-
大多数人类疾病不止和遗传因素有关,也受多种环境因素的影响[1-5]。25%—33%的全球疾病负担可以归因于环境因素,对于儿童而言这一比例甚至更高[6]。研究发现环境污染物如金属和抗氧化剂在癌症的发生过程中起着重要作用[7],室外空气污染导致了全球3.3%的过早死亡的发生[8],另外环境因素也会影响基因的表达过程,从而影响疾病的发生[9]。为了表征复杂的环境因素,参照基因组、代谢组和蛋白质组的概念,Wild等在2005年提出暴露组的概念[10]。暴露组涵盖了个体从受精卵到死亡整个生命周期历经的所有暴露,可以分为三大类:内部暴露、特定外部暴露和广泛外部暴露[11]。内部暴露主要包括体内的过程,诸如代谢、肠道菌群、炎症、脂质过氧化、氧化应激和衰老等,特定的外部暴露包括辐射、传染源、化学污染物、饮食和生活方式等,广泛的外部暴露则主要是社会、经济和心理方面的因素,包括社会资本、教育、财务状况、心理和精神压力以及城乡环境气候等。为了评估暴露组-疾病的相关关系,参照全基因组关联研究(GWAS),Patel等引入了全环境关联分析的概念,并将其应用于研究与Ⅱ型糖尿病相关的多种环境因素[12]。
与GWAS的成熟体系有所不同的是,对暴露组-疾病关联的研究体系还未得到统一。在Patel等引入全环境关联分析(environment-wide association study)的概念之后[12],又有研究者引入了全暴露组广泛关联研究(exposome-wide association study)[13]、邻域广泛关联研究(neighborhood-wide association study)[14]和邻域环境广泛关联研究(neighborhood environment-wide association study)[15]的概念。这些不同的概念在对于暴露变量的选取上各有侧重,全环境关联分析主要选取内部暴露和特定的外部暴露变量,包括化学污染物和体内的代谢情况, 邻域广泛关联研究和邻域环境广泛关联研究则主要选取广泛的外部暴露变量,包括社会经济地位和自然环境特征等。为了更全面地描述暴露组,在本综述中将不对这些概念进行严格区分,而将其均纳入全暴露组关联分析(EWAS)的范畴中。
全暴露组关联分析是一种数据驱动、无目的、不可知的探索性研究方法,旨在确定与疾病相关的环境因素[16]。本文将对全暴露组关联分析的研究对象、暴露因素、流行病学结局和统计分析进行介绍,综述目前的研究进展,讨论研究的特定和局限,并对未来方向进行展望。
基于全暴露组关联分析技术的环境健康研究进展
Research progress on environmental health based on exposome-wide association study
-
摘要: 暴露组是整个生命周期中历经的所有暴露。为了更好地评估暴露组-疾病的关联,参照全基因组关联研究的概念(GWAS),提出了全暴露组关联分析(EWAS)。全暴露组关联分析是一种数据驱动的探索性研究方法,可用于发现与某些复杂疾病相关联的环境因素。文章搜索并纳入了当前的全暴露组关联分析文章,从研究对象、暴露变量、流行病学结局和统计分析几个方面总结了文章的研究方法,综述了目前的研究进展,提炼研究的特点和当前局限,并对其未来做出展望。Abstract: The exposome represents the totality of environmental exposures received by a person during life. To investigate the environmental causes for disease, the exposome-wide association study (EWAS) was proposed based on the concept of the genome-wide association study (GWAS). EWAS is a data-driven, exploratory research method that can be used to identify specific environmental exposures associated with complex diseases. In this article, current articles on EWAS were searched, and the research methods of EWAS were summarized from the aspects of research objects, exposures, outcomes and statistical analysis. Meanwhile, the current progresses, features and limitations of EWAS were reviewed, and the prospect of future research on EWAS was put forward.
