基于全暴露组关联分析技术的环境健康研究进展

焦昭钰, 韦斯, 于南洋. 基于全暴露组关联分析技术的环境健康研究进展[J]. 环境化学, 2022, 41(4): 1148-1157. doi: 10.7524/j.issn.0254-6108.2020122202
引用本文: 焦昭钰, 韦斯, 于南洋. 基于全暴露组关联分析技术的环境健康研究进展[J]. 环境化学, 2022, 41(4): 1148-1157. doi: 10.7524/j.issn.0254-6108.2020122202
JIAO Zhaoyu, WEI Si, YU Nanyang. Research progress on environmental health based on exposome-wide association study[J]. Environmental Chemistry, 2022, 41(4): 1148-1157. doi: 10.7524/j.issn.0254-6108.2020122202
Citation: JIAO Zhaoyu, WEI Si, YU Nanyang. Research progress on environmental health based on exposome-wide association study[J]. Environmental Chemistry, 2022, 41(4): 1148-1157. doi: 10.7524/j.issn.0254-6108.2020122202

基于全暴露组关联分析技术的环境健康研究进展

    通讯作者: Tel:15950454400,E-mail:yuny@nju.edu.cn
  • 基金项目:
    国家自然科学基金(22022603)和江苏省太湖水环境综合治理科研课题(TH2018404)资助.

Research progress on environmental health based on exposome-wide association study

    Corresponding author: YU Nanyang, yuny@nju.edu.cn
  • Fund Project: the National Natural Science Foundation of China (22022603) and Taihu Water Pollution Control Fund (TH2018404).
  • 摘要: 暴露组是整个生命周期中历经的所有暴露。为了更好地评估暴露组-疾病的关联,参照全基因组关联研究的概念(GWAS),提出了全暴露组关联分析(EWAS)。全暴露组关联分析是一种数据驱动的探索性研究方法,可用于发现与某些复杂疾病相关联的环境因素。文章搜索并纳入了当前的全暴露组关联分析文章,从研究对象、暴露变量、流行病学结局和统计分析几个方面总结了文章的研究方法,综述了目前的研究进展,提炼研究的特点和当前局限,并对其未来做出展望。
  • 加载中
  • 表 1  EWAS的研究方法总结

    Table 1.  Summary of research methods of EWAS

    文献
    Articles
    参与者
    Research objects
    暴露因素
    Exposures
    流行病学结局
    Outcomes
    统计方法
    Statistics
    Patel et al. (2010)[12]多个队列,人数在503—3318之间污染物、营养素,p=2662型糖尿病EWAS
    Patel et al. (2012)[17]12973参与者污染物、营养素,p=188血脂水平EWAS
    Patel et al. (2013)[18]330—6008参与者生活方式、污染物、营养素,p=249全因死亡率cox比例风险回归
    Lind et al. (2013)[19]1016名老年人生活方式、污染物、代谢物,p=76代谢综合征EWAS-MLR
    Patel et al. (2014)[20]780名怀孕一次女性污染物、营养素 ,p=201早产EWAS
    Patel et al. (2016)[21]7827名成年人污染物、生活方式、营养素、代谢物,p=461白细胞端粒长度EWAS
    Zhong et al. (2016)[22]20443名老年人营养素、污染物、生活方式,p=73血细胞比容EWAS-MLR
    McGinnis et al. (2016)[23]71916名参与者污染物、生活方式,p=429血压EWAS-随机效应荟萃分析
    Balazard et al. (2016)[24]1151名患者和689个对照生活方式、社会因素,p=8451型糖尿病EWAS
    Lynch et al. (2017)[14]77086名男性社会因素,p=14663前列腺癌EWAS -贝叶斯分层逻辑回归-主成分分析
    Mooney et al. (2017)[15]3497名65—75岁老人社会因素,p=337身体活动EWAS、套索回归、随机森林
    Wulaningsih et al.
    (2017)[25]
    7403名男性,8238名女性营养素、生活方式,p=182腹部肥胖EWAS -主成分分析
    Zhuang et al. (2018)[26]43568名参与者污染物、营养素、代谢物,p=335心血管疾病EWAS -随机森林
    Zhuang et al. (2018)[27]6819名参与者污染物、生活方式、营养素、代谢物,p=417动脉粥样硬化EWAS -AIC准则惩罚回归
    Patel et al. (2018)[28]15433名女性污染物、生活方式、社会因素,p=1415艾滋病EWAS-MLR
    郭静 (2019)[29]915名孕妇污染物,p=11甲状腺激素EWAS-MLR
    Warembourg et al.
    (2019)[30]
    1277名6—11岁儿童污染物、生活方式、建筑环境、大气条件,p=217儿童血压DSA算法、EWAS
    Chung et al. (2019)[31]473名男性污染物,p=128精液质量EWAS
    Nieuwenhuijsen et al. (2019)[32]31458对母婴建筑环境、大气条件,p=60胎儿体重DSA算法、EWAS
    Agier et al. (2019)[33]1033对母子污染物、建筑环境、生活方式、大气条件,p=210儿童肺功能DSA算法、 EWAS
    Ni et al. (2019)[34]10484名参与者生活方式,社会因素,p=194身心健康EWAS
    Hu et al. (2020)[35]819399名有过产子记录的
    妇女
    建筑环境、大气条件,p=5784妊娠高血压EWAS-弹性网模型-MLR
    Vrijheid et al. (2020)[36]1301名6—11岁儿童及其
    母亲
    污染物、生活方式、建筑环境、大气条件,p=173儿童体重EWAS-DSA算法
    Agier et al. (2020)[37]1287对母婴污染物、生活方式、大气条件,p=131胎儿体重DSA算法、EWAS
    Lee et al. (2020)[38]46748名成年人污染物,p=262蛋白尿EWAS
    Lopez et al. (2020)[39]1316名成年男性营养素、生活方式,p=173睾丸激素缺乏EWAS-MLR、主成分分析
    Sheehan et al. (2020)[40]13948名0—9岁糖尿病患者建筑环境、大气条件、社会因素,p=531型糖尿病EWAS(泊松回归)-贝叶斯泊松回归-多元泊松回归
    Calamandrei et al.
    (2020)[41]
    984名儿童污染物、社会因素、生活方式,p=29精神运动发育EWAS-MLR
      注:p代表暴露因素的个数. p refers to the number of exposure factors.
     
