湖
    Nansi Lake
    淀山湖
    Dianshan Lake
    磺胺类
    磺胺甲恶唑0.06—490.6ND—171.6ND—47.4ND—254.90.71—452.0ND—62.00—646.0
    磺胺嘧啶0.07—15.0ND—54.7ND—61.3ND—322.5ND—642.0ND—139.0ND—211.0
    磺胺二甲嘧啶0.02—12.8ND—214.0ND—14.9ND—172.40.14—47.7ND—39.0ND—408.0
    四环素类
    四环素0.13—69.0ND—17.8ND—21.5ND—965.7ND—27.5ND—126.00.19—11.6
    土霉素0.10—11.7ND—4.9NDND—2199.5ND—156.0ND—5.90.01—187.2
    金霉素0.13—91.7ND—4.0ND—6.5ND—828.9ND—25.3ND—3.20.01—58.6
    喹诺酮类
    诺氟沙星0.06—31.3ND—80.6ND—1.71.2—123.0ND—74.80.07—229.2
    氧氟沙星0.07—57.81.2—182.7ND—0.53ND—105.10.06—1000.0ND—50.0ND—25.0
    恩诺沙星3.3—52.7ND—82.7ND—4.6ND—182.0ND—0.940.13—22.8
    大环内酯类
    红霉素0.07—272.3ND—136.2NDND—29.9ND—564.7
    脱水红霉素0.18—273.0ND—16.0
    罗红霉素0.03—60.2NDND0.14—526.0ND—89.0ND—116.0
    参考文献[34-35][36-38][39-40][37,41][30,42][43-44][37,45]
    抗生素
    Antibiotics
    太湖
    Taihu Lake
    巢湖
    Chaohu Lake
    洞庭湖
    Dongting Lake
    洪湖
    Honghu Lake
    白洋淀
    Baiyang Lake
    南四湖
    Nansi Lake
    淀山湖
    Dianshan Lake
    磺胺类
    磺胺甲恶唑0.06—490.6ND—171.6ND—47.4ND—254.90.71—452.0ND—62.00—646.0
    磺胺嘧啶0.07—15.0ND—54.7ND—61.3ND—322.5ND—642.0ND—139.0ND—211.0
    磺胺二甲嘧啶0.02—12.8ND—214.0ND—14.9ND—172.40.14—47.7ND—39.0ND—408.0
    四环素类
    四环素0.13—69.0ND—17.8ND—21.5ND—965.7ND—27.5ND—126.00.19—11.6
    土霉素0.10—11.7ND—4.9NDND—2199.5ND—156.0ND—5.90.01—187.2
    金霉素0.13—91.7ND—4.0ND—6.5ND—828.9ND—25.3ND—3.20.01—58.6
    喹诺酮类
    诺氟沙星0.06—31.3ND—80.6ND—1.71.2—123.0ND—74.80.07—229.2
    氧氟沙星0.07—57.81.2—182.7ND—0.53ND—105.10.06—1000.0ND—50.0ND—25.0
    恩诺沙星3.3—52.7ND—82.7ND—4.6ND—182.0ND—0.940.13—22.8
    大环内酯类
    红霉素0.07—272.3ND—136.2NDND—29.9ND—564.7
    脱水红霉素0.18—273.0ND—16.0
    罗红霉素0.03—60.2NDND0.14—526.0ND—89.0ND—116.0
    参考文献[34-35][36-38][39-40][37,41][30,42][43-44][37,45]
    下载: 导出CSV

    表 4  中国典型湖泊沉积物中抗生素的浓度(ng·g−1

    Table 4.  The concentrations of antibiotics in sediment of typical lakes in China(ng·g−1

    抗生素
    Antibiotics
    太湖
    Taihu Lake
    巢湖
    Chaohu Lake
    洞庭湖
    Dongting Lake
    洪湖
    Honghu Lake
    白洋淀
    Baiyang Lake
    南四湖
    Nansi Lake
    淀山湖
    Dianshan Lake
    磺胺类
    磺胺甲恶唑ND—49.3ND—0.5ND—115.4ND—505.5ND—7.9ND—20.6ND—99.2
    磺胺嘧啶ND—8.6ND—38.710.7—1553.4ND—2.1ND—11.2ND—2.2
    磺胺二甲嘧啶ND—99.8ND—15.4ND—57.5ND—6.9ND—3.4ND—5.8
    四环素类
    四环素ND—112.2ND—84.4604.2—5750.34.8—93.4ND—4.4ND—0.2
    土霉素ND—196.7ND—42.811.6—152.64.3—35.4ND—7.9ND—0.1
    金霉素0.013—4.3ND—83.5113.0—1053.6ND—4.3ND—7.4
    喹诺酮类
    诺氟沙星ND—28.4ND49.4—1140.0ND—47.1ND
    氧氟沙星ND—52.8NDND—34.3ND—362.0ND—39.4ND—0.5
    恩诺沙星ND—4.3ND—13.0ND—207.2ND—88.6
    大环内脂类
    红霉素ND—5.60.1—0.45ND—3.0ND
    脱水红霉素ND—120.3ND—1.1
    罗红霉素ND—45.21.8—10.1ND—302.0ND—5.80.10—0.45
    参考文献[34,46-47][48][39,49][49-50][30,42,51][43][45]
    抗生素
    Antibiotics
    太湖
    Taihu Lake
    巢湖
    Chaohu Lake
    洞庭湖
    Dongting Lake
    洪湖
    Honghu Lake
    白洋淀
    Baiyang Lake
    南四湖
    Nansi Lake
    淀山湖
    Dianshan Lake
    磺胺类
    磺胺甲恶唑ND—49.3ND—0.5ND—115.4ND—505.5ND—7.9ND—20.6ND—99.2
    磺胺嘧啶ND—8.6ND—38.710.7—1553.4ND—2.1ND—11.2ND—2.2
    磺胺二甲嘧啶ND—99.8ND—15.4ND—57.5ND—6.9ND—3.4ND—5.8
    四环素类
    四环素ND—112.2ND—84.4604.2—5750.34.8—93.4ND—4.4ND—0.2
    土霉素ND—196.7ND—42.811.6—152.64.3—35.4ND—7.9ND—0.1
    金霉素0.013—4.3ND—83.5113.0—1053.6ND—4.3ND—7.4
    喹诺酮类
    诺氟沙星ND—28.4ND49.4—1140.0ND—47.1ND
    氧氟沙星ND—52.8NDND—34.3ND—362.0ND—39.4ND—0.5
    恩诺沙星ND—4.3ND—13.0ND—207.2ND—88.6
    大环内脂类
    红霉素ND—5.60.1—0.45ND—3.0ND
    脱水红霉素ND—120.3ND—1.1
    罗红霉素ND—45.21.8—10.1ND—302.0ND—5.80.10—0.45
    参考文献[34,46-47][48][39,49][49-50][30,42,51][43][45]
    下载: 导出CSV

    表 5  评价因子取值[54]

    Table 5.  Values of assessment factors[54]

    可用数据
    Available data
    AF
    Assessment factor
    至少1种营养水平短期测定L(E)C501000
    一种水生无脊椎动物或鱼类长期测定NOEC100
    在2个营养水平上进行2次长期测定NOEC50
    在3个营养水平上进行3次长期测定10
    可用数据
    Available data
    AF
    Assessment factor
    至少1种营养水平短期测定L(E)C501000
    一种水生无脊椎动物或鱼类长期测定NOEC100
    在2个营养水平上进行2次长期测定NOEC50
    在3个营养水平上进行3次长期测定10
    下载: 导出CSV

    表 6  我国典型区域地表水体中抗生素的风险熵(RQ)

    Table 6.  Risk quotients (RQ) of antibiotics in surface water in typical regions of China