-
Key words:
- exposome /
- EWAS /
- environmental health
-
表 1 EWAS的研究方法总结
Table 1. Summary of research methods of EWAS
文献
Articles参与者
Research objects暴露因素
Exposures流行病学结局
Outcomes统计方法
StatisticsPatel et al. (2010)[12] 多个队列,人数在503—3318之间 污染物、营养素,p=266 2型糖尿病 EWAS Patel et al. (2012)[17] 12973参与者 污染物、营养素,p=188 血脂水平 EWAS Patel et al. (2013)[18] 330—6008参与者 生活方式、污染物、营养素,p=249 全因死亡率 cox比例风险回归 Lind et al. (2013)[19] 1016名老年人 生活方式、污染物、代谢物,p=76 代谢综合征 EWAS-MLR Patel et al. (2014)[20] 780名怀孕一次女性 污染物、营养素 ,p=201 早产 EWAS Patel et al. (2016)[21] 7827名成年人 污染物、生活方式、营养素、代谢物,p=461 白细胞端粒长度 EWAS Zhong et al. (2016)[22] 20443名老年人 营养素、污染物、生活方式,p=73 血细胞比容 EWAS-MLR McGinnis et al. (2016)[23] 71916名参与者 污染物、生活方式,p=429 血压 EWAS-随机效应荟萃分析 Balazard et al. (2016)[24] 1151名患者和689个对照 生活方式、社会因素,p=845 1型糖尿病 EWAS Lynch et al. (2017)[14] 77086名男性 社会因素,p=14663 前列腺癌 EWAS -贝叶斯分层逻辑回归-主成分分析 Mooney et al. (2017)[15] 3497名65—75岁老人 社会因素,p=337 身体活动 EWAS、套索回归、随机森林 Wulaningsih et al.
(2017)[25]7403名男性,8238名女性 营养素、生活方式,p=182 腹部肥胖 EWAS -主成分分析 Zhuang et al. (2018)[26] 43568名参与者 污染物、营养素、代谢物,p=335 心血管疾病 EWAS -随机森林 Zhuang et al. (2018)[27] 6819名参与者 污染物、生活方式、营养素、代谢物,p=417 动脉粥样硬化 EWAS -AIC准则惩罚回归 Patel et al. (2018)[28] 15433名女性 污染物、生活方式、社会因素,p=1415 艾滋病 EWAS-MLR 郭静 (2019)[29] 915名孕妇 污染物,p=11 甲状腺激素 EWAS-MLR Warembourg et al.
(2019)[30]1277名6—11岁儿童 污染物、生活方式、建筑环境、大气条件,p=217 儿童血压 DSA算法、EWAS Chung et al. (2019)[31] 473名男性 污染物,p=128 精液质量 EWAS Nieuwenhuijsen et al. (2019)[32] 31458对母婴 建筑环境、大气条件,p=60 胎儿体重 DSA算法、EWAS Agier et al. (2019)[33] 1033对母子 污染物、建筑环境、生活方式、大气条件,p=210 儿童肺功能 DSA算法、 EWAS Ni et al. (2019)[34] 10484名参与者 生活方式,社会因素,p=194 身心健康 EWAS Hu et al. (2020)[35] 819399名有过产子记录的
妇女建筑环境、大气条件,p=5784 妊娠高血压 EWAS-弹性网模型-MLR Vrijheid et al. (2020)[36] 1301名6—11岁儿童及其
母亲污染物、生活方式、建筑环境、大气条件,p=173 儿童体重 EWAS-DSA算法 Agier et al. (2020)[37] 1287对母婴 污染物、生活方式、大气条件,p=131 胎儿体重 DSA算法、EWAS Lee et al. (2020)[38] 46748名成年人 污染物,p=262 蛋白尿 EWAS Lopez et al. (2020)[39] 1316名成年男性 营养素、生活方式,p=173 睾丸激素缺乏 EWAS-MLR、主成分分析 Sheehan et al. (2020)[40] 13948名0—9岁糖尿病患者 建筑环境、大气条件、社会因素,p=53 1型糖尿病 EWAS(泊松回归)-贝叶斯泊松回归-多元泊松回归 Calamandrei et al.
(2020)[41]984名儿童 污染物、社会因素、生活方式,p=29 精神运动发育 EWAS-MLR 注:p代表暴露因素的个数. p refers to the number of exposure factors.