    文献
    Articles
    参与者
    Research objects
    暴露因素
    Exposures
    流行病学结局
    Outcomes
    统计方法
    Statistics
    Patel et al. (2010)[12]多个队列,人数在503—3318之间污染物、营养素,p=2662型糖尿病EWAS
    Patel et al. (2012)[17]12973参与者污染物、营养素,p=188血脂水平EWAS
    Patel et al. (2013)[18]330—6008参与者生活方式、污染物、营养素,p=249全因死亡率cox比例风险回归
    Lind et al. (2013)[19]1016名老年人生活方式、污染物、代谢物,p=76代谢综合征EWAS-MLR
    Patel et al. (2014)[20]780名怀孕一次女性污染物、营养素 ,p=201早产EWAS
    Patel et al. (2016)[21]7827名成年人污染物、生活方式、营养素、代谢物,p=461白细胞端粒长度EWAS
    Zhong et al. (2016)[22]20443名老年人营养素、污染物、生活方式,p=73血细胞比容EWAS-MLR
    McGinnis et al. (2016)[23]71916名参与者污染物、生活方式,p=429血压EWAS-随机效应荟萃分析
    Balazard et al. (2016)[24]1151名患者和689个对照生活方式、社会因素,p=8451型糖尿病EWAS
    Lynch et al. (2017)[14]77086名男性社会因素,p=14663前列腺癌EWAS -贝叶斯分层逻辑回归-主成分分析
    Mooney et al. (2017)[15]3497名65—75岁老人社会因素,p=337身体活动EWAS、套索回归、随机森林
    Wulaningsih et al.
    (2017)[25]
    7403名男性,8238名女性营养素、生活方式,p=182腹部肥胖EWAS -主成分分析
    Zhuang et al. (2018)[26]43568名参与者污染物、营养素、代谢物,p=335心血管疾病EWAS -随机森林
    Zhuang et al. (2018)[27]6819名参与者污染物、生活方式、营养素、代谢物,p=417动脉粥样硬化EWAS -AIC准则惩罚回归
    Patel et al. (2018)[28]15433名女性污染物、生活方式、社会因素,p=1415艾滋病EWAS-MLR
    郭静 (2019)[29]915名孕妇污染物,p=11甲状腺激素EWAS-MLR
    Warembourg et al.
    (2019)[30]
    1277名6—11岁儿童污染物、生活方式、建筑环境、大气条件,p=217儿童血压DSA算法、EWAS
    Chung et al. (2019)[31]473名男性污染物,p=128精液质量EWAS
    Nieuwenhuijsen et al. (2019)[32]31458对母婴建筑环境、大气条件,p=60胎儿体重DSA算法、EWAS
    Agier et al. (2019)[33]1033对母子污染物、建筑环境、生活方式、大气条件,p=210儿童肺功能DSA算法、 EWAS
    Ni et al. (2019)[34]10484名参与者生活方式,社会因素,p=194身心健康EWAS
    Hu et al. (2020)[35]819399名有过产子记录的
    妇女
    建筑环境、大气条件,p=5784妊娠高血压EWAS-弹性网模型-MLR
    Vrijheid et al. (2020)[36]1301名6—11岁儿童及其
    母亲
    污染物、生活方式、建筑环境、大气条件,p=173儿童体重EWAS-DSA算法
    Agier et al. (2020)[37]1287对母婴污染物、生活方式、大气条件,p=131胎儿体重DSA算法、EWAS
    Lee et al. (2020)[38]46748名成年人污染物,p=262蛋白尿EWAS
    Lopez et al. (2020)[39]1316名成年男性营养素、生活方式,p=173睾丸激素缺乏EWAS-MLR、主成分分析
    Sheehan et al. (2020)[40]13948名0—9岁糖尿病患者建筑环境、大气条件、社会因素,p=531型糖尿病EWAS(泊松回归)-贝叶斯泊松回归-多元泊松回归
    Calamandrei et al.
    (2020)[41]
    984名儿童污染物、社会因素、生活方式,p=29精神运动发育EWAS-MLR
      注:p代表暴露因素的个数. p refers to the number of exposure factors.
     