    抗生素
    Antibiotics
    测试物种
    Test species
    海河
    Haihe River
    渭河
    Weihe River
    长江三角洲
    Yangtze River Delta
    汉江平原
    Han River plain
    珠江三角洲
    Pearl River Delta
    黄河三角洲
    Yellow River Delta
    巢湖
    Chaohu Lake
    太湖
    Taihu Lake
    大通湖
    Datong Lake
    S骆马湖
    SLuoma Lake
    S太湖
    STaihu Lake
    S汉江
    SHanjiang River
    磺胺类
    磺胺甲恶唑藻类10.97.9870.1970.1202.6530.2591.89118001.04
    磺胺甲基嘧啶藻类0.1090.0140.0050.003
    四环素类
    四环素藻类0.0090.3310.0140.1160.0170.5590.0017>0.1
    土霉素藻类0.1970.4610.3640.4914.540.0035>0.1
    喹诺酮类
    诺氟沙星藻类11.80.0020.0840.0760.049
    细菌0.5262.61
    氧氟沙星藻类17.87.890.0940.0070.0030.01941.903.52>1
    环丙沙星藻类0.0173.661351>0.1
    恩诺沙星藻类3.760.770.01-1
    细菌7.95
    大环内脂类
    红霉素藻类0.19519.07511.165
    脱水红霉素藻类11.4
    克拉霉素藻类2.350.0060.0450.119
    阿奇霉素藻类1.32
    β-内酰胺类
    阿莫西林藻类32.2
    参考文献[16][55][56][56][56][56][56][57][58][59][60][61]
      注:“S”表示沉积物中抗生素的风险评价。Note: "S" means the risk assessment of antibiotics in sediment.
    抗生素
    Antibiotics
    测试物种
    Test species
    海河
    Haihe River
    渭河
    Weihe River
    长江三角洲
    Yangtze River Delta
    汉江平原
    Han River plain
    珠江三角洲
    Pearl River Delta
    黄河三角洲
    Yellow River Delta
    巢湖
    Chaohu Lake
    太湖
    Taihu Lake
    大通湖
    Datong Lake
    S骆马湖
    SLuoma Lake
    S太湖
    STaihu Lake
    S汉江
    SHanjiang River
    磺胺类
    磺胺甲恶唑藻类10.97.9870.1970.1202.6530.2591.89118001.04
    磺胺甲基嘧啶藻类0.1090.0140.0050.003
    四环素类
    四环素藻类0.0090.3310.0140.1160.0170.5590.0017>0.1
    土霉素藻类0.1970.4610.3640.4914.540.0035>0.1
    喹诺酮类
    诺氟沙星藻类11.80.0020.0840.0760.049
    细菌0.5262.61
    氧氟沙星藻类17.87.890.0940.0070.0030.01941.903.52>1
    环丙沙星藻类0.0173.661351>0.1
    恩诺沙星藻类3.760.770.01-1
    细菌7.95
    大环内脂类
    红霉素藻类0.19519.07511.165
    脱水红霉素藻类11.4
    克拉霉素藻类2.350.0060.0450.119
    阿奇霉素藻类1.32
    β-内酰胺类
    阿莫西林藻类32.2
    参考文献[16][55][56][56][56][56][56][57][58][59][60][61]
      注:“S”表示沉积物中抗生素的风险评价。Note: "S" means the risk assessment of antibiotics in sediment.
    下载: 导出CSV
  • [1] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-729.
    [2] KÜMMERER K. Antibiotics in the aquatic environment - A review - Part I [J]. Chemosphere, 2009, 75(4): 417-434. doi: 10.1016/j.chemosphere.2008.11.086
    [3] MICHAEL I, RIZZO L, MCARDELL C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review [J]. Water Research, 2013, 47(3): 957-995. doi: 10.1016/j.watres.2012.11.027
    [4] ZHU S C, CHEN H, LI J N. Sources, distribution and potential risks of pharmaceuticals and personal care products in Qingshan Lake Basin, Eastern China [J]. Ecotoxicology and Environmental Safety, 2013, 96: 154-159. doi: 10.1016/j.ecoenv.2013.06.033
    [5] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
    [6] 刘鹏霄, 王旭, 冯玲. 自然水环境中抗生素的污染现状、来源及危害研究进展 [J]. 环境工程, 2020, 38(5): 36-42.

    LIU P X, WANG X, FENG L. Occurrences, resources and risk of antibiotics in aquatic environment: A review [J]. Environmental Engineering, 2020, 38(5): 36-42(in Chinese).

    [7] PROIA L, LUPINI G, OSORIO V, et al. Response of biofilm bacterial communities to antibiotic pollutants in a Mediterranean River [J]. Chemosphere, 2013, 92(9): 1126-1135. doi: 10.1016/j.chemosphere.2013.01.063
    [8] ZHU Y G, ZHAO Y, LI B, et al. Continental-scale pollution of estuaries with antibiotic resistance genes [J]. Nature Microbiology, 2017, 2: 16270. doi: 10.1038/nmicrobiol.2016.270
    [9] XU Y G, YU W T, MA Q, et al. The combined effect of sulfadiazine and copper on soil microbial activity and community structure [J]. Ecotoxicology and Environmental Safety, 2016, 134: 43-52. doi: 10.1016/j.ecoenv.2016.06.041
    [10] YIN G Y, HOU L J, LIU M, et al. Effects of multiple antibiotics exposure on denitrification process in the Yangtze Estuary sediments [J]. Chemosphere, 2017, 171: 118-125. doi: 10.1016/j.chemosphere.2016.12.068
    [11] WANG W H, WANG H, ZHANG W F, et al. Occurrence, distribution, and risk assessment of antibiotics in the Songhua River in China [J]. Environmental Science and Pollution Research International, 2017, 24(23): 19282-19292. doi: 10.1007/s11356-017-9471-x
    [12] HE S N, DONG D M, ZHANG X, et al. Occurrence and ecological risk assessment of 22 emerging contaminants in the Jilin Songhua River (Northeast China) [J]. Environmental Science and Pollution Research International, 2018, 25(24): 24003-24012. doi: 10.1007/s11356-018-2459-3
    [13] XU Y, GUO C S, LV J P, et al. Spatiotemporal profile of tetracycline and sulfonamide and their resistance on a catchment scale [J]. Environmental Pollution, 2018, 241: 1098-1105. doi: 10.1016/j.envpol.2018.06.050
    [14] 张晓娇, 柏杨巍, 张远, 等. 辽河流域地表水中典型抗生素污染特征及生态风险评估 [J]. 环境科学, 2017, 38(11): 4553-4561.

    ZHANG X J, BAI Y W, ZHANG Y, et al. Occurrence, distribution, and ecological risk of antibiotics in surface water in the Liaohe River Basin, China [J]. Environmental Science, 2017, 38(11): 4553-4561(in Chinese).

    [15] LEI K, ZHU Y, CHEN W, et al. Spatial and seasonal variations of antibiotics in river waters in the Haihe River Catchment in China and ecotoxicological risk assessment [J]. Environment International, 2019, 130: 104919. doi: 10.1016/j.envint.2019.104919
    [16] 张盼伟. 海河流域典型水体中PPCPs的环境行为及潜在风险研究[D]. 北京: 中国水利水电科学研究院, 2018.

    ZHANG P W. Environmental behavior and pollution characteristics of pharmaceuticals and personal care products, and their associated environmental risks in typical water-body from Haihe River Basin, China[D]. Beijing: China Institute of Water Resources and Hydropower Research (IWHR), 2018(in Chinese)

    [17] ZHAO S N, LIU X H, CHENG D M, et al. Temporal-spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China [J]. Science of the Total Environment, 2016, 569/570: 1350-1358. doi: 10.1016/j.scitotenv.2016.06.216
    [18] XU W H, ZHANG G, ZOU S C, et al. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China [J]. Water Environment Research:a Research Publication of the Water Environment Federation, 2009, 81(3): 248-254. doi: 10.2175/106143008X325719
    [19] 刘瀚阳. 典型抗生素在淮河流域(安徽段)水生生态系统中的分布特征、沉降趋势及其风险评估[D]. 芜湖: 安徽师范大学, 2020.

    LIU H Y. Occurrence, deposition trend and risk assessment of typical antibiotics in the aquatic environment of the Anhui section of Huaihe River Basin[D]. Wuhu: Anhui Normal University, 2020(in Chinese).

    [20] ZHANG G D, LU S Y, WANG Y Q, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in Lower Yangtze River, China [J]. Environmental Pollution, 2020, 257: 113365. doi: 10.1016/j.envpol.2019.113365
    [21] WANG G G, ZHOU S H, HAN X K, et al. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing City, southwest China [J]. Journal of Hazardous Materials, 2020, 389: 122110. doi: 10.1016/j.jhazmat.2020.122110
    [22] LI S, SHI W Z, LI H M, et al. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River Estuary, South China [J]. Science of the Total Environment, 2018, 636: 1009-1019. doi: 10.1016/j.scitotenv.2018.04.358
    [23] 周志洪, 赵建亮, 魏晓东, 等. 珠江广州段水体抗生素的复合污染特征及其生态风险 [J]. 生态环境学报, 2017, 26(6): 1034-1041.