-
[1] SCHWARTZ D, COLLINS F. Environmental biology and human disease [J]. Science, 2007, 316(5825): 695. doi: 10.1126/science.1141331 [2] FARAZI P A, DEPINHO R A. Hepatocellular carcinoma pathogenesis: From genes to environment [J]. Nature Reviews Cancer, 2006, 6(9): 674-687. doi: 10.1038/nrc1934 [3] SWINBURN B A, SACKS G, HALL K D, et al. The global obesity pandemic: Shaped by global drivers and local environments [J]. The Lancet, 2011, 378(9793): 804-814. doi: 10.1016/S0140-6736(11)60813-1 [4] KAMPA M, CASTANAS E. Human health effects of air pollution [J]. Environmental Pollution, 2008, 151(2): 362-367. doi: 10.1016/j.envpol.2007.06.012 [5] PIHLSTROM B L, MICHALOWICZ B S, JOHNSON N W. Periodontal diseases [J]. The Lancet, 2005, 366(9499): 1809-1820. doi: 10.1016/S0140-6736(05)67728-8 [6] SMITH K R, CORVALÁN C F, KJELLSTRÖM T. How much global ill health is attributable to environmental factors? [J]. Epidemiology, 1999, 10(5):573-584. [7] VALKO M, RHODES C J, MONCOL J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer [J]. Chemico-Biological Interactions, 2006, 160(1): 1-40. doi: 10.1016/j.cbi.2005.12.009 [8] LELIEVELD J, EVANS J S, FNAIS M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale [J]. Nature, 2015, 525(7569): 367-371. doi: 10.1038/nature15371 [9] VINEIS P. A self-fulfilling prophecy: Are we underestimating the role of the environment in gene–environment interaction research? [J]. International Journal of Epidemiology, 2004, 33(5): 945-946. doi: 10.1093/ije/dyh277 [10] WILD C P. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology [J]. Cancer Epidemiology Biomarkers & Prevention, 2005, 14(8): 1847. [11] WILD C P. The exposome: From concept to utility [J]. International Journal of Epidemiology, 2012, 41(1): 24-32. doi: 10.1093/ije/dyr236 [12] PATEL C J, BHATTACHARYA J, BUTTE A J. An environment-wide association study (EWAS) on type 2 diabetes mellitus [J]. PLOS ONE, 2010, 5(5): e10746. doi: 10.1371/journal.pone.0010746 [13] RAPPAPORT S M. Biomarkers intersect with the exposome [J]. Biomarkers, 2012, 17(6): 483-489. doi: 10.3109/1354750X.2012.691553 [14] LYNCH S M, MITRA N, ROSS M, et al. A neighborhood-wide association study (NWAS): Example of prostate cancer aggressiveness [J]. PLOS ONE, 2017, 12(3): e0174548. doi: 10.1371/journal.pone.0174548 [15] MOONEY S J, JOSHI S, CERDá M, et al. Contextual correlates of physical activity among older adults: A neighborhood environment-wide association study (NE-WAS) [J]. Cancer Epidemiology Biomarkers & Prevention, 2017, 26(4): 495. [16] 白志鹏, 陈莉, 韩斌. 暴露组学的概念与应用 [J]. 环境与健康杂志, 2015, 32(1): 1-9. BAI Z P, CHEN L, HAN B. Exposome and exposomics: from concepts to application [J]. Journal of Environment and Health, 2015, 32(1): 1-9(in Chinese).