    下载: 导出CSV
  • [1] SCHWARTZ D, COLLINS F. Environmental biology and human disease [J]. Science, 2007, 316(5825): 695. doi: 10.1126/science.1141331
    [2] FARAZI P A, DEPINHO R A. Hepatocellular carcinoma pathogenesis: From genes to environment [J]. Nature Reviews Cancer, 2006, 6(9): 674-687. doi: 10.1038/nrc1934
    [3] SWINBURN B A, SACKS G, HALL K D, et al. The global obesity pandemic: Shaped by global drivers and local environments [J]. The Lancet, 2011, 378(9793): 804-814. doi: 10.1016/S0140-6736(11)60813-1
    [4] KAMPA M, CASTANAS E. Human health effects of air pollution [J]. Environmental Pollution, 2008, 151(2): 362-367. doi: 10.1016/j.envpol.2007.06.012
    [5] PIHLSTROM B L, MICHALOWICZ B S, JOHNSON N W. Periodontal diseases [J]. The Lancet, 2005, 366(9499): 1809-1820. doi: 10.1016/S0140-6736(05)67728-8
    [6] SMITH K R, CORVALÁN C F, KJELLSTRÖM T. How much global ill health is attributable to environmental factors? [J]. Epidemiology, 1999, 10(5):573-584.
    [7] VALKO M, RHODES C J, MONCOL J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer [J]. Chemico-Biological Interactions, 2006, 160(1): 1-40. doi: 10.1016/j.cbi.2005.12.009
    [8] LELIEVELD J, EVANS J S, FNAIS M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale [J]. Nature, 2015, 525(7569): 367-371. doi: 10.1038/nature15371
    [9] VINEIS P. A self-fulfilling prophecy: Are we underestimating the role of the environment in gene–environment interaction research? [J]. International Journal of Epidemiology, 2004, 33(5): 945-946. doi: 10.1093/ije/dyh277
    [10] WILD C P. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology [J]. Cancer Epidemiology Biomarkers & Prevention, 2005, 14(8): 1847.
    [11] WILD C P. The exposome: From concept to utility [J]. International Journal of Epidemiology, 2012, 41(1): 24-32. doi: 10.1093/ije/dyr236
    [12] PATEL C J, BHATTACHARYA J, BUTTE A J. An environment-wide association study (EWAS) on type 2 diabetes mellitus [J]. PLOS ONE, 2010, 5(5): e10746. doi: 10.1371/journal.pone.0010746
    [13] RAPPAPORT S M. Biomarkers intersect with the exposome [J]. Biomarkers, 2012, 17(6): 483-489. doi: 10.3109/1354750X.2012.691553
    [14] LYNCH S M, MITRA N, ROSS M, et al. A neighborhood-wide association study (NWAS): Example of prostate cancer aggressiveness [J]. PLOS ONE, 2017, 12(3): e0174548. doi: 10.1371/journal.pone.0174548
    [15] MOONEY S J, JOSHI S, CERDá M, et al. Contextual correlates of physical activity among older adults: A neighborhood environment-wide association study (NE-WAS) [J]. Cancer Epidemiology Biomarkers & Prevention, 2017, 26(4): 495.
    [16] 白志鹏, 陈莉, 韩斌. 暴露组学的概念与应用 [J]. 环境与健康杂志, 2015, 32(1): 1-9.

    BAI Z P, CHEN L, HAN B. Exposome and exposomics: from concepts to application [J]. Journal of Environment and Health, 2015, 32(1): 1-9(in Chinese).

    [17] PATEL C J, CULLEN M R, IOANNIDIS J P A, et al. Systematic evaluation of environmental factors: Persistent pollutants and nutrients correlated with serum lipid levels [J]. International Journal of Epidemiology, 2012, 41(3): 828-843. doi: 10.1093/ije/dys003
    [18] PATEL C J, REHKOPF D H, LEPPERT J T, et al. Systematic evaluation of environmental and behavioural factors associated with all-cause mortality in the United States National Health and Nutrition Examination Survey [J]. International Journal of Epidemiology, 2013, 42(6): 1795-1810. doi: 10.1093/ije/dyt208
    [19] LIND P M, RISéRUS U, SALIHOVIC S, et al. An environmental wide association study (EWAS) approach to the metabolic syndrome [J]. Environment International, 2013, 55: 1-8. doi: 10.1016/j.envint.2013.01.017
    [20] PATEL C J, YANG T, HU Z, et al. Investigation of maternal environmental exposures in association with self-reported preterm birth [J]. Reproductive Toxicology, 2014, 45: 1-7. doi: 10.1016/j.reprotox.2013.12.005
    [21] PATEL C J, MANRAI A K, CORONA E, et al. Systematic correlation of environmental exposure and physiological and self-reported behaviour factors with leukocyte telomere length [J]. International Journal of Epidemiology, 2016, 46(1): 44-56.
    [22] ZHONG Y, JIANG C, CHENG K K, et al. Environment-wide association study to identify factors associated with hematocrit: Evidence from the Guangzhou Biobank Cohort Study [J]. Annals of Epidemiology, 2016, 26(9): 638-642.e632. doi: 10.1016/j.annepidem.2016.07.005
    [23] MCGINNIS D P, BROWNSTEIN J S, PATEL C J. Environment-wide association study of blood pressure in the National Health and Nutrition Examination Survey (1999–2012) [J]. Scientific Reports, 2016, 6(1): 30373. doi: 10.1038/srep30373
    [24] BALAZARD F, LE FUR S, VALTAT S, et al. Association of environmental markers with childhood type 1 diabetes mellitus revealed by a long questionnaire on early life exposures and lifestyle in a case–control study [J]. BMC Public Health, 2016, 16(1): 1021. doi: 10.1186/s12889-016-3690-9
    [25] WULANINGSIH W, VAN HEMELRIJCK M, TSILIDIS K K, et al. Investigating nutrition and lifestyle factors as determinants of abdominal obesity: An environment-wide study [J]. International Journal of Obesity, 2017, 41(2): 340-347. doi: 10.1038/ijo.2016.203
    [26] ZHUANG X, GUO Y, NI A, et al. Toward a panoramic perspective of the association between environmental factors and cardiovascular disease: An environment-wide association study from National Health and Nutrition Examination Survey 1999–2014 [J]. Environment International, 2018, 118: 146-153. doi: 10.1016/j.envint.2018.05.046
    [27] ZHUANG X, NI A, LIAO L, et al. Environment-wide association study to identify novel factors associated with peripheral arterial disease: Evidence from the National Health and Nutrition Examination Survey (1999–2004) [J]. Atherosclerosis, 2018, 269: 172-177. doi: 10.1016/j.atherosclerosis.2018.01.006
    [28] PATEL C J, BHATTACHARYA J, IOANNIDIS J P A, et al. Systematic identification of correlates of HIV infection: An x-wide association study [J]. AIDS, 2018, 32(7):933-943.
    [29] 郭静. 孕妇全血多金属暴露与甲状腺激素的关系研究[D]. 杭州: 浙江大学, 163, 2019.

    GUO J. Relationships between blood metal exposure and thyroid hormones in pregnant woman[D]. Hangzhou: Zhejiang University, 2019 (in Chinese).

