-
氟(F)是人体必需的微量元素,但氟离子是温泉水中典型的高浓度有害元素. 适宜浓度的含氟饮用水(0.5—1.5 mg·L−1)对人体有益,能维持人体的钙、磷正常代谢,防止患龋齿病. 但长期饮用过量含氟水会对人体免疫系统和组织产生威胁从而引发病变,如氟斑牙和氟骨症,甚至引发脑损伤、癌症等病症[1- 2]. 一般在地热温泉水流经的河流水样中,大都能检测到高含量的F离子[3-4],若长期以含氟河水为饮用水源,势必会对流域居民产生一定的威胁,因此地热温泉水中氟离子的净化处理,不仅对流域生态保护,而且对居民健康具有重要的意义.
当前含氟水的处理方法主要包括:电化学法、混凝沉淀法、膜过滤法、离子交换法和吸附法等[5- 6]. 其中吸附法具有吸附剂种类多、成本低、污染小、易操作等特点,是当前用于处理大体积、高浓度含氟废水的经典常用方法[7-8]. 吸附法的核心在于吸附剂的选择,它是决定吸附性能的关键. 当前已被报道的除氟吸附剂大致可分为几类:活性氧化铝[9]、金属氧化物[10-11]、生物质衍生的碳基吸附剂[12-13]、羟基磷灰石[14]等. 以生物质为原料的吸附剂应用广泛,吸附性能较好、成本较低、适用条件温和,常用于吸附剂. 茶叶属于天然植物吸附剂,具有网状结构、多孔、比表面积大、含有多种活性基团,是一类理想的除氟吸附剂[15].
本文选择了大红袍、武夷茶、日照绿茶、四川绿茶、泾阳砖茶、安华砖茶(拉萨本地使用较多)、桂花乌龙茶、茉莉花茶、铁观音、金丝皇菊等10种茶叶进行除氟对比研究,选择氟离子去除效果较好的茶叶吸附剂进行实验条件优化,采用动态吸附方式对氟离子吸附效果及吸附动力学和吸附等温线进行了探究,最后对实际温泉水中氟离子进行了净化处理,期望为高氟地热水净化提供技术支撑.
废弃茶叶吸附剂去除水中的氟离子
Waste tea-leaves as adsorbent for the removal of fluoride from water solution
-
摘要: 地热温泉常含有高浓度的氟,给温泉利用带来不可忽视的环境问题,因此温泉水中氟离子吸附净化处理是重要的研究热点. 本文采用废弃茶叶作为吸附剂,氟离子为目标离子,优化了茶叶吸附剂种类、溶液pH对吸附效果的影响. 在pH 3、初始浓度为5 mg·L−1时,大红袍茶叶对氟离子的吸附容量达到0.126 mg·g−1. 进一步考察了吸附剂对氟离子的吸附机制,结果表明,氟离子吸附符合Pseudo-second-order动力学模型,等温线符合Freundlich模型,氟离子吸附过程主要通过与茶叶中的羟基和羧基活性基团发生交换作用. 茶叶氟吸附量虽较其它天然吸附剂略低但无需复杂改性和前处理,具有环境友好,成本低廉,来源丰富,易与获得等优点,在含氟水净化处理具有潜在应用和发展前景.Abstract: High temperature hot spring water always contains high concentration of fluoride, which brings environmental problems that cannot be ignored for hot spring utilization. Therefore, study on defluorinate by the adsorption in hot spring water is an important research topic. In this work, waste tea-leaves were used as adsorbents for the removal of fluoride from water solution. The effects of tea-leaves adsorbent types and pH on the adsorption efficiency were optimized. As the result, at pH of 3 and initial concentration of 5 mg·L−1, the sorption capacity of Road tea-leaves for fluoride reached 0.126 mg·g−1. The adsorption mechanism of the adsorbent for fluoride was further investigated. As the result, the kinetic conforms to the Pseudo-second-order sorption model, and the sorption isotherm fitted to Freundlich model, respectively. The adsorption process for fluoride was mainly through the exchange with hydroxyl and carboxyl groups in tea-leaves. Although the sorption capacity of tea-leaves adsorbent is slightly lower than that of other natural waste adsorbents, it merits without complex pretreatment, environment friendly, easy to obtain, indicates that tea-leaves adsorbent is easily applicable for the remediation of fluoride-containing water solution.