[17] PATEL C J, CULLEN M R, IOANNIDIS J P A, et al. Systematic evaluation of environmental factors: Persistent pollutants and nutrients correlated with serum lipid levels [J]. International Journal of Epidemiology, 2012, 41(3): 828-843. doi: 10.1093/ije/dys003 [18] PATEL C J, REHKOPF D H, LEPPERT J T, et al. Systematic evaluation of environmental and behavioural factors associated with all-cause mortality in the United States National Health and Nutrition Examination Survey [J]. International Journal of Epidemiology, 2013, 42(6): 1795-1810. doi: 10.1093/ije/dyt208 [19] LIND P M, RISéRUS U, SALIHOVIC S, et al. An environmental wide association study (EWAS) approach to the metabolic syndrome [J]. Environment International, 2013, 55: 1-8. doi: 10.1016/j.envint.2013.01.017 [20] PATEL C J, YANG T, HU Z, et al. Investigation of maternal environmental exposures in association with self-reported preterm birth [J]. Reproductive Toxicology, 2014, 45: 1-7. doi: 10.1016/j.reprotox.2013.12.005 [21] PATEL C J, MANRAI A K, CORONA E, et al. Systematic correlation of environmental exposure and physiological and self-reported behaviour factors with leukocyte telomere length [J]. International Journal of Epidemiology, 2016, 46(1): 44-56. [22] ZHONG Y, JIANG C, CHENG K K, et al. Environment-wide association study to identify factors associated with hematocrit: Evidence from the Guangzhou Biobank Cohort Study [J]. Annals of Epidemiology, 2016, 26(9): 638-642.e632. doi: 10.1016/j.annepidem.2016.07.005 [23] MCGINNIS D P, BROWNSTEIN J S, PATEL C J. Environment-wide association study of blood pressure in the National Health and Nutrition Examination Survey (1999–2012) [J]. Scientific Reports, 2016, 6(1): 30373. doi: 10.1038/srep30373 [24] BALAZARD F, LE FUR S, VALTAT S, et al. Association of environmental markers with childhood type 1 diabetes mellitus revealed by a long questionnaire on early life exposures and lifestyle in a case–control study [J]. BMC Public Health, 2016, 16(1): 1021. doi: 10.1186/s12889-016-3690-9 [25] WULANINGSIH W, VAN HEMELRIJCK M, TSILIDIS K K, et al. Investigating nutrition and lifestyle factors as determinants of abdominal obesity: An environment-wide study [J]. International Journal of Obesity, 2017, 41(2): 340-347. doi: 10.1038/ijo.2016.203 [26] ZHUANG X, GUO Y, NI A, et al. Toward a panoramic perspective of the association between environmental factors and cardiovascular disease: An environment-wide association study from National Health and Nutrition Examination Survey 1999–2014 [J]. Environment International, 2018, 118: 146-153. doi: 10.1016/j.envint.2018.05.046 [27] ZHUANG X, NI A, LIAO L, et al. Environment-wide association study to identify novel factors associated with peripheral arterial disease: Evidence from the National Health and Nutrition Examination Survey (1999–2004) [J]. Atherosclerosis, 2018, 269: 172-177. doi: 10.1016/j.atherosclerosis.2018.01.006 [28] PATEL C J, BHATTACHARYA J, IOANNIDIS J P A, et al. Systematic identification of correlates of HIV infection: An x-wide association study [J]. AIDS, 2018, 32(7):933-943. [29] 郭静. 孕妇全血多金属暴露与甲状腺激素的关系研究[D]. 杭州: 浙江大学, 163, 2019. GUO J. Relationships between blood metal exposure and thyroid hormones in pregnant woman[D]. Hangzhou: Zhejiang University, 2019 (in Chinese).