    [30] WAREMBOURG C, MAITRE L, TAMAYO-URIA I, et al. Early-life environmental exposures and blood pressure in children [J]. Journal of the American College of Cardiology, 2019, 74(10): 1317-1328. doi: 10.1016/j.jacc.2019.06.069
    [31] CHUNG M K, BUCK LOUIS G M, KANNAN K, et al. Exposome-wide association study of semen quality: Systematic discovery of endocrine disrupting chemical biomarkers in fertility require large sample sizes [J]. Environment International, 2019, 125: 505-514. doi: 10.1016/j.envint.2018.11.037
    [32] NIEUWENHUIJSEN M J, AGIER L, BASAGANA X, et al. Influence of the urban exposome on birth weight [J]. Environmental Health Perspectives, 2019, 127(4): 47007. doi: 10.1289/EHP3971
    [33] AGIER L, BASAGAÑA X, MAITRE L, et al. Early-life exposome and lung function in children in europe: An analysis of data from the longitudinal, population-based HELIX cohort [J]. The Lancet Planetary Health, 2019, 3(2): e81-e92. doi: 10.1016/S2542-5196(19)30010-5
    [34] NI M Y, YAO X I, CHEUNG F, et al. Determinants of physical, mental and social well-being: A longitudinal environment-wide association study [J]. International Journal of Epidemiology, 2019, 49(2): 380-389.
    [35] HU H, ZHAO J, SAVITZ D A, et al. An external exposome-wide association study of hypertensive disorders of pregnancy [J]. Environment International, 2020, 141: 105797. doi: 10.1016/j.envint.2020.105797
    [36] VRIJHEID M, FOSSATI S, MAITRE L, et al. Early-life environmental exposures and childhood obesity: An exposome-wide approach [J]. Environmental Health Perspectives, 2020, 128(6): 67009. doi: 10.1289/EHP5975
    [37] AGIER L, BASAGAñA X, HERNANDEZ-FERRER C, et al. Association between the pregnancy exposome and fetal growth [J]. International Journal of Epidemiology, 2020, 49(2): 572-586. doi: 10.1093/ije/dyaa017
    [38] LEE J, OH S, KANG H, et al. Environment-wide association study of CKD [J]. Clinical Journal of the American Society of Nephrology, 2020, 15(6): 766. doi: 10.2215/CJN.06780619
    [39] LOPEZ D S, WULANINGSIH W, TSILIDIS K K, et al. Environment-wide association study to comprehensively test and validate associations between nutrition and lifestyle factors and testosterone deficiency: NHANES 1988–1994 and 1999–2004 [J]. Hormones, 2020, 19(2): 205-214. doi: 10.1007/s42000-020-00179-w
    [40] SHEEHAN A, FRENI STERRANTINO A, FECHT D, et al. Childhood type 1 diabetes: An environment-wide association study across England [J]. Diabetologia, 2020, 63(5): 964-976. doi: 10.1007/s00125-020-05087-7
    [41] CALAMANDREI G, RICCERI L, MECCIA E, et al. Pregnancy exposome and child psychomotor development in three European birth cohorts [J]. Environmental Research, 2020, 181: 108856. doi: 10.1016/j.envres.2019.108856
    [42] VRIJHEID M, SLAMA R, ROBINSON O, et al. The human early-life exposome (HELIX): Project rationale and design [J]. Environmental Health Perspectives, 2014, 122(6): 535-544. doi: 10.1289/ehp.1307204
    [43] CARPENTER D O. Environmental contaminants as risk factors for developing diabetes [J]. Reviews on Environmental Health, 2008, 23(1): 59-74.
    [44] GIBELIN C, COURAUD S. Somatic alterations in lung cancer: Do environmental factors matter? [J]. Lung Cancer, 2016, 100: 45-52. doi: 10.1016/j.lungcan.2016.07.015
    [45] LOEB S, PESKOE S B, JOSHU C E, et al. Do environmental factors modify the genetic risk of prostate cancer? [J]. Cancer Epidemiol Biomarkers & Prevention, 2015, 24(1): 213-220.
    [46] KAHN L G, TRASANDE L. Environmental toxicant exposure and hypertensive disorders of pregnancy: Recent findings [J]. Current Hypertension Reports, 2018, 20(10): 87. doi: 10.1007/s11906-018-0888-5
    [47] PORPORA M G, PIACENTI I, SCARAMUZZINO S, et al. Environmental contaminants exposure and preterm birth: A systematic review [J]. Toxics, 2019, 7(1): 11. doi: 10.3390/toxics7010011
    [48] ROBINSON O, VRIJHEID M. The pregnancy exposome [J]. Current Environmental Health Reports, 2015, 2(2): 204-213. doi: 10.1007/s40572-015-0043-2
    [49] BENJAMINI Y, HOCHBERG Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing [J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 1995, 57(1): 289-300.
    [50] BONFERRONI C. Teoria statistica delle classi e calcolo delle probabilit?? [J]. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 1935: 8.
    [51] SANDRA E S, MARK J V D L. Deletion/substitution/addition algorithm in learning with applications in genomics [J]. Statistical Applications in Genetics and Molecular Biology, 2004, 3(1): 16646796.
    [52] AGIER L, PORTENGEN L, CHADEAU-HYAM M, et al. A systematic comparison of linear regression–based statistical methods to assess exposome-health associations [J]. Environmental Health Perspectives, 2016, 124(12): 1848-1856. doi: 10.1289/EHP172
    [53] BARRERA-GóMEZ J, AGIER L, PORTENGEN L, et al. A systematic comparison of statistical methods to detect interactions in exposome-health associations [J]. Environmental Health, 2017, 16(1): 74. doi: 10.1186/s12940-017-0277-6
    [54] BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
    [55] MCCALL M R, FREI B. Can antioxidant vitamins materially reduce oxidative damage in humans? [J]. Free Radical Biology and Medicine, 1999, 26(7): 1034-1053.
    [56] CHAPMAN M J, GINSBERG H N, AMARENCO P, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: Evidence and guidance for management [J]. European Heart Journal, 2011, 32(11): 1345-1361. doi: 10.1093/eurheartj/ehr112
    [57] YOUNG A J, LOWE G M. Antioxidant and prooxidant properties of carotenoids [J]. Archives of Biochemistry and Biophysics, 2001, 385(1): 20-27. doi: 10.1006/abbi.2000.2149
    [58] COLLINS A R. Carotenoids and genomic stability [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 475(1): 21-28.
    [59] 范晓岚, 杨军, 糜漫天, 等. β-胡萝卜素的抗氧化作用与疾病预防 [J]. 中国公共卫生, 2003(4): 99-100.