    ZHOU Z H, ZHAO J L, WEI X D, et al. Co-occurrence and ecological risk of antibiotics in surface water of Guangzhou section of Pearl River [J]. Ecology and Environmental Sciences, 2017, 26(6): 1034-1041(in Chinese).

    [24] BAI Y W, MENG W, XU J, et al. Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China [J]. Environmental Science. Processes & Impacts, 2014, 16(3): 586-593.
    [25] ZHOU L J, YING G G, ZHAO J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in Northern China [J]. Environmental Pollution, 2011, 159(7): 1877-1885. doi: 10.1016/j.envpol.2011.03.034
    [26] 张晶晶, 陈娟, 王沛芳, 等. 中国典型湖泊四大类抗生素污染特征 [J]. 中国环境科学, 2021, 41(9): 4271-4283. doi: 10.3969/j.issn.1000-6923.2021.09.034

    ZHANG J J, CHEN J, WANG P F, et al. Pollution characteristics of four-type antibiotics in typical lakes in China [J]. China Environmental Science, 2021, 41(9): 4271-4283(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.09.034

    [27] FIGUEROA R A, LEONARD A, MACKAY A A. Modeling tetracycline antibiotic sorption to clays [J]. Environmental Science & Technology, 2004, 38(2): 476-483.
    [28] ZHANG J Q, DONG Y H. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China [J]. Journal of Hazardous Materials, 2008, 151(2/3): 833-839.
    [29] LI W H, SHI Y L, GAO L H, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China [J]. Chemosphere, 2012, 89(11): 1307-1315. doi: 10.1016/j.chemosphere.2012.05.079
    [30] 陈宇, 许亚南, 庞燕. 抗生素赋存、来源及风险评估研究进展 [J]. 环境工程技术学报, 2021, 11(3): 562-570. doi: 10.12153/j.issn.1674-991X.20200180

    CHEN Y, XU Y N, PANG Y. Advances in research on the occurrence, source and risk assessment of antibiotics [J]. Journal of Environmental Engineering Technology, 2021, 11(3): 562-570(in Chinese). doi: 10.12153/j.issn.1674-991X.20200180

    [31] ZHOU L J, WU Q L, ZHANG B B, et al. Occurrence, spatiotemporal distribution, mass balance and ecological risks of antibiotics in subtropical shallow Lake Taihu, China [J]. Environmental Science. Processes & Impacts, 2016, 18(4): 500-513.
    [32] WANG W X, ZHOU L J, GU X H, et al. Occurrence and distribution of antibiotics in surface water impacted by crab culturing: A case study of Lake Guchenghu, China [J]. Environmental Science and Pollution Research International, 2018, 25(23): 22619-22628. doi: 10.1007/s11356-018-2054-7
    [33] XU Z A, LI T, BI J, et al. Spatiotemporal heterogeneity of antibiotic pollution and ecological risk assessment in Taihu Lake Basin, China [J]. Science of the Total Environment, 2018, 643: 12-20. doi: 10.1016/j.scitotenv.2018.06.175
    [34] 邓洋慧. 太湖流域典型新兴污染物污染特征及风险评价[D]. 南昌: 南昌大学, 2020.

    DENG Y H. Typical emerging pollution characteristics and risk assessment of Taihu Lake Basin[D]. Nanchang: Nanchang University, 2020 (in Chinese).

    [35] TANG J, SHI T Z, WU X W, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment [J]. Chemosphere, 2015, 122: 154-161. doi: 10.1016/j.chemosphere.2014.11.032
    [36] LI L, LIU D, ZHANG Q, et al. Occurrence and ecological risk assessment of selected antibiotics in the freshwater lakes along the middle and lower reaches of Yangtze River Basin [J]. Journal of Environmental Management, 2019, 249: 109396. doi: 10.1016/j.jenvman.2019.109396
    [37] ZHOU Q Q, LIU G J, ARIF M, et al. Occurrence and risk assessment of antibiotics in the surface water of Chaohu Lake and its tributaries in China [J]. Science of the Total Environment, 2022, 807: 151040. doi: 10.1016/j.scitotenv.2021.151040
    [38] LIU X H, LU S Y, GUO W, et al. Antibiotics in the aquatic environments: A review of lakes, China [J]. Science of the Total Environment, 2018, 627: 1195-1208. doi: 10.1016/j.scitotenv.2018.01.271
    [39] WANG Y Q, LIU Y, LU S Y, et al. Occurrence and ecological risk of pharmaceutical and personal care products in surface water of the Dongting Lake, China-during rainstorm period [J]. Environmental Science and Pollution Research International, 2019, 26(28): 28796-28807. doi: 10.1007/s11356-019-06047-4
    [40] WANG Z, DU Y, YANG C, et al. Occurrence and ecological hazard assessment of selected antibiotics in the surface waters in and around Lake Honghu, China [J]. Science of the Total Environment, 2017, 609: 1423-1432. doi: 10.1016/j.scitotenv.2017.08.009
    [41] YANG L, WANG T Y, ZHOU Y Q, et al. Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China [J]. Science of the Total Environment, 2021, 760: 144080. doi: 10.1016/j.scitotenv.2020.144080
    [42] ZHANG G D, LIU X H, LU S Y, et al. Occurrence of typical antibiotics in Nansi Lake's inflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analysis-multiple linear regression model [J]. Chemosphere, 2020, 242: 125269. doi: 10.1016/j.chemosphere.2019.125269
    [43] 张慧, 郭文建, 刘绍丽, 等. 南四湖和东平湖表层水体中抗生素污染特征和风险评价 [J]. 环境化学, 2020, 39(12): 3279-3287.

    ZHANG H, GUO W J, LIU S L, et al. Contamination characteristics and risk assessment of antibiotics in surface water of Nansi Lake and Dongping Lake [J]. Environmental Chemistry, 2020, 39(12): 3279-3287(in Chinese).

    [44] 童帮会. 淀山湖典型抗生素污染特征、来源及风险评价[D]. 上海: 华东师范大学, 2019.

    TONG B H. Pollution characteristics, sources and risk assessment of typical antibiotics in Dianshan Lake of Shanghai[D]. Shanghai: East China Normal University, 2019(in Chinese).

    [45] XU J, ZHANG Y, ZHOU C B, et al. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China [J]. Science of the Total Environment, 2014, 497/498: 267-273. doi: 10.1016/j.scitotenv.2014.07.114
    [46] XIE Z X, LU G H, YAN Z H, et al. Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake [J]. Environmental Pollution, 2017, 222: 356-366. doi: 10.1016/j.envpol.2016.12.026
    [47] YAN Z H, YANG H H, DONG H K, et al. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion [J]. Environmental Pollution, 2018, 239: 223-232. doi: 10.1016/j.envpol.2018.04.023
    [48] YANG Y Y, CAO X H, LIN H, et al. Antibiotics and antibiotic resistance genes in sediment of Honghu Lake and east Dongting Lake, China [J]. Microbial Ecology, 2016, 72(4): 791-801. doi: 10.1007/s00248-016-0814-9
    [49] HAN M Z, DSOUZA M, ZHOU C Y, et al. Agricultural risk factors influence microbial ecology in Honghu Lake [J]. Genomics, Proteomics & Bioinformatics, 2019, 17(1): 76-90.
    [50] CHENG D M, LIU X H, WANG L, et al. Seasonal variation and sediment-water exchange of antibiotics in a shallower large lake in North China [J]. Science of the Total Environment, 2014, 476/477: 266-275. doi: 10.1016/j.scitotenv.2014.01.010
    [51] ZHANG T, BAN X, WANG X L, et al. Analysis of nutrient transport and ecological response in Honghu Lake, China by using a mathematical model [J]. Science of the Total Environment, 2017, 575: 418-428. doi: 10.1016/j.scitotenv.2016.09.188
    [52] SIEDLEWICZ G, BIAŁK-BIELIŃSKA A, BORECKA M, et al. Presence, concentrations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic Sea—Summary of 3 years of studies [J]. Marine Pollution Bulletin, 2018, 129(2): 787-801. doi: 10.1016/j.marpolbul.2017.10.075
    [53] VRYZAS Z, ALEXOUDIS C, VASSILIOU G, et al. Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern Greece [J]. Ecotoxicology and Environmental Safety, 2011, 74(2): 174-181. doi: 10.1016/j.ecoenv.2010.04.011
    [54] 王嘉玮. 渭河西安段表层水体中抗生素的分布特征及生态风险评价[D]. 西安: 西安理工大学, 2018.

    WANG J W. Distribution characteristics and ecological risk assessment of antibiotics in surface water of xi’an section of Weihe River[D]. Xi'an: Xi'an University of Technology, 2018(in Chinese).