[30] WAREMBOURG C, MAITRE L, TAMAYO-URIA I, et al. Early-life environmental exposures and blood pressure in children [J]. Journal of the American College of Cardiology, 2019, 74(10): 1317-1328. doi: 10.1016/j.jacc.2019.06.069 [31] CHUNG M K, BUCK LOUIS G M, KANNAN K, et al. Exposome-wide association study of semen quality: Systematic discovery of endocrine disrupting chemical biomarkers in fertility require large sample sizes [J]. Environment International, 2019, 125: 505-514. doi: 10.1016/j.envint.2018.11.037 [32] NIEUWENHUIJSEN M J, AGIER L, BASAGANA X, et al. Influence of the urban exposome on birth weight [J]. Environmental Health Perspectives, 2019, 127(4): 47007. doi: 10.1289/EHP3971 [33] AGIER L, BASAGAÑA X, MAITRE L, et al. Early-life exposome and lung function in children in europe: An analysis of data from the longitudinal, population-based HELIX cohort [J]. The Lancet Planetary Health, 2019, 3(2): e81-e92. doi: 10.1016/S2542-5196(19)30010-5 [34] NI M Y, YAO X I, CHEUNG F, et al. Determinants of physical, mental and social well-being: A longitudinal environment-wide association study [J]. International Journal of Epidemiology, 2019, 49(2): 380-389. [35] HU H, ZHAO J, SAVITZ D A, et al. An external exposome-wide association study of hypertensive disorders of pregnancy [J]. Environment International, 2020, 141: 105797. doi: 10.1016/j.envint.2020.105797 [36] VRIJHEID M, FOSSATI S, MAITRE L, et al. Early-life environmental exposures and childhood obesity: An exposome-wide approach [J]. Environmental Health Perspectives, 2020, 128(6): 67009. doi: 10.1289/EHP5975 [37] AGIER L, BASAGAñA X, HERNANDEZ-FERRER C, et al. Association between the pregnancy exposome and fetal growth [J]. International Journal of Epidemiology, 2020, 49(2): 572-586. doi: 10.1093/ije/dyaa017 [38] LEE J, OH S, KANG H, et al. Environment-wide association study of CKD [J]. Clinical Journal of the American Society of Nephrology, 2020, 15(6): 766. doi: 10.2215/CJN.06780619 [39] LOPEZ D S, WULANINGSIH W, TSILIDIS K K, et al. Environment-wide association study to comprehensively test and validate associations between nutrition and lifestyle factors and testosterone deficiency: NHANES 1988–1994 and 1999–2004 [J]. Hormones, 2020, 19(2): 205-214. doi: 10.1007/s42000-020-00179-w [40] SHEEHAN A, FRENI STERRANTINO A, FECHT D, et al. Childhood type 1 diabetes: An environment-wide association study across England [J]. Diabetologia, 2020, 63(5): 964-976. doi: 10.1007/s00125-020-05087-7 [41] CALAMANDREI G, RICCERI L, MECCIA E, et al. Pregnancy exposome and child psychomotor development in three European birth cohorts [J]. Environmental Research, 2020, 181: 108856. doi: 10.1016/j.envres.2019.108856 [42] VRIJHEID M, SLAMA R, ROBINSON O, et al. The human early-life exposome (HELIX): Project rationale and design [J]. Environmental Health Perspectives, 2014, 122(6): 535-544. doi: 10.1289/ehp.1307204 [43] CARPENTER D O. Environmental contaminants as risk factors for developing diabetes [J]. Reviews on Environmental Health, 2008, 23(1): 59-74. [44] GIBELIN C, COURAUD S. Somatic alterations in lung cancer: Do environmental factors matter? [J]. Lung Cancer, 2016, 100: 45-52. doi: 10.1016/j.lungcan.2016.07.015 [45] LOEB S, PESKOE S B, JOSHU C E, et al. Do environmental factors modify the genetic risk of prostate cancer? [J]. Cancer Epidemiol Biomarkers & Prevention, 2015, 24(1): 213-220. [46] KAHN L G, TRASANDE L. Environmental toxicant exposure and hypertensive disorders of pregnancy: Recent findings [J]. Current Hypertension Reports, 2018, 20(10): 87. doi: 10.1007/s11906-018-0888-5 [47] PORPORA M G, PIACENTI I, SCARAMUZZINO S, et al. Environmental contaminants exposure and preterm birth: A systematic review [J]. Toxics, 2019, 7(1): 11. doi: 10.3390/toxics7010011 [48] ROBINSON O, VRIJHEID M. The pregnancy exposome [J]. Current Environmental Health Reports, 2015, 2(2): 204-213. doi: 10.1007/s40572-015-0043-2 [49] BENJAMINI Y, HOCHBERG Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing [J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 1995, 57(1): 289-300. [50] BONFERRONI C. Teoria statistica delle classi e calcolo delle probabilit?? [J]. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 1935: 8. [51] SANDRA E S, MARK J V D L. Deletion/substitution/addition algorithm in learning with applications in genomics [J]. Statistical Applications in Genetics and Molecular Biology, 2004, 3(1): 16646796. [52] AGIER L, PORTENGEN L, CHADEAU-HYAM M, et al. A systematic comparison of linear regression–based statistical methods to assess exposome-health associations [J]. Environmental Health Perspectives, 2016, 124(12): 1848-1856. doi: 10.1289/EHP172 [53] BARRERA-GóMEZ J, AGIER L, PORTENGEN L, et al. A systematic comparison of statistical methods to detect interactions in exposome-health associations [J]. Environmental Health, 2017, 16(1): 74. doi: 10.1186/s12940-017-0277-6 [54] BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324 [55] MCCALL M R, FREI B. Can antioxidant vitamins materially reduce oxidative damage in humans? [J]. Free Radical Biology and Medicine, 1999, 26(7): 1034-1053. [56] CHAPMAN M J, GINSBERG H N, AMARENCO P, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: Evidence and guidance for management [J]. European Heart Journal, 2011, 32(11): 1345-1361. doi: 10.1093/eurheartj/ehr112 [57] YOUNG A J, LOWE G M. Antioxidant and prooxidant properties of carotenoids [J]. Archives of Biochemistry and Biophysics, 2001, 385(1): 20-27. doi: 10.1006/abbi.2000.2149 [58] COLLINS A R. Carotenoids and genomic stability [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 475(1): 21-28. [59] 范晓岚, 杨军, 糜漫天, 等. β-胡萝卜素的抗氧化作用与疾病预防 [J]. 中国公共卫生, 2003(4): 99-100. FAN X L, YANG J, MI M T, et al. Antioxidant effect and disease prevention of beta-carotene [J]. Chinese Journal of Public Health, 2003(4): 99-100(in Chinese).
[60] VIVEKANANTHAN D P, PENN M S, SAPP S K, et al. Use of antioxidant vitamins for the prevention of cardiovascular disease: Meta-analysis of randomised trials [J]. The Lancet, 2003, 361(9374): 2017-2023. doi: 10.1016/S0140-6736(03)13637-9 [61] RAO A V, RAO L G. Carotenoids and human health [J]. Pharmacological Research, 2007, 55(3): 207-216. doi: 10.1016/j.phrs.2007.01.012 [62] NI P, YU M, ZHANG R, et al. Dose-response association between C-reactive protein and risk of all-cause and cause-specific mortality: A systematic review and meta-analysis of cohort studies [J]. Annals of Epidemiology, 2020, 51: 20-27. doi: 10.1016/j.annepidem.2020.07.005 [63] ZUO H, UELAND P M, ULVIK A, et al. Plasma biomarkers of inflammation, the kynurenine pathway, and risks of all-cause, cancer, and cardiovascular disease mortality: The Hordaland health study [J]. American Journal of Epidemiology, 2016, 183(4): 249-258. doi: 10.1093/aje/kwv242 [64] KAPTOGE S, DI ANGELANTONIO E, LOWE G, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis [J]. The Lancet, 2010, 375(9709): 132-140. doi: 10.1016/S0140-6736(09)61717-7 [65] AVAN A, TAVAKOLY SANY S B, GHAYOUR-MOBARHAN M, et al. Serum C-reactive protein in the prediction of cardiovascular diseases: Overview of the latest clinical studies and public health practice [J]. Journal of Cellular Physiology, 2018, 233(11): 8508-8525. doi: 10.1002/jcp.26791 [66] BRAUN J, BOPP M, FAEH D. Blood glucose may be an alternative to cholesterol in CVD risk prediction charts [J]. Cardiovascular Diabetology, 2013, 12(1): 24. doi: 10.1186/1475-2840-12-24 [67] NDREPEPA G. Uric acid and cardiovascular disease [J]. Clinica Chimica Acta, 2018, 484: 150-163. doi: 10.1016/j.cca.2018.05.046 [68] ROCCO A, HEERLEIN K, DIEDLER J, et al. Microalbuminuria in cerebrovascular disease: A modifiable risk factor? [J]. International Journal of Stroke, 2010, 5(1): 30-34. doi: 10.1111/j.1747-4949.2009.00398.x [69] BRITO J, BERNARDO