    FAN X L, YANG J, MI M T, et al. Antioxidant effect and disease prevention of beta-carotene [J]. Chinese Journal of Public Health, 2003(4): 99-100(in Chinese).

    [60] VIVEKANANTHAN D P, PENN M S, SAPP S K, et al. Use of antioxidant vitamins for the prevention of cardiovascular disease: Meta-analysis of randomised trials [J]. The Lancet, 2003, 361(9374): 2017-2023. doi: 10.1016/S0140-6736(03)13637-9
    [61] RAO A V, RAO L G. Carotenoids and human health [J]. Pharmacological Research, 2007, 55(3): 207-216. doi: 10.1016/j.phrs.2007.01.012
    [62] NI P, YU M, ZHANG R, et al. Dose-response association between C-reactive protein and risk of all-cause and cause-specific mortality: A systematic review and meta-analysis of cohort studies [J]. Annals of Epidemiology, 2020, 51: 20-27. doi: 10.1016/j.annepidem.2020.07.005
    [63] ZUO H, UELAND P M, ULVIK A, et al. Plasma biomarkers of inflammation, the kynurenine pathway, and risks of all-cause, cancer, and cardiovascular disease mortality: The Hordaland health study [J]. American Journal of Epidemiology, 2016, 183(4): 249-258. doi: 10.1093/aje/kwv242
    [64] KAPTOGE S, DI ANGELANTONIO E, LOWE G, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis [J]. The Lancet, 2010, 375(9709): 132-140. doi: 10.1016/S0140-6736(09)61717-7
    [65] AVAN A, TAVAKOLY SANY S B, GHAYOUR-MOBARHAN M, et al. Serum C-reactive protein in the prediction of cardiovascular diseases: Overview of the latest clinical studies and public health practice [J]. Journal of Cellular Physiology, 2018, 233(11): 8508-8525. doi: 10.1002/jcp.26791
    [66] BRAUN J, BOPP M, FAEH D. Blood glucose may be an alternative to cholesterol in CVD risk prediction charts [J]. Cardiovascular Diabetology, 2013, 12(1): 24. doi: 10.1186/1475-2840-12-24
    [67] NDREPEPA G. Uric acid and cardiovascular disease [J]. Clinica Chimica Acta, 2018, 484: 150-163. doi: 10.1016/j.cca.2018.05.046
    [68] ROCCO A, HEERLEIN K, DIEDLER J, et al. Microalbuminuria in cerebrovascular disease: A modifiable risk factor? [J]. International Journal of Stroke, 2010, 5(1): 30-34. doi: 10.1111/j.1747-4949.2009.00398.x
    [69] BRITO J, BERNARDO A, ZAGALO C, et al. Quantitative analysis of air pollution and mortality in Portugal: Current trends and links following proposed biological pathways [J]. Science of the Total Environment, 2021, 755: 142473. doi: 10.1016/j.scitotenv.2020.142473
    [70] GUERCIO V, POJUM I C, LEONARDI G S, et al. Exposure to indoor and outdoor air pollution from solid fuel combustion and respiratory outcomes in children in developed countries: A systematic review and meta-analysis [J]. Science of the Total Environment, 2021, 755: 142187. doi: 10.1016/j.scitotenv.2020.142187
    [71] XU X, NIE S, DING H, et al. Environmental pollution and kidney diseases [J]. Nature Reviews Nephrology, 2018, 14(5): 313-324. doi: 10.1038/nrneph.2018.11
    [72] ISLAM R, KUMAR S, KARMOKER J, et al. Bioaccumulation and adverse effects of persistent organic pollutants (POPs) on ecosystems and human exposure: A review study on Bangladesh perspectives [J]. Environmental Technology & Innovation, 2018, 12: 115-131.
    [73] MANSOURI E H, REGGABI M. Association between type 2 diabetes and exposure to chlorinated persistent organic pollutants in algeria: A case-control study [J]. Chemosphere, 2021, 264: 128596. doi: 10.1016/j.chemosphere.2020.128596
    [74] LIANG Y, LIU D, ZHAN J, et al. New insight into the mechanism of pop-induced obesity: Evidence from DDE-altered microbiota [J]. Chemosphere, 2020, 244: 125123. doi: 10.1016/j.chemosphere.2019.125123
    [75] PESTANA D, TEIXEIRA D, MEIRELES M, et al. Adipose tissue dysfunction as a central mechanism leading to dysmetabolic obesity triggered by chronic exposure to p, p’-DDE [J]. Scientific Reports, 2017, 7(1): 2738. doi: 10.1038/s41598-017-02885-9
    [76] LANGER P, UKROPEC J, KOCAN A, et al. Obesogenic and diabetogenic impact of high organochlorine levels (HCB, p, p'-DDE, PCBs) on inhabitants in the highly polluted eastern Slovakia [J]. Endocr Regul, 2014, 48(1): 17-24. doi: 10.4149/endo_2014_01_17
    [77] 段义爽, 孙红文. 环境有机污染物与糖尿病关系的研究进展 [J]. 环境化学, 2017, 36(4): 753-766. doi: 10.7524/j.issn.0254-6108.2017.04.2016080407