    [55] 刘昔, 王智, 王学雷, 等. 我国典型区域地表水环境中抗生素污染现状及其生态风险评价 [J]. 环境科学, 2019, 40(5): 2094-2100.

    LIU X, WANG Z, WANG X L, et al. Status of antibiotic contamination and ecological risks assessment of several typical Chinese surface-water environments [J]. Environmental Science, 2019, 40(5): 2094-2100(in Chinese).

    [56] 武旭跃, 邹华, 朱荣, 等. 太湖贡湖湾水域抗生素污染特征分析与生态风险评价 [J]. 环境科学, 2016, 37(12): 4596-4604.

    WU X Y, ZOU H, ZHU R, et al. Occurrence, distribution and ecological risk of aantibiotics in surface water of the gonghu bay, Taihu lake [J]. Environmental Science, 2016, 37(12): 4596-4604(in Chinese).

    [57] 刘晓晖, 卢少勇. 大通湖表层水体中抗生素赋存特征与风险 [J]. 中国环境科学, 2018, 38(1): 320-329. doi: 10.3969/j.issn.1000-6923.2018.01.036

    LIU X H, LU S Y. Occurrence and ecological risk of typical antibiotics in surface water of the Datong Lake, China [J]. China Environmental Science, 2018, 38(1): 320-329(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.01.036

    [58] 陈宇, 许亚南, 项颂, 等. 骆马湖表层沉积物中PPCPs的赋存特征及生态风险评估 [J]. 环境科学研究, 2021, 34(8): 1835-1843.

    CHEN Y, XU Y N, XIANG S, et al. Characteristics and ecological risk assessment of PPCPs in surface sediments of Luoma Lake [J]. Research of Environmental Sciences, 2021, 34(8): 1835-1843(in Chinese).

    [59] 张盼伟, 周怀东, 赵高峰, 等. 太湖表层沉积物中PPCPs的时空分布特征及潜在风险 [J]. 环境科学, 2016, 37(9): 3348-3355.

    ZHANG P W, ZHOU H D, ZHAO G F, et al. Spatial, temporal distribution characteristics and potential risk of PPCPs in surface sediments from Taihu Lake [J]. Environmental Science, 2016, 37(9): 3348-3355(in Chinese).

    [60] HU Y, YAN X, SHEN Y, et al. Antibiotics in surface water and sediments from Hanjiang River, Central China: Occurrence, behavior and risk assessment [J]. Ecotoxicology and Environmental Safety, 2018, 157: 150-158. doi: 10.1016/j.ecoenv.2018.03.083
    [61] 谢春生, 杨舒婷, 魏强, 等. 肇庆星湖抗生素污染特征分析及风险评价研究 [J]. 环境与健康杂志, 2019, 36(5): 427-431.

    XIE C S, YANG S T, WEI Q, et al. Antibiotic pollution characteristics and risk assessment of Xinghu Lake in Zhaoqing [J]. Journal of Environment and Health, 2019, 36(5): 427-431(in Chinese).

    [62] 封丽, 程艳茹, 封雷, 等. 三峡库区主要水域典型抗生素分布及生态风险评估 [J]. 环境科学研究, 2017, 30(7): 1031-1040.

    FENG L, CHENG Y R, FENG L, et al. Distribution of typical antibiotics and ecological risk assessment in main waters of Three Gorges reservoir area [J]. Research of Environmental Sciences, 2017, 30(7): 1031-1040(in Chinese).

    [63] DANNER M C, ROBERTSON A, BEHRENDS V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects [J]. Science of the Total Environment, 2019, 664: 793-804. doi: 10.1016/j.scitotenv.2019.01.406
    [64] SUGA N, OGO M, SUZUKI S. Risk assessment of oxytetracycline in water phase to major sediment bacterial community: A water-sediment microcosm study [J]. Environmental Toxicology and Pharmacology, 2013, 36(1): 142-148. doi: 10.1016/j.etap.2013.03.013
    [65] 方淑霞, 王大力, 朱丽华, 等. 抗生素对微生物的联合与低剂量毒性研究进展 [J]. 生态毒理学报, 2015, 10(2): 69-75.

    FANG S X, WANG D L, ZHU L H, et al. Progress in researches on toxicity of antibiotics in low dose and mixture exposure to microorganisms [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 69-75(in Chinese).

    [66] XIONG W G, SUN Y X, ZHANG T, et al. Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China [J]. Microbial Ecology, 2015, 70(2): 425-432. doi: 10.1007/s00248-015-0583-x
    [67] 申立娜, 张璐璐, 秦珊, 等. 白洋淀喹诺酮类抗生素与微生物群落结构和多样性相关性研究 [J]. 环境科学学报, 2020, 40(2): 574-584.

    SHEN L N, ZHANG L L, QIN S, et al. The correlation between quinolone antibiotics and microbial community structure and diversity in Baiyangdian Lake [J]. Acta Scientiae Circumstantiae, 2020, 40(2): 574-584(in Chinese).

    [68] ZOU Y, LIN M X, XIONG W G, et al. Metagenomic insights into the effect of oxytetracycline on microbial structures, functions and functional genes in sediment denitrification [J]. Ecotoxicology and Environmental Safety, 2018, 161: 85-91. doi: 10.1016/j.ecoenv.2018.05.045
    [69] MILAKOVIĆ M, VESTERGAARD G, GONZÁLEZ-PLAZA J J, et al. Pollution from azithromycin-manufacturing promotes macrolide-resistance gene propagation and induces spatial and seasonal bacterial community shifts in receiving river sediments [J]. Environment International, 2019, 123: 501-511. doi: 10.1016/j.envint.2018.12.050
    [70] ZHOU Z G, ZHANG Z Y, FENG L, et al. Adverse effects of levofloxacin and oxytetracycline on aquatic microbial communities [J]. Science of the Total Environment, 2020, 734: 139499. doi: 10.1016/j.scitotenv.2020.139499
    [71] LUO Y, MAO D Q, RYSZ M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China [J]. Environmental Science & Technology, 2010, 44(19): 7220-7225.
    [72] JIANG L, HU X L, XU T, et al. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China [J]. Science of the Total Environment, 2013, 458/459/460: 267-272.
    [73] ZHAO B, XU J M, ZHANG G D, et al. Occurrence of antibiotics and antibiotic resistance genes in the Fuxian Lake and antibiotic source analysis based on principal component analysis-multiple linear regression model [J]. Chemosphere, 2021, 262: 127741. doi: 10.1016/j.chemosphere.2020.127741
    [74] 翟文超. 抗生素抗性基因在抗生素制药废水处理过程中的分布特征及控制原理研究[D]. 天津: 南开大学, 2014.

    ZHAI W C. The fate and control principle of antibiotic resistance genes in pharmaceutical wastewater treatment systems[D]. Tianjin: Nankai University, 2014(in Chinese).

    [75] PU Q, FAN X T, SUN A Q, et al. Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes [J]. Environment International, 2021, 152: 106453. doi: 10.1016/j.envint.2021.106453
    [76] 韩雪, 马晓琳, 晁韶良, 等. 纳米材料对环境抗生素抗性基因污染扩散影响的研究进展 [J]. 生态毒理学报, 2019, 14(5): 46-54.

    HAN X, MA X L, CHAO S L, et al. Influence of nanomaterials on the spread of environmental antibiotic resistance genes: A review [J]. Asian Journal of Ecotoxicology, 2019, 14(5): 46-54(in Chinese).