-
Key words:
- waste tea-leaves adsorbent /
- water solution /
- fluoride /
- adsorption
-
表 1 废弃茶叶吸附剂的比表面积和孔径分布
Table 1. BET specific surface area and pore size of the waste tea-leaves adsorbent
吸附剂种类
Adsorbents比表面积/(m2·g−1) BET surface area 孔体积/(cm3·g−1) Pore volume 平均孔径/nm Pore size 大红袍 1.788 0.011 24.43 桂花乌龙茶 0.811 0.0048 23.51 茉莉花茶 0.624 0.0049 31.46 四川绿茶 0.423 0.0045 42.08 表 2 Pseudo-first-order和Pseudo-second-order动力学拟合参数
Table 2. Simulation of the Pseudo-first-order and Pseudo-second-order sorption kinetic and corresponding parameters
Pseudo-first-order Pseudo-second-order qe实验值/(mg·g−1) qe计算/ (mg·g−1) k1/min−1 R2 qe计算/(mg·g−1) k2/(g·mg−1·min−1) R2 0.125 0.177 0.0395 0.9042 0.197 0.093 0.9888 表 3 Langmuir和Freundlich吸附等温线模型拟合相关参数
Table 3. Simulation of the Langmuir and Freundlich sorption isotherm and corresponding parameters
Langmuir Freundlich qe/(mg·g−1) qmax/(mg·g−1) b/(L·mg−1) R2 k n R2 0.126 0.017 0.270 0.5511 0.0056 0.416 0.9581 -
[1] ZHEN J, JIA Y, LUO T, et al. Efficient removal of fluoride by hierarchical MgO microspheres: performance and mechanism study [J]. Applied Surface Science, 2015, 357: 1080-1088. doi: 10.1016/j.apsusc.2015.09.127 [2] OLADOJA N A, CHEN S, DREWES J E, et al. Characterization of granular matrix supported nano magnesium oxide as an adsorbent for defluoridation of groundwater [J]. Chemical Engineering Journal, 2015, 281: 632-643. [3] GUO Q, WANG Y, LIU W. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China [J]. Journal of Volcanology and Geothermal Research, 2007, 166(3-4): 255-268. doi: 10.1016/j.jvolgeores.2007.08.004 [4] 孙红丽, 马峰, 刘昭, 等. 西藏高温地热显示区氟分布及富集特征 [J]. 中国环境科学, 2015, 35(1): 251-259. SUN H L, MA F, LIU Z, et al. The distribution and enrichment characteristics of fluoride in geothermal active area in Tibet [J]. China Environmental Science, 2015, 35(1): 251-259(in Chinese).
[5] JAGTAP S, YENKIE M K, LABHSETWAR N, et al. Fluoride in drinking water and defluoridation of water [J]. Chemical Reviews, 2012, 112(4): 2454-2466. doi: 10.1021/cr2002855 [6] TANG D, ZHANG G. Efficient removal of fluoride by hierarchical Ce–Fe bimetal oxides adsorbent: thermodynamics, kinetics and mechanism [J]. Chemical Engineering Journal, 2016, 283: 721-729. doi: 10.1016/j.cej.2015.08.019 [7] 郑国河, 李剑超, 卢堂俊, 等. 镧掺杂纳米材料合成及其高氟选择性吸附特性 [J]. 环境化学, 2009, 28(6): 823-828. doi: 10.3321/j.issn:0254-6108.2009.06.009 ZHENG G H, LI J C, LU T J, et al. Synthesis of La doped nano materials used in high-selective defluorination [J]. Environmental Chemistry, 2009, 28(6): 823-828(in Chinese). doi: 10.3321/j.issn:0254-6108.2009.06.009
[8] VELAZQUEZ J L, VENCES A E, FLORES A J, et al. Water defluoridation with special emphasis on adsorbents-containing metal oxides and/or hydroxides: A review [J]. Separation and Purification Technology, 2015, 150: 292-307. doi: 10.1016/j.seppur.2015.07.006 [9] 段颖, 杨琰琰, 张小凤, 等. 两种盐复合改性活性氧化铝对水中氟的吸附特性 [J]. 环境化学, 2014, 33(11): 1950-1956. doi: 10.7524/j.issn.0254-6108.2014.11.005 DUAN Y, YANG Y Y, ZHANG X F, et al. Adsorption characteristics of floride on activated alumina modified with ferric and aluminum salt [J]. Environmental Chemistry, 2014, 33(11): 1950-1956(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.11.005
[10] 方文侃, 李小娣, 方菁, 等. 新型材料磁性氧化锆的除氟效能 [J]. 环境科学, 2019, 40(5): 2295-2301. FANG W K, LI X D, FANG J, et al. Fluoride removal efficiency of novel material: Magnetite core/zirconia shell nanocomposite [J]. Environmental Science, 2019, 40(5): 2295-2301(in Chinese).
[11] DOU X M, ZHANG Y S, WANG H J, et al. Performance of granular zirconium-iron oxide in the removal of fluoride from drinking water [J]. Water Research, 2011, 45(12): 3571-3578. doi: 10.1016/j.watres.2011.04.002 [12] SHARMA M, MONDAL D, SINGH N, et al. Seaweed-derived nontoxic functionalized graphene sheets as sustainable materials for the efficient removal of fluoride from high fluoride containing drinking water [J]. ACS Sustainable Chemistry and Engineering, 2017, 5(4): 3488-3498. doi: 10.1021/acssuschemeng.7b00198 [13] PRABHU SM, KOILRAJ P, SASAKI K. Synthesis of sucrose-derived porous carbon-doped ZrxLa1-x OOH materials and their superior performance for the simultaneous immobilization of arsenite and fluoride from binary systems [J]. Chemical Engineering Journal, 2017, 325: 1-13. doi: 10.1016/j.cej.2017.05.052 [14] 刘成, 胡伟, 李俊林, 等. 用于地下水除氟的羟基磷灰石制备及其除氟效能 [J]. 中国环境科学, 2014, 34(1): 58-64. LIU C, HU W, LI J L, et al. Preparation of the hydroxyapatite to remove fluorine from groundwater and its removal performance [J]. China Environmental Science, 2014, 34(1): 58-64(in Chinese).