    DUAN Y S, SUN H W. Studies on the associations between environmental organic pollutants and diabetes [J]. Environmental Chemistry, 2017, 36(4): 753-766(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.04.2016080407

    [78] KUNG Y P, LIN C C, CHEN M H, et al. Intrauterine exposure to per- and polyfluoroalkyl substances may harm children's lung function development [J]. Environmental Research, 2021, 192: 110178. doi: 10.1016/j.envres.2020.110178
    [79] RUBIN B S. Bisphenol A: An endocrine disruptor with widespread exposure and multiple effects [J]. The Journal of Steroid Biochemistry and Molecular Biology, 2011, 127(1): 27-34.
    [80] 王硕, 庄太凤. 双酚A对新生儿的健康危害 [J]. 环境化学, 2020, 39(9): 2404-2412. doi: 10.7524/j.issn.0254-6108.2019070602

    WANG S, ZHUANG T F. Health effects of bisphenol A on newborns [J]. Environmental Chemistry, 2020, 39(9): 2404-2412(in Chinese). doi: 10.7524/j.issn.0254-6108.2019070602

    [81] BEHNIA F, PELTIER M, GETAHUN D, et al. High bisphenol A (BPA) concentration in the maternal, but not fetal, compartment increases the risk of spontaneous preterm delivery [J]. Journal of Maternal Fetal & Neonatal Medicine, 2016, 29(22): 3583-3589.
    [82] XU C, WENG Z, ZHANG L, et al. HDL cholesterol: A potential mediator of the association between urinary cadmium concentration and cardiovascular disease risk [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111433. doi: 10.1016/j.ecoenv.2020.111433
    [83] SATARUG S, G C G, D A V, et al. Cadmium and lead exposure, nephrotoxicity, and mortality [J]. Toxics, 2020, 8(4): 86. doi: 10.3390/toxics8040086
    [84] COWELL W, COLICINO E, TANNER E, et al. Prenatal toxic metal mixture exposure and newborn telomere length: Modification by maternal antioxidant intake [J]. Environmental Research, 2020, 190: 110009. doi: 10.1016/j.envres.2020.110009
    [85] LIM S S, VOS T, FLAXMAN A D, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the global burden of disease study 2010 [J]. The Lancet, 2012, 380(9859): 2224-2260. doi: 10.1016/S0140-6736(12)61766-8
    [86] GRUER L, HART C L, WATT G C M. After 50 years and 200 papers, what can the midspan cohort studies tell us about our mortality? [J]. Public Health, 2017, 142: 186-195. doi: 10.1016/j.puhe.2015.06.017
    [87] ABDULKHAKOV S R, ARKHIPOV E V, FAIZULLIN R I, et al. Screening assessment of renal function status in healthy smoking volunteers [J]. BioNanoScience, 2019, 9(2): 510-514. doi: 10.1007/s12668-019-0602-3
    [88] SESSO HOWARD D, COOK NANCY R, BURING JULIE E, et al. Alcohol consumption and the risk of hypertension in women and men [J]. Hypertension, 2008, 51(4): 1080-1087. doi: 10.1161/HYPERTENSIONAHA.107.104968
    [89] ROERECKE M, KACZOROWSKI J, TOBE S W, et al. The effect of a reduction in alcohol consumption on blood pressure: A systematic review and meta-analysis [J]. The Lancet Public Health, 2017, 2(2): e108-e120. doi: 10.1016/S2468-2667(17)30003-8
    [90] REHM J, BALIUNAS D, BORGES G L G, et al. The relation between different dimensions of alcohol consumption and burden of disease: An overview [J]. Addiction, 2010, 105(5): 817-843. doi: 10.1111/j.1360-0443.2010.02899.x
    [91] JIA P, XUE H, CHENG X, et al. Association of neighborhood built environments with childhood obesity: Evidence from a 9-year longitudinal, nationally representative survey in the US [J]. Environment International, 2019, 128: 158-164. doi: 10.1016/j.envint.2019.03.067
    [92] YANG Y, LIN Q, LIANG Y, et al. The mediation effect of maternal glucose on the association between ambient air pollution and birth weight in Foshan, China [J]. Environmental Pollution, 2020, 266: 115128. doi: 10.1016/j.envpol.2020.115128
    [93] LIN L, LI Q, YANG J, et al. The associations of particulate matters with fetal growth in utero and birth weight: A birth cohort study in Beijing, China [J]. Science of the Total Environment, 2020, 709: 136246. doi: 10.1016/j.scitotenv.2019.136246
    [94] GRAZULEVICIENE R, DEDELE A, DANILEVICIUTE A, et al. The influence of proximity to city parks on blood pressure in early pregnancy [J]. International Journal of Environmental Research & Public Health, 2014, 11(3): 2958-2972.
    [95] LICHTVELD K, THOMAS K, TULVE N S. Chemical and non-chemical stressors affecting childhood obesity: A systematic scoping review [J]. Journal of Exposure Science & Environmental Epidemiology, 2018, 28(1): 1-12.
    [96] JIANG C, WANG X, LI X, et al. Dynamic human environmental exposome revealed by longitudinal personal monitoring [J]. Cell, 2018, 175(1): 277-291. doi: 10.1016/j.cell.2018.08.060
    [97] 孙路遥, 王继忠, 彭书传, 等. 暴露组及其研究方法进展 [J]. 环境科学学报, 2016, 36(1): 27-37.

    SUN L Y, WANG J Z, PENG S C, et al. Approaches towards a more comprehensive understanding of human exposome [J]. Acta Scientiae Circumstantiae, 2016, 36(1): 27-37(in Chinese).