    [77] HUANG H N, CHEN Y G, ZHENG X, et al. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer [J]. Bioresource Technology, 2016, 218: 1284-1289. doi: 10.1016/j.biortech.2016.07.097
    [78] NAGACHINTA S, CHEN J R. Transfer of class 1 integron-mediated antibiotic resistance genes from shiga toxin-producing Escherichia coli to a susceptible E. coli K-12 strain in storm water and bovine feces [J]. Applied and Environmental Microbiology, 2008, 74(16): 5063-5067. doi: 10.1128/AEM.00517-08
    [79] WANG Q, MAO D Q, LUO Y. Ionic liquid facilitates the conjugative transfer of antibiotic resistance genes mediated by plasmid RP4 [J]. Environmental Science & Technology, 2015, 49(14): 8731-8740.
    [80] ZHANG Y, GU A Z, CEN T Y, et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment [J]. Environmental Pollution, 2018, 237: 74-82. doi: 10.1016/j.envpol.2018.01.032
    [81] ZHANG S, WANG Y, SONG H L, et al. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera [J]. Environment International, 2019, 129: 478-487. doi: 10.1016/j.envint.2019.05.054
    [82] JIA Y Q, WANG Z Q, FANG D, et al. Acetaminophen promotes horizontal transfer of plasmid-borne multiple antibiotic resistance genes [J]. Science of the Total Environment, 2021, 782: 146916. doi: 10.1016/j.scitotenv.2021.146916
    [83] YAN C, DINH Q T, CHEVREUIL M, et al. The effect of environmental and therapeutic concentrations of antibiotics on nitrate reduction rates in river sediment [J]. Water Research, 2013, 47(11): 3654-3662. doi: 10.1016/j.watres.2013.04.025
    [84] 张敏, 廖明军, 李大鹏, 等. 三种抗生素对池塘底泥氨氧化微生物生长及硝化作用的影响 [J]. 渔业现代化, 2013, 40(3): 25-30,36. doi: 10.3969/j.issn.1007-9580.2013.03.006

    ZHANG M, LIAO M J, LI D P, et al. Effects of three kinds of antibiotic on the nitrification and the growth of ammonia-oxidizing microorganism in freshwater aquaculture pond sediment [J]. Fishery Modernization, 2013, 40(3): 25-30,36(in Chinese). doi: 10.3969/j.issn.1007-9580.2013.03.006

    [85] HOU L J, YIN G Y, LIU M, et al. Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments [J]. Environmental Science & Technology, 2015, 49(1): 326-333.
    [86] XU H P, LU G H, XUE C W. Effects of sulfamethoxazole and 2-ethylhexyl-4-methoxycinnamate on the dissimilatory nitrate reduction processes and N2 O release in sediments in the Yarlung zangbo river [J]. International Journal of Environmental Research and Public Health, 2020, 17(6): 1822. doi: 10.3390/ijerph17061822
    [87] JUNIER P, MOLINA V, DORADOR C, et al. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment [J]. Applied Microbiology and Biotechnology, 2010, 85(3): 425-440. doi: 10.1007/s00253-009-2228-9
    [88] 孙小溪, 蒋宏忱. 湖泊微生物硝化过程研究进展 [J]. 微生物学报, 2020, 60(6): 1148-1161.

    SUN X X, JIANG H C. Research progress in microbial nitrification in lakes [J]. Acta Microbiologica Sinica, 2020, 60(6): 1148-1161(in Chinese).

    [89] DEVRIES S L, ZHANG P F. Antibiotics and the terrestrial nitrogen cycle: A review [J]. Current Pollution Reports, 2016, 2(1): 51-67. doi: 10.1007/s40726-016-0027-3
    [90] TONG X N, WANG X Z, HE X J, et al. Effects of ofloxacin on nitrogen removal and microbial community structure in constructed wetland [J]. Science of the Total Environment, 2019, 656: 503-511. doi: 10.1016/j.scitotenv.2018.11.358
    [91] TANG S Y, WANG C, JI G D. Response of ammonia-oxidizing Archaea and bacteria to streptomycin sulfate and penicillin in coastal wetlands along the Bohai Rim [J]. Land Degradation & Development, 2021, 32(5): 1917-1926.
    [92] HE X J, JI G D. Responses of AOA and AOB activity and DNA/cDNA community structure to allylthiourea exposure in the water level fluctuation zone soil [J]. Environmental Science and Pollution Research International, 2020, 27(13): 15233-15244. doi: 10.1007/s11356-020-07952-9
    [93] HUANG F J, LIN X B, HU W F, et al. Nitrogen cycling processes in sediments of the Pearl River Estuary: Spatial variations, controlling factors, and environmental implications [J]. CATENA, 2021, 206: 105545. doi: 10.1016/j.catena.2021.105545
    [94] YIN G Y, HOU L J, LIU M, et al. Effects of thiamphenicol on nitrate reduction and N2O release in estuarine and coastal sediments [J]. Environmental Pollution, 2016, 214: 265-272. doi: 10.1016/j.envpol.2016.04.041
    [95] 朱晓萌, 代彬彬, 严亚. 城市河道沉积物中残留医用抗生素对反硝化潜势的抑制作用及机制 [J]. 环境科学学报, 2019, 39(11): 3877-3887.

    ZHU X M, DAI B B, YAN Y. The inhibition effects of residual antibiotics on denitrification in the urban river sediments [J]. Acta Scientiae Circumstantiae, 2019, 39(11): 3877-3887(in Chinese).

    [96] CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of Earth's nitrogen cycle [J]. Science, 2010, 330(6001): 192-196. doi: 10.1126/science.1186120
    [97] REAY D S, DAVIDSON E A, SMITH K A, et al. Global agriculture and nitrous oxide emissions [J]. Nature Climate Change, 2012, 2(6): 410-416. doi: 10.1038/nclimate1458
    [98] 邓璐, 何江涛, 邹华, 等. 洛美沙星对水中反硝化过程的影响模拟试验 [J]. 中国环境科学, 2020, 40(7): 2934-2942. doi: 10.3969/j.issn.1000-6923.2020.07.017

    DENG L, HE J T, ZOU H, et al. Simulation experiments on effects of lomefloxacin on denitrification process in water [J]. China Environmental Science, 2020, 40(7): 2934-2942(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.07.017

    [99] UNDERWOOD J C, HARVEY R W, METGE D W, et al. Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment [J]. Environmental Science & Technology, 2011, 45(7): 3096-3101.
    [100] WANG M, XIONG W G, ZOU Y, et al. Evaluating the net effect of sulfadimidine on nitrogen removal in an aquatic microcosm environment [J]. Environmental Pollution, 2019, 248: 1010-1019. doi: 10.1016/j.envpol.2019.02.048
    [101] AHMAD M, VITHANAGE M, KIM K, et al. Inhibitory effect of veterinary antibiotics on denitrification in groundwater: A microcosm approach [J]. The Scientific World Journal, 2014, 2014: 879831.
    [102] 陈淋鹏, 黄福杨, 张冲, 等. 诺氟沙星对地下水中反硝化过程的影响: 反硝化酶活性的证据 [J]. 环境科学学报, 2020, 40(7): 2496-2501.

    CHEN L P, HUANG F Y, ZHANG C, et al. Effect of norfloxacin on denitrification process in groundwater: Evidence for denitrifying enzyme activity [J]. Acta Scientiae Circumstantiae, 2020, 40(7): 2496-2501(in Chinese).

    [103] NOGARO G, BURGIN A J. Influence of bioturbation on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in freshwater sediments [J]. Biogeochemistry, 2014, 120(1/2/3): 279-294.
    [104] SHAN J, YANG P P, RAHMAN M M, et al. Tetracycline and sulfamethazine alter dissimilatory nitrate reduction processes and increase N2O release in rice fields [J]. Environmental Pollution, 2018, 242: 788-796. doi: 10.1016/j.envpol.2018.07.061
  • 加载中
表( 6)
计量
  • 文章访问数:  9199
  • HTML全文浏览数:  9199
  • PDF下载数:  272
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-24
  • 刊出日期:  2022-04-27

水体中抗生素污染现状及其对氮转化过程的影响研究进展

    通讯作者: Tel:15051886185,E-mail:zhanghuanjun@hhu.edu.cn
  • 1. 河海大学浅水湖泊综合治理与资源开发教育部重点实验室,南京,210098
  • 2. 河海大学环境学院,南京,210098
基金项目:
国家自然科学基金(52070071)和中央高校基本科研业务费(B200202104)资助.