A, ZAGALO C, et al. Quantitative analysis of air pollution and mortality in Portugal: Current trends and links following proposed biological pathways [J]. Science of the Total Environment, 2021, 755: 142473. doi: 10.1016/j.scitotenv.2020.142473 [70] GUERCIO V, POJUM I C, LEONARDI G S, et al. Exposure to indoor and outdoor air pollution from solid fuel combustion and respiratory outcomes in children in developed countries: A systematic review and meta-analysis [J]. Science of the Total Environment, 2021, 755: 142187. doi: 10.1016/j.scitotenv.2020.142187 [71] XU X, NIE S, DING H, et al. Environmental pollution and kidney diseases [J]. Nature Reviews Nephrology, 2018, 14(5): 313-324. doi: 10.1038/nrneph.2018.11 [72] ISLAM R, KUMAR S, KARMOKER J, et al. Bioaccumulation and adverse effects of persistent organic pollutants (POPs) on ecosystems and human exposure: A review study on Bangladesh perspectives [J]. Environmental Technology & Innovation, 2018, 12: 115-131. [73] MANSOURI E H, REGGABI M. Association between type 2 diabetes and exposure to chlorinated persistent organic pollutants in algeria: A case-control study [J]. Chemosphere, 2021, 264: 128596. doi: 10.1016/j.chemosphere.2020.128596 [74] LIANG Y, LIU D, ZHAN J, et al. New insight into the mechanism of pop-induced obesity: Evidence from DDE-altered microbiota [J]. Chemosphere, 2020, 244: 125123. doi: 10.1016/j.chemosphere.2019.125123 [75] PESTANA D, TEIXEIRA D, MEIRELES M, et al. Adipose tissue dysfunction as a central mechanism leading to dysmetabolic obesity triggered by chronic exposure to p, p’-DDE [J]. Scientific Reports, 2017, 7(1): 2738. doi: 10.1038/s41598-017-02885-9 [76] LANGER P, UKROPEC J, KOCAN A, et al. Obesogenic and diabetogenic impact of high organochlorine levels (HCB, p, p'-DDE, PCBs) on inhabitants in the highly polluted eastern Slovakia [J]. Endocr Regul, 2014, 48(1): 17-24. doi: 10.4149/endo_2014_01_17 [77] 段义爽, 孙红文. 环境有机污染物与糖尿病关系的研究进展 [J]. 环境化学, 2017, 36(4): 753-766. doi: 10.7524/j.issn.0254-6108.2017.04.2016080407 DUAN Y S, SUN H W. Studies on the associations between environmental organic pollutants and diabetes [J]. Environmental Chemistry, 2017, 36(4): 753-766(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.04.2016080407
[78] KUNG Y P, LIN C C, CHEN M H, et al. Intrauterine exposure to per- and polyfluoroalkyl substances may harm children's lung function development [J]. Environmental Research, 2021, 192: 110178. doi: 10.1016/j.envres.2020.110178 [79] RUBIN B S. Bisphenol A: An endocrine disruptor with widespread exposure and multiple effects [J]. The Journal of Steroid Biochemistry and Molecular Biology, 2011, 127(1): 27-34. [80] 王硕, 庄太凤. 双酚A对新生儿的健康危害 [J]. 环境化学, 2020, 39(9): 2404-2412. doi: 10.7524/j.issn.0254-6108.2019070602 WANG S, ZHUANG T F. Health effects of bisphenol A on newborns [J]. Environmental Chemistry, 2020, 39(9): 2404-2412(in Chinese). doi: 10.7524/j.issn.0254-6108.2019070602
[81] BEHNIA F, PELTIER M, GETAHUN D, et al. High bisphenol A (BPA) concentration in the maternal, but not fetal, compartment increases the risk of spontaneous preterm delivery [J]. Journal of Maternal Fetal & Neonatal Medicine, 2016, 29(22): 3583-3589. [82] XU C, WENG Z, ZHANG L, et al. HDL cholesterol: A potential mediator of the association between urinary cadmium concentration and cardiovascular disease risk [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111433. doi: 10.1016/j.ecoenv.2020.111433 [83] SATARUG S, G C G, D A V, et al. Cadmium and lead exposure, nephrotoxicity, and mortality [J]. Toxics, 2020, 8(4): 86. doi: 10.3390/toxics8040086 [84] COWELL W, COLICINO E, TANNER E, et al. Prenatal toxic metal mixture exposure and newborn telomere length: Modification