    [98] ZHENG Y, CHEN Z, PEARSON T, et al. Design and methodology challenges of environment-wide association studies: A systematic review [J]. Environmental Research, 2020, 183: 109275. doi: 10.1016/j.envres.2020.109275
    [99] MATTA K, VIGNEAU E, CARIOU V, et al. Associations between persistent organic pollutants and endometriosis: A multipollutant assessment using machine learning algorithms [J]. Environmental Pollution, 2020, 260: 114066. doi: 10.1016/j.envpol.2020.114066
    [100] CADIOU S, BUSTAMANTE M, AGIER L, et al. Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index [J]. Environment International, 2020, 138: 105622. doi: 10.1016/j.envint.2020.105622
  • 加载中
表( 1)
计量
  • 文章访问数:  6064
  • HTML全文浏览数:  6064
  • PDF下载数:  216
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-12-22
  • 录用日期:  2022-03-09
  • 刊出日期:  2022-04-27

基于全暴露组关联分析技术的环境健康研究进展

    通讯作者: Tel:15950454400,E-mail:yuny@nju.edu.cn
  • 南京大学环境学院,污染控制与资源化研究国家重点实验室,南京,210023
基金项目:
国家自然科学基金(22022603)和江苏省太湖水环境综合治理科研课题(TH2018404)资助.

摘要: 暴露组是整个生命周期中历经的所有暴露。为了更好地评估暴露组-疾病的关联,参照全基因组关联研究的概念(GWAS),提出了全暴露组关联分析(EWAS)。全暴露组关联分析是一种数据驱动的探索性研究方法,可用于发现与某些复杂疾病相关联的环境因素。文章搜索并纳入了当前的全暴露组关联分析文章,从研究对象、暴露变量、流行病学结局和统计分析几个方面总结了文章的研究方法,综述了目前的研究进展,提炼研究的特点和当前局限,并对其未来做出展望。

English Abstract

  • 大多数人类疾病不止和遗传因素有关,也受多种环境因素的影响[1-5]。25%—33%的全球疾病负担可以归因于环境因素,对于儿童而言这一比例甚至更高[6]。研究发现环境污染物如金属和抗氧化剂在癌症的发生过程中起着重要作用[7],室外空气污染导致了全球3.3%的过早死亡的发生[8],另外环境因素也会影响基因的表达过程,从而影响疾病的发生[9]。为了表征复杂的环境因素,参照基因组、代谢组和蛋白质组的概念,Wild等在2005年提出暴露组的概念[10]。暴露组涵盖了个体从受精卵到死亡整个生命周期历经的所有暴露,可以分为三大类:内部暴露、特定外部暴露和广泛外部暴露[11]。内部暴露主要包括体内的过程,诸如代谢、肠道菌群、炎症、脂质过氧化、氧化应激和衰老等,特定的外部暴露包括辐射、传染源、化学污染物、饮食和生活方式等,广泛的外部暴露则主要是社会、经济和心理方面的因素,包括社会资本、教育、财务状况、心理和精神压力以及城乡环境气候等。为了评估暴露组-疾病的相关关系,参照全基因组关联研究(GWAS),Patel等引入了全环境关联分析的概念,并将其应用于研究与Ⅱ型糖尿病相关的多种环境因素[12]

    与GWAS的成熟体系有所不同的是,对暴露组-疾病关联的研究体系还未得到统一。在Patel等引入全环境关联分析(environment-wide association study)的概念之后[12],又有研究者引入了全暴露组广泛关联研究(exposome-wide association study)[13]、邻域广泛关联研究(neighborhood-wide association study)[14]和邻域环境广泛关联研究(neighborhood environment-wide association study)[15]的概念。这些不同的概念在对于暴露变量的选取上各有侧重,全环境关联分析主要选取内部暴露和特定的外部暴露变量,包括化学污染物和体内的代谢情况, 邻域广泛关联研究和邻域环境广泛关联研究则主要选取广泛的外部暴露变量,包括社会经济地位和自然环境特征等。为了更全面地描述暴露组,在本综述中将不对这些概念进行严格区分,而将其均纳入全暴露组关联分析(EWAS)的范畴中。

    全暴露组关联分析是一种数据驱动、无目的、不可知的探索性研究方法,旨在确定与疾病相关的环境因素[16]。本文将对全暴露组关联分析的研究对象、暴露因素、流行病学结局和统计分析进行介绍,综述目前的研究进展,讨论研究的特定和局限,并对未来方向进行展望。

    • 全暴露组关联研究一般先确定研究对象的暴露变量和疾病相关结局,再筛选和疾病有显著关系的暴露变量,识别重要的暴露因子。因此本文将从研究对象、选取的暴露变量、流行病学结局和统计分析手段几个方面来综述研究方法。如表1所示,共有28个研究被纳入讨论中。

    • 全暴露组关联分析的参与者人数差异较大,最少仅473人[31],最多至819399人[35],其中有3个研究针对老年人进行[15, 19, 22],7个研究针对婴幼儿和儿童进行[30, 32-33, 36-37, 40-41],其余均为针对成年人的研究。大多数研究为横断面研究和纵向队列研究,也存在一例病例对照研究[24]。有11项研究[12, 17-18, 20-21, 23, 25-27, 38-39]采用了美国营养与健康调查(NHANES)的队列数据,这是由美国疾病控制与预防中心(CDC)每两年进行一次的全国性的健康调查,数据集公开提供。另外有5项研究[30, 32-33, 36-37]采用了人类早期暴露计划(HELIX)的纵向队列,这项计划由欧洲13个机构合作开展,研究32000对母婴的暴露状况,试图描绘欧洲人口早期生命暴露,并阐明其与胎儿和儿童健康之间的关系[42]