摘要: 近年来,抗生素引起的环境污染和生态风险备受关注。作为抗生素最重要的归宿地之一,自然水体中的抗生素污染日益加剧。逐渐累积的抗生素给水生生态系统带来风险,并会改变微生物群落的结构和功能,已成为水体中物质循环过程的重要影响因子。该文总结了我国河流和湖泊中抗生素的污染现状及其对水生生态系统产生的风险,综述了抗生素对水体中微生物群落以及硝化、反硝化和厌氧氨氧化等氮转化过程的影响。我国主要河流和湖泊中均有抗生素检出,类型包括磺胺类、四环素类、喹诺酮类和大环内酯类等,不同水体中抗生素的污染类型及浓度差异显著。目前,有关抗生素给水生生态系统造成的生态风险和对微生物群落的影响研究较多,而抗生素抗性基因在水环境中的传播扩散机制还需要更全面和深入的探索。抗生素可以通过改变氮循环功能微生物、酶活性和功能基因等影响水体中氮转化过程。对反硝化过程主要表现为抑制作用,对硝化过程的影响与其浓度和类型有关,而对厌氧氨氧化和硝酸盐异化还原为铵过程的影响研究相对匮乏。后续研究中还应探索水动力,盐度,水深和氧化还原梯度等典型水环境条件下,氮转化过程对抗生素的响应,为全面揭示抗生素对水体氮转化过程的影响提供依据。

English Abstract

  • 自20世纪青霉素问世以来,各类抗生素不仅作为主要的抗感染药物广泛用于人和动物的疾病防治,还作为重要的生长促进剂应用于畜禽及水产养殖业[2]。进入人和动物体内的抗生素不能被完全吸收和代谢,大部分以原形或活性代谢产物的形式通过粪便和尿液直接排入环境或进入污水处理厂,而目前污水处理工艺并不能将抗生素完全去除,造成了抗生素在环境中的不断累积[3-4]。我国是世界上最大的抗生素生产国和消费国[5]。据估算,2013年我国抗生素总使用量约为16.2万吨,人均使用量大约是英美等发达国家的6倍,因此,抗生素带来的环境污染可能更为严重[6]

    作为抗生素最重要的归宿地之一,自然水体中的抗生素污染问题已引起人们广泛关注。研究指出,河流和湖泊面临的抗生素污染风险比海洋和地下水更大[7]。但是,目前对于我国主要河流和湖泊中抗生素的污染现状还缺乏详细的梳理。水体中的抗生素不仅会对水生生物产生直接毒害作用,还会改变微生物群落的结构和功能,并促进抗生素抗性基因(antibiotic resistance genes, ARGs)的产生和传播,从而对人类健康与生态系统的稳定性产生巨大威胁[8-9]。抗生素对水体中微生物群落结构和功能的影响,还会干扰微生物驱动的氮循环过程,已经成为水体富营养化和温室气体排放的重要影响因素[10-11]

    本文在梳理我国河流和湖泊中抗生素污染现状的基础上,进一步总结了抗生素对水生生态系统造成的生态风险,综述了抗生素对水体微生物群落以及氮转化过程的影响,最后提出了抗生素污染对水生生态系统影响的研究展望,以期加强人们对水体中抗生素污染的认识。

    • 河流作为地球淡水资源的重要组成部分,是工业用水和饮用水的主要来源之一,其水质不仅关系到河流生态系统的稳定,还将直接影响工农业生产和人体健康。近年来,各大流域水体中不断被检测到较高浓度抗生素的存在,检出的类型主要有磺胺类、四环素类、喹诺酮类和大环内酯类等。目前,关注较多是辽河、海河、长江和珠江流域,不同流域水体中抗生素的污染类型及浓度差异显著[12-26]表1表2)。根据已有报道,在上覆水中,松花江和淮河流域的主要抗生素污染类型是磺胺类,黄河流域以四环素类和喹诺酮类为主。在辽河、海河、长江和珠江流域中,四类抗生素均有较高浓度。其中,辽河流域中大环内酯类是最主要的抗生素污染物,其次是喹诺酮类和磺胺类;海河流域中喹诺酮类浓度最高,其次是磺胺类和大环内酯类;长江流域以磺胺类和喹诺酮类为主要污染类型,而在珠江流域中,喹诺酮类、四环素类和大环内酯类的检出浓度显著高于磺胺类。比较不同流域上覆水中抗生素总浓度可知,淮河流域污染程度最低,其次是松花江、黄河、长江、海河和珠江流域,辽河流域污染程度最高。

      各流域沉积物中的抗生素污染类型与其上覆水中不尽相同。其中,松花江、海河、黄河和长江流域以喹诺酮类为主要污染类型,辽河以四环素类和大环内酯类为主要污染类型,而珠江流域的沉积物中四环素类、喹诺酮类和大环内酯类的检出浓度都处于较高水平。就污染程度而言,海河流域沉积物中抗生素总浓度最高,其次是辽河和珠江流域,淮河流域沉积物中抗生素总浓度最低。造成同流域上覆水与沉积物中抗生素主要污染类型不同的原因可能与抗生素本身性质以及沉积物对它们的吸附能力存在差异有关。张晶晶等[27]研究表明,东部平原湖区和蒙新湖区沉积物中四环素类和喹诺酮类抗生素的浓度明显高于上覆水,这与沉积物对两类抗生素的强吸附性有关,其中四环素类抗生素可利用阳离子吸附架桥作用对沉积物中的有机质产生较高亲和力[28-29]。喹诺酮类抗生素与阳离子具有很强的螯合作用,延缓了它们在沉积物中的降解过程,导致其在沉积物中的浓度较高[30]。而不同流域中抗生素分布的差异可能源于区域经济、生产方式和环境条件等原因[31]

    • 湖泊作为重要的污水受纳水体和水产养殖基地,比其他地表水体更容易受到抗生素的污染[32-33]。目前有关我国湖泊抗生素污染的研究主要集中在东部湖区[34-51]表3表4)。在上覆水中,太湖、巢湖、洞庭湖、南四湖和淀山湖的主要污染类型为磺胺类,洪湖则是以四环素类抗生素污染为主,白洋淀中喹诺酮类和磺胺类浓度都较高。7个湖泊中,洞庭湖抗生素污染程度相对最低,其次是南四湖、巢湖、太湖、淀山湖、白洋淀,洪湖污染程度最高。在沉积物中,太湖、洞庭湖和洪湖主要的污染类型为四环素类,其次是磺胺类,白洋淀和南四湖主要的污染类型是喹诺酮类,淀山湖以磺胺类为主,而巢湖沉积物中抗生素污染关注较少。从污染程度来看,依然是洪湖沉积物中抗生素总浓度最高,其次是白洋淀、太湖、洞庭湖、南四湖和淀山湖,巢湖污染程度最低。洪湖作为湖北省最大的淡水湖,周围存在大量的畜禽养殖基地,自身也被用作大型的水产养殖基地(约占湖泊总面积的40%),可能是导致其抗生素污染比其他湖泊严重的重要原因[52]

    • 除了对抗生素浓度水平的调查外,研究者们还关注了抗生素对水生生态系统造成的生态风险。目前,水中抗生素的风险评估多采用美国食品药品监督管理局和欧洲药品评估机构引入的药品环境风险评估指南(ERA)中的风险熵(RQ)来确定生态风险等级[32]。若0.01≤RQ<0.1为低风险;0.1≤RQ<1.0为中风险;RQ≥1.0为高风险。计算公式为[53]

      式中,RQ为风险熵,无量纲;MEC为污染物实际浓度,ng·L−1;PNEC为预测无效应浓度,ng·L−1;NOEC为最大无影响浓度,LOEC为最低有影响浓度,IC50为半抑制浓度,LC50为半致死浓度,EC50为半数效应浓度,ng·L−1;AF为评价因子,具体取值见表5

      利用以上公式,很多研究对我国典型区域地表水中的抗生素生态风险进行了评估(表6)。Lei等[16]计算了15种抗生素在海河流域中的风险水平,发现阿莫西林、脱水红霉素、氧氟沙星、诺氟沙星和恩诺沙星的RQ>1,对藻类表现出高生态风险。在渭河西安段中,环丙沙星、氧氟沙星、磺胺甲恶唑对敏感性水生生物具有较高生态风险[55]。刘昔等[56]对我国5个典型区域丰水期地表水中8种抗生素进行生态风险评估,发现磺胺甲恶唑在长江三角洲和巢湖流域中RQ均大于1,是上述地区主要的生态风险因子,而在江汉平原、珠江三角洲和黄河三角洲流域,红霉素是主要的抗生素污染物,RQ分别为19.075、1、1.165,表现出高生态风险。武旭跃等[57]评估了太湖贡湖湾16种抗生素的生态风险,发现土霉素、诺氟沙星、氧氟沙星、环丙沙星和恩诺沙星的RQ>1,具有高生态风险。在大通湖中,磺胺甲恶唑和环丙沙星是主要的风险因子,RQ均大于1,对藻类造成高生态风险[58]

    • 沉积物作为另一种抗生素蓄积的重要环境介质,其抗生素生态风险评估也引起了很多学者的关注。进行沉积物中抗生素风险评估时,往往先将其转化为孔隙水中浓度,再进行风险评估。转化公式如下[59]

      式中,Cpore water为孔隙水中抗生素的浓度,ng·L−1Csediment为沉积物中抗生素的浓度,ng·g−1Koc为有机碳标准化分配系数,L·kg−1foc为沉积物中有机碳浓度,%;Cwater为水中抗生素浓度,ng·L−1Kp为沉积物-水分配系数。