[15] 田奇峰, 孙杰. 茶叶对氟的吸附研究 [J]. 化学与生物工程, 2011, 28(4): 29-31. doi: 10.3969/j.issn.1672-5425.2011.04.008 TIAN Q F, SUN J. Study on the adsorption of fluorine by tea [J]. Chemistry & Bioengineering, 2011, 28(4): 29-31(in Chinese). doi: 10.3969/j.issn.1672-5425.2011.04.008
[16] 龚受基, 刘仲华, 谭君. 茶树聚氟的规律及其调控研究进展 [J]. 茶叶通讯, 2013, 40(1): 18-21. doi: 10.3969/j.issn.1009-525X.2013.01.005 GONG S J, LIU Z H, TAN J. The law of fluoride condensity in tea tree and its regulation [J]. Tea Communication, 2013, 40(1): 18-21(in Chinese). doi: 10.3969/j.issn.1009-525X.2013.01.005
[17] CHAI L, WANG Y, ZHAO N, et al. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water [J]. Water Research, 2013, 47(12): 4040-4049. doi: 10.1016/j.watres.2013.02.057 [18] 汪爱河, 周康根, 刘行, 等. Mg-Al-Me(Me=La, Ce, Zr)复合氧化物制备及其除氟性能 [J]. 环境科学, 2016, 37(12): 4874-4881. WANG A H, ZHOU K G, LIU X, et al. Preparation of Mg-Al-me (me =La, ce, Zr) composite oxides for efficient fluoride uptake [J]. Environmental Science, 2016, 37(12): 4874-4881(in Chinese).
[19] LIN K Y A, LIU Y T, CHEN S Y. Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies [J]. Journal of Colloid and Interface Science, 2016, 461: 79-87. doi: 10.1016/j.jcis.2015.08.061 [20] 董刚, 赵琦玥, 冯佳, 等. 芦苇秸秆对水体中氟离子的吸附研究 [J]. 东北师大学报(自然科学版), 2018, 50(2): 134-143. DONG G, ZHAO Q Y, FENG J, et al. Preparation of activated carbon from Phragmites australis Trin. to remove the fluoride in aqueous solutions [J]. Journal of Northeast Normal University (Natural Science Edition), 2018, 50(2): 134-143(in Chinese).
[21] 方敦, 田华婧, 叶欣, 等. 富里酸-膨润土复合体对氟的吸附特性 [J]. 环境科学, 2016, 37(3): 1023-1031. FANG D, TIAN H J, YE X, et al. Adsorption properties of fluorine onto fulvic acid-bentonite complex [J]. Environmental Science, 2016, 37(3): 1023-1031(in Chinese).
[22] 邱会华, 林婉琪. 荷叶基生物炭的制备及对水中氟离子的吸附研究 [J]. 广东石油化工学院学报, 2018, 28(3): 34-38. doi: 10.3969/j.issn.2095-2562.2018.03.008 QIU H H, LIN W Q. Preparation of Lotus leaf-based biochar and its adsorption property for fluorine ion [J]. Journal of Guangdong University of Petrochemical Technology, 2018, 28(3): 34-38(in Chinese). doi: 10.3969/j.issn.2095-2562.2018.03.008
[23] 秦文欣, 张庆乐, 李庆山, 等. 改性桑树叶对含氟废水吸附性能研究 [J]. 化工新型材料, 2017, 45(8): 202-204. QIN W X, ZHANG Q L, LI Q S, et al. Adsorption characteristics of fluoride in waste water on modified mulberry leave [J]. New Chemical Materials, 2017, 45(8): 202-204(in Chinese).
[24] 赵晓辉, 聂志矗, 张连水, 等. 茶叶及其组份的红外光谱研究 [J]. 光学学报, 2009, 29(2): 533-536. doi: 10.3788/AOS20092902.0533 ZHAO X H, NIE Z C, ZHANG L S, et al. Study on tea and its principal components by infrared spectroscopy [J]. Acta Optica Sinica, 2009, 29(2): 533-536(in Chinese). doi: 10.3788/AOS20092902.0533
[25] LI Y, YANG J L, JIANG Y. Trace rare earth element detection in food and agricultural products based on flow injection walnut shell packed microcolumn preconcentration coupled with inductively coupled plasma mass spectrometry [J]. Journal of Agricultural and Food Chemistry, 2012, 60(12): 3033-3041. doi: 10.1021/jf2049646