by maternal antioxidant intake [J]. Environmental Research, 2020, 190: 110009. doi: 10.1016/j.envres.2020.110009 [85] LIM S S, VOS T, FLAXMAN A D, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the global burden of disease study 2010 [J]. The Lancet, 2012, 380(9859): 2224-2260. doi: 10.1016/S0140-6736(12)61766-8 [86] GRUER L, HART C L, WATT G C M. After 50 years and 200 papers, what can the midspan cohort studies tell us about our mortality? [J]. Public Health, 2017, 142: 186-195. doi: 10.1016/j.puhe.2015.06.017 [87] ABDULKHAKOV S R, ARKHIPOV E V, FAIZULLIN R I, et al. Screening assessment of renal function status in healthy smoking volunteers [J]. BioNanoScience, 2019, 9(2): 510-514. doi: 10.1007/s12668-019-0602-3 [88] SESSO HOWARD D, COOK NANCY R, BURING JULIE E, et al. Alcohol consumption and the risk of hypertension in women and men [J]. Hypertension, 2008, 51(4): 1080-1087. doi: 10.1161/HYPERTENSIONAHA.107.104968 [89] ROERECKE M, KACZOROWSKI J, TOBE S W, et al. The effect of a reduction in alcohol consumption on blood pressure: A systematic review and meta-analysis [J]. The Lancet Public Health, 2017, 2(2): e108-e120. doi: 10.1016/S2468-2667(17)30003-8 [90] REHM J, BALIUNAS D, BORGES G L G, et al. The relation between different dimensions of alcohol consumption and burden of disease: An overview [J]. Addiction, 2010, 105(5): 817-843. doi: 10.1111/j.1360-0443.2010.02899.x [91] JIA P, XUE H, CHENG X, et al. Association of neighborhood built environments with childhood obesity: Evidence from a 9-year longitudinal, nationally representative survey in the US [J]. Environment International, 2019, 128: 158-164. doi: 10.1016/j.envint.2019.03.067 [92] YANG Y, LIN Q, LIANG Y, et al. The mediation effect of maternal glucose on the association between ambient air pollution and birth weight in Foshan, China [J]. Environmental Pollution, 2020, 266: 115128. doi: 10.1016/j.envpol.2020.115128 [93] LIN L, LI Q, YANG J, et al. The associations of particulate matters with fetal growth in utero and birth weight: A birth cohort study in Beijing, China [J]. Science of the Total Environment, 2020, 709: 136246. doi: 10.1016/j.scitotenv.2019.136246 [94] GRAZULEVICIENE R, DEDELE A, DANILEVICIUTE A, et al. The influence of proximity to city parks on blood pressure in early pregnancy [J]. International Journal of Environmental Research & Public Health, 2014, 11(3): 2958-2972. [95] LICHTVELD K, THOMAS K, TULVE N S. Chemical and non-chemical stressors affecting childhood obesity: A systematic scoping review [J]. Journal of Exposure Science & Environmental Epidemiology, 2018, 28(1): 1-12. [96] JIANG C, WANG X, LI X, et al. Dynamic human environmental exposome revealed by longitudinal personal monitoring [J]. Cell, 2018, 175(1): 277-291. doi: 10.1016/j.cell.2018.08.060 [97] 孙路遥, 王继忠, 彭书传, 等. 暴露组及其研究方法进展 [J]. 环境科学学报, 2016, 36(1): 27-37. SUN L Y, WANG J Z, PENG S C, et al. Approaches towards a more comprehensive understanding of human exposome [J]. Acta Scientiae Circumstantiae, 2016, 36(1): 27-37(in Chinese).
[98] ZHENG Y, CHEN Z, PEARSON T, et al. Design and methodology challenges of environment-wide association studies: A systematic review [J]. Environmental Research, 2020, 183: 109275. doi: 10.1016/j.envres.2020.109275 [99] MATTA K, VIGNEAU E, CARIOU V, et al. Associations between persistent organic pollutants and endometriosis: A multipollutant assessment using machine learning algorithms [J]. Environmental Pollution, 2020, 260: 114066. doi: 10.1016/j.envpol.2020.114066 [100] CADIOU S, BUSTAMANTE M, AGIER L, et al. Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index [J]. Environment International, 2020, 138: 105622. doi: 10.1016/j.envint.2020.105622