      在骆马湖表层沉积物中,氧氟沙星和磺胺甲恶唑的RQ>1,对水生生物有高生态风险[59]。张盼伟等[60]发现太湖表层沉积物中的阿奇霉素、磺胺甲恶唑对藻类存在高生态风险威胁。Hu等[61]评估了汉江不同季节和不同区域沉积物中13种抗生素的生态风险,发现在夏季和冬季,氧氟沙星RQ>1的比例分别为93.6%和95.7%,对水生生物表现出高生态风险(表6)。

    • 在实际水体中,通常多种抗生素同时存在,它们的生态毒理效应和环境危害程度会产生叠加效应。目前多种抗生素的联合毒性风险熵(RQsum)一般采用简单叠加模型计算[62]

      式中,RQsum为联合毒性风险熵,无量纲;RQi为第i种抗生素的RQ值,无量纲。

      在评估肇庆星湖中8种抗生素的风险水平时,谢春生等[62]发现枯水期上覆水中抗生素的RQsum为0.1—1,而丰水期RQsum均大于2,将对生态系统产生较严重危害。在洪湖上覆水中,磺胺嘧啶和四环素是构成高混合生态风险的主要因子,占每个样点RQsum的比例分别为67%—96%和1%—13%[41]。封丽等[63]通过评价三峡库区主要水域中28种抗生素的生态风险,发现7条河流上覆水中抗生素RQsum由高到低依次为濑溪河>琼江>綦江>碧溪河>嘉陵江>长江>乌江,其中,濑溪河RQsum高达5.532,琼江、綦江、碧溪河和嘉陵江的RQsum均处于1—2之间,均表现出高生态风险,长江的RQsum为0.605,属于中等风险,乌江的RQsum为0.013,为低等风险。在汉江不同区域沉积物中,夏季和冬季RQsum>1的比例分别为95.7%和100%,抗生素叠加对水生生物造成的危害可能比单一抗生素更大[61]

      由此可见,水体中不断累积的抗生素已经给水生生态系统造成了不同程度的生态风险,其中,磺胺类和喹诺酮类是大多数水生生态系统中主要的风险贡献因子,这可能与它们在畜禽和水产养殖中大量使用有关。另外,水体中存在的多种抗生素之间存在协同、拮抗和加和作用[64],导致多种抗生素引起的叠加风险与将单一抗生素风险简单加和的结果可能存在差异,但是目前相关研究较少,需进一步探索。

    • 微生物作为水生生态系统中物质循环与能量流动的重要驱动者,其对抗生素的响应也是研究热点之一[65]。抗生素能直接杀死水体中某些微生物或抑制其生长,从而改变微生物的种类、数量以及群落结构功能,还可以使微生物群落产生抗性,破坏生态系统的平衡[66]。Xiong等[67]研究表明,磺胺类抗生素的大量使用导致鱼塘沉积物中磺胺类抗性菌株—不动杆菌的丰度最高,达35%。申立娜等[68]分析了白洋淀沉积物中喹诺酮类抗生素与微生物群落结构和多样性的关系,发现抗生素污染会显著降低微生物群落丰度和多样性。Zou等[69]通过宏基因组测序发现土霉素显著增加了池塘沉积物中变形菌和厚壁菌的丰度,而降低了放线菌的丰度。含有阿奇霉素的废水排入河流后,沉积物中厚壁菌和拟杆菌丰度显著增加,且营养盐与抗生素会共同影响沉积物中微生物群落结构[70]。左氧氟沙星和土霉素污染显著增加了城市河流上覆水中变形菌门丰度,降低了拟杆菌门丰度,而真核微生物群落结构无显著变化[71]

      水体中的抗生素还会诱导产生耐药菌或ARGs。Luo等[72]研究了海河中磺胺类抗生素与ARGs产生的相关性,发现河流中2种磺胺类ARGs(sul1sul2)的相对丰度和磺胺类抗生素的浓度呈正相关。在黄浦江中,磺胺类ARGs(sul1sul2)和四环素类ARGs(tetA、tetB、tetC、tetG、tetM、tetO、tetW、tetX)的相对丰度分别与磺胺类和四环素抗生素浓度呈正相关[73]。同样,抚仙湖中大环内脂类ARGs(ermB)的相对丰度与大环内脂类抗生素总浓度也呈显著正相关[74]。ARGs可以通过垂直基因转移(vertical gene transfer, VGT)和水平基因转移(horizontal gene transfer, HGT)在不同的环境介质中传播和扩散。VGT主要是指遗传物质在亲、子代之间的传递,传播范围有限。HGT主要借助整合子、质粒、转座子和噬菌体等可移动遗传元件,包括接合转移、转导和转化3种方式,是ARGs在环境中传播的最主要途径。并且,HGT打破了物种间遗传方式的传播界限,会导致ARGs在不同微生物中蔓延,而一旦ARGs转移到人类致病菌中,将给人类健康带来巨大的风险[75]。水环境作为ARGs传播的重要介质,其庞大的ARGs库,会为水环境中的人类致病菌及条件致病菌提供大量获得ARGs的机会。Pu等[76]发现在1—100 mg·L−1的Cd2+和纳米Fe2O3共同作用下,恶臭假单孢杆菌KT2442携带的多抗性质粒RP4可以向厦门西林湾上覆水中的土著菌转移,导致赫氏埃希菌、黏质沙雷氏菌和肺炎克雷伯氏菌等人类致病菌或条件致病菌产生多种耐药性。一旦获得多重耐药的赫氏埃希菌、黏质沙雷氏菌等水源性传播致病菌感染人体,其治疗将会非常困难,会严重威胁人类健康。

      另外,由于ARGs的HGT是在开放的自然环境中进行的,在这个过程中,很多环境因素都能影响ARGs的HGT[77]。Huang等[78]发现,酸性条件有利于四环素ARGs的HGT,而碱性条件则会抑制转移过程的进行。Nagachinta和Chen[79]研究了不同温度条件下ARGs的接合转移过程,发现接合转移发生在17—37 ℃之间,低于该温度则检测不到接合子。另有许多研究证实,水环境中的离子液体、重金属和有机化合物可以对ARGs的接合转移有不同程度的促进作用,其中主要的促进机制有:细菌细胞产生大量的活性氧(reactive oxygen species, ROS),激发了细菌氧化-抗氧化系统反应,进而影响细胞膜状态,造成细胞膜损伤,提高了细胞膜通透性;在分子水平上,影响了与接合转移过程相关的调控基因和整体调控基因的表达[80-83]。除了接合转移,转化和转导也是ARGs在水环境中HGT的重要途径。但是与接合转移相比,目前有关环境因素对转导和转化这两种途径影响的研究相对匮乏。

    • 抗生素对水体中微生物功能产生了不容忽视的影响,逐渐成为水生生态系统中物质循环过程的重要影响因子[84]。氮循环是全球生物地球化学循环的重要组成部分,已有大量研究表明,水体中不断累积的抗生素对硝化、反硝化和厌氧氨氧化(anaerobic ammonium oxidation,Anammox)等过程都产生了不同程度的影响[85-87]

    • 硝化作用是唯一能把氨氮转化为硝酸盐,为反硝化除氮提供底物的自然过程,是水生生态系统中氮循环过程的重要组成部分。硝化过程一般分为两个步骤,第一步是氨氮被氧化为亚硝酸盐氮,被称为氨氧化过程,该过程主要由氨氧化细菌(ammonia-oxidizing bacteria, AOB)和氨氧化古菌(ammonia-oxidizing archaea, AOA)两大菌群主导,是硝化过程的限速步骤,在湖泊沉积物、湿地、农田等环境中广泛存在[88]。第二步是亚硝酸盐氮被氧化为硝酸盐氮,该过程受到的关注度远少于氨氧化过程,造成这一现象的原因一方面可能是氨氧化被认为是硝化作用的限速步骤,另一方面可能与亚硝酸盐氧化菌难以分离培养的特性有关[89]

      目前有关抗生素对硝化过程的影响研究也主要集中在氨氧化过程。张敏等[85]研究了氯霉素、恩诺沙星和磺胺嘧啶3种抗生素对淡水池塘沉积物中硝化过程的影响,结果表明,氯霉素对硝化过程的抑制作用呈剂量依赖性:50—100 mg·kg−1的氯霉素对氨氧化过程抑制作用不显著,但200—500 mg·kg−1的氯霉素显著抑制了氨氧化过程。恩诺沙星(50—400 mg·kg−1)和磺胺嘧啶(100—500 mg·kg−1)对氨氧化过程有显著抑制作用,且无剂量依赖性。氯霉素(≤500 mg·kg−1)和恩诺沙星(≤400 mg·kg−1)未对AOB和AOA生长产生显著影响,磺胺嘧啶(≤500 mg·kg−1)对AOA生长无显著影响,但对AOB生长有显著抑制作用,由此推测抗生素可能是通过减弱AOA和AOB转录活性或改变氨氧化微生物的群落结构抑制了硝化过程。此外,抗生素也可通过改变AOB与AOA的比例来影响硝化过程[90]。Tong等[91]研究发现,0.1—1000 μg·L−1的氧氟沙星增加了人工湿地沉积物中AOA的丰度,但是降低了AOB的丰度,最终使氨氧化速率增加。在100 mg·L−1的硫酸链霉素和青霉素作用下,渤海滨海湿地中氨氧化速率分别降低了61.2%—84.0%和50.0%—74.5%,其中AOB丰度显著降低且群落结构发生显著变化,而AOA丰度和群落结构无显著变化[92]。在抗生素作用下,AOA比AOB更耐药,原因可能在于,与真细菌不同,古菌细胞壁仅含蛋白质和多糖,不含肽聚糖骨架[93]

    • 反硝化作用是微生物以有机物为碳源及电子供体,将硝酸盐还原成气态氮化物的过程,主要包括以下反应:${\rm{NO}}_3^ - $${\rm{NO}}_2^ - $→NO→N2O→N2[94]。分别由硝酸盐还原酶(nitrate reductase,NAR)、亚硝酸盐还原酶(nitrite reductase,NIR,是反硝化过程的限速酶)、氧化氮还原酶(nitric oxide reductase,NOR)和氧化亚氮还原酶(nitrous oxide reductase,NOS,衡量反硝化过程是否完全)等进行催化,相应编码基因分别为nar、nir、nor、nos等。反硝化作为水生生态系统中氮素去除的主要途径,对改善水体生态环境具有重要意义,因此一直备受关注。

      抗生素对水体反硝化过程的影响主要体现在抑制硝酸盐还原速率,也有部分研究表明对N2O的生成有促进作用,而对亚硝酸盐还原速率的抑制作用较少[86,95-96]。Hou等[86]通过研究抗生素对河口盐沼沉积物中反硝化作用的影响,发现5—100 μg·L−1磺胺二甲嘧啶显著抑制了反硝化速率并增加了N2O的排放。Yin等[95]发现0.01—10 μg·L−1甲砜霉素显著抑制了河口沉积物中N2生成,而促进了亚硝酸盐和N2O的累积。朱晓萌等[96]研究南明河贵阳城区段沉积物中残留抗生素对沉积物反硝化潜势的影响时发现,诺氟沙星((537.13±212.69) ng·g−1)可以通过抑制编码nirS细菌主导的亚硝酸盐还原阶段来抑制沉积物中的反硝化潜势。在水生生态系统中,一般多种抗生素同时存在,不同抗生素之间可能有联合效应,共同干扰反硝化过程中N2O的释放和硝酸盐的还原[97-98]。Yin等[11]研究了磺胺类、氯霉素类、四环素类、大环内酯类和喹诺酮类5类抗生素对河口沉积物反硝化作用的影响,发现不同类型抗生素的添加均抑制了反硝化速率,其中,土霉素(5.13—22.5 ng·L−1)的抑制作用最明显,并且多种抗生素具有协同抑制作用;不同类型的抗生素对N2O排放速率有增加和抑制两种不同影响,但多种抗生素叠加最大程度的增加了N2O排放速率。

      另外,很多学者进一步探讨了抗生素抑制反硝化过程的潜在机制。Zou等[69]研究1 μg·L−1的土霉素对池塘沉积物中反硝化作用的影响时发现,土霉素的添加显著改变了微生物群落结构,同时降低了nirKnosZ基因的丰度。进一步通过功能注释表明,土霉素添加显著降低了沉积物中微生物“蛋白质代谢”相关功能基因以及NAR、NIR和NOS的丰度,却增加了NOR的丰度。邓璐等[99]指出1—100 μg·L−1的洛美沙星影响反硝化作用主要在于抑制微生物的生长和NAR的活性,进而作用于NO3-N还原至NO2-N的过程。Underwood等[100]的研究表明,1—50 μmol·L−1的磺胺甲恶唑可以通过影响微生物生长和群落组成来抑制硝酸盐还原的能力。环境浓度的磺胺二甲嘧啶(50 μg·L−1)会降低池塘沉积物中的放线菌、硝化螺旋菌和厚壁菌的相对丰度,最终降低硝酸盐和N2O还原量[101]。抗生素也可以通过抑制反硝化细菌的生长和繁殖进而影响反硝化过程[102-103]

    • 除了硝化和反硝化过程外,Anammox和硝酸盐异化还原成铵(dissimilatory nitrate reduction to ammonium,DNRA)同样是重要的氮转化过程。Anammox是以铵作为电子供体,以亚硝酸盐作为唯一的电子受体,在缺氧环境中生成氮气或同时生成硝酸盐副产物[94]。DNRA作为水环境中硝态氮的另一种移除途径,能够将硝酸盐中的氮还原为氨保留在生态系统中,对含氮化合物的氧化与还原过程起着重要的连接作用[104]。然而,目前有关抗生素对Anammox过程的影响研究较少。Xu等[87]研究了不同添加浓度的磺胺甲恶唑对高原河流雅鲁藏布江沉积物中Anammox的影响,发现在1—100 μg·L−1的浓度范围内,Anammox速率随磺胺甲恶唑浓度的升高而降低,呈剂量依赖性,作用途径主要是通过抑制硝酸盐还原菌生长,但是相关机制尚不清晰。Shan等[104]发现在稻田土壤中,0.6—6000 μg·kg−1的四环素和磺胺二甲嘧啶能显著抑制硝酸盐还原菌的生长,进而降低了反硝化、Anammox和DNRA的速率,并改变了反硝化、Anammox以及DNRA对硝酸盐还原的贡献比例。但是,关于抗生素对水体中DNRA过程的影响及其机制还未见报道。

      由此可见,水体中不断累积的抗生素已经给硝化、反硝化和厌氧氨氧化过程产生了不同程度的影响。其中,抗生素对氨氧化过程的影响与抗生素浓度和类型密切相关,而且已有研究主要集中于单一抗生素,多种抗生素对水体硝化过程的叠加效应还不明确。抗生素主要通过影响微生物生长、酶活性和功能基因等途径对反硝化过程产生抑制作用。而抗生素对Anammox和DNRA过程的影响,目前研究相对匮乏。水环境中抗生素的浓度主要处于ng水平,而已有研究中抗生素设置浓度集中在μg和mg的级别,未来在研究中,还需关注环境浓度的抗生素对水体氮转化过程的影响。

    • 抗生素普遍存在于我国河流和湖泊中,被检出的类型主要有磺胺类、四环素类、喹诺酮类和大环内酯类等,不同水体中抗生素浓度和种类存在显著差异。不断累积的抗生素已经给我国自然水体造成了不同程度的生态风险,但是对于多种抗生素叠加的生态风险还需深入探索。抗生素会影响水体中微生物群落结构,还会诱导产生耐药性菌和ARGs,ARGs在水环境介质中的传播和扩散可导致人类致病菌或条件致病菌耐药,给人类健康造成严重威胁。抗生素是干扰水体氮转化过程的重要因子,主要通过改变氮循环功能微生物、酶活性和功能基因影响氮转化过程,但目前的研究主要集中在抗生素对硝化和反硝化过程的影响。综上,未来的相关研究应该加强以下几个方面:

      (1)加强水体中抗生素的叠加生态风险评估,同时注重长期毒理数据的积累和分析,并完善抗生素叠加风险评估依据。

      (2)目前关于ARGs的水平转移研究主要集中在接合转移途径,而对于水环境中ARGs通过转化和转导这两种途径进行的水平转移还需要更全面和深入的探索。

      (3)Anammox和DNRA是水体中氮转化过程的重要组成部分,而关于抗生素对Anammox和DNRA的影响及其机制研究还有待加强。另外,由于不同类型的水体环境特征迥异,抗生素对不同水体中氮转化过程造成的影响也势必存在差异。关于不同类型水体中典型环境因子,如,水动力,盐度,水深和氧化还原梯度等条件下抗生素对水体氮转化过程的影响也需要深入探索。

    参考文献 (104)

目录

/

返回文章
返回