    • EWAS研究中涉及到的暴露变量总数在11—14663之间,中位数为205个。暴露种类涉及到内部暴露如营养素等,特定的外部暴露如污染物等,广泛的外部暴露如人口学变量和社会经济因素,具体可分为以下几类:(1)微量营养素:如维生素,通过血液和尿液生物标志物测定;(2)代谢物和蛋白质:如脂肪酸和C-反应蛋白等,通过血液和尿液生物标志物测定;(3)污染物:常见的包括重金属、酚类、持久性有机污染物、氟化物、有机磷农药和内分泌干扰物等,通过血液和尿液生物标志物测定;(4)生活方式:包括饮食、社交、体育锻炼、吸烟和酒精摄入等,通过问卷调查获取;(5)建筑环境:包括公共设施比例、建筑密度、绿化面积和道路交通状况等,通常通过社区调查数据集、谷歌街景和政府部门网站获得;(6)大气条件:包括空气污染物(如二氧化氮、PM2.5和PM10)、紫外线强度、空气湿度和温度等,数据通常通过当地监测站和气象部门获得;(7)社会因素:如财务状况、受教育程度、休闲旅行、婚姻状态和心理健康状况等,通过问卷调查获取。文章中涉及最多的暴露变量是污染物(19/27)和生活方式(16/27)。

    • 流行病学研究发现环境因素在某些疾病发展过程中起到重要因素,多个持久性有机污染物被发现与糖尿病的发展有关[43],环境暴露可能通过影响血压、血脂和动脉粥样硬化而对心血管疾病的发展起重要作用[26]。此外,吸烟、石棉和二氧化硅会导致肺癌的发生[44],而生活方式的改变会影响前列腺癌的遗传[45]。孕期的环境暴露不仅影响妊娠高血压[46]和早产[47]的发生,对胎儿的生长发育也存在不良效应[48]。基于此,EWAS评估了多种不同的结局,包括疾病如2型糖尿病、代谢综合征、1型糖尿病、心血管疾病、动脉粥样硬化、艾滋病、前列腺癌;临床指标如血脂水平、白细胞端粒长度、血细胞比容、甲状腺激素、血压睾丸激素缺乏、精液质量和蛋白尿;健康状态如身体活动、腹部肥胖和身心健康;孕妇儿童相关的妊娠高血压、早产、胎儿体重、儿童超重、儿童血压、儿童肺功能和儿童精神运动发育,以及一项研究评估了和全因死亡率相关的因素。

    • 为了探究暴露组和健康之间的关系,最常用的方法是EWAS方法[12],即进行多重假设检验,单独探究每一种暴露因素和结局之间的关系。EWAS方法中最常用的统计模型是广义线性回归模型,当结果变量为二分类变量时则采用logistic回归,结果变量为连续变量时则采用线性回归或加权线性回归,研究通常将协变量纳入模型以对模型进行调整。为了控制多重检验的假阳性率,一般采用Benjamini&Hochberg校正[49]或Bonferroni校正[50],前者通过为p值排序后将原始p值乘以检验次数后除以排名得到校正后的p值,后者则用设定的p值阈值除以检验次数得到校正后的p值阈值,Bonferroni校正相对而言更为严格,假阳性率更低,但也更容易拒绝真正的阳性结果。除了一项研究[18]采用cox比例风险回归外,其它所有研究都采用了EWAS方法,其中有6项研究[19, 22, 28-29, 41]采用了EWAS两步法(EWAS2),即在用EWAS发现显著性相关的变量后,将所有显著变量纳入回归模型中进行多变量线性回归(EWAS-MLR)。

      另外几种常用的统计模型包括DSA算法、主成分分析和随机森林等。DSA算法是一种迭代的线性回归模型[51],在每次迭代中允许进行以下3种操作:(1)删除一个变量;(2)替代一个变量;(3)添加一个变量,通过交叉验证得到的均方根误差来选择最终的模型。有5项研究[30, 32-33, 36-37]采用了这种算法,其中有一项研究是在采用了EWAS算法后将显著因子纳入DSA模型中[37],其余研究则将DSA和EWAS并列使用。在对比几种常用的线性回归模型后,Agier等[52]和Barrera等[53]认为DSA模型假阳性率低,整体性能较好。另外一些研究中涉及到的套索回归[15]和弹性网络回归[35]则是在最小二乘法回归的损失函数中加入正则化项以约束系数,达到收缩系数和稀疏变量的目的,可以剔除冗余变量,仅保留和结果相关程度高的变量。此外,有3项研究[14, 25, 39]用到了主成分分析(PCA)的方法,将变量折射到几个主成分上,再找到影响主成分最多的变量。有2项研究[15, 26]采用了随机森林算法,这是一种强大的集成学习方法[54],其从原始数据集有放回地抽样,得到多个子集,训练多个子决策树后再对结果进行结合,在子决策树的每一次分裂时随机选取一个包含一定特征的子集,在其中找到最优的属性用于划分。模型最终可以得到优先级较高的属性,即对结果有较大影响的变量。

    • 胡萝卜素是从某些水果和蔬菜中获得的维生素A前体,具有抗氧化作用[55]。全暴露组关联研究发现,β-胡萝卜素和2型糖尿病[12]、动脉粥样硬化[27]、心血管疾病[26]、甘油三酯水平[17]和腹部肥胖[25]显著负相关,与高密度脂蛋白胆固醇(HDL-C)正相关[17],而高密度脂蛋白胆固醇含量与患心血管病风险呈负相关[56],这些结果强烈暗示了β-胡萝卜素有助于降低糖尿病和心血管疾病风险,且在多个关联研究中相统一。在先前的研究中已经发现,β-胡萝卜素的抗氧化作用,可以减少氧化应激损伤,从而降低心血管疾病风险[57-59],然而在服用β-胡萝卜素的随机实验中却发现了矛盾的结论[60]。一种类胡萝卜素,番茄红素,被发现和全因死亡率显著负相关[18],而之前的流行病学研究、动物研究和临床实验也发现了番茄红素可以预防慢性疾病的发生[61]。另外一种类胡萝卜素β-隐黄素被发现与腹部肥胖显著负相关[25],然而一篇关联研究表明其与早产显著正相关[20],作者表示可能有因果颠倒的发生,即早产后补充营养而导致营养素升高。维生素A的水平和白细胞端粒长度[21]、睾丸激素水平[39]正相关,然而关联分析也发现维生素A和血细胞比容[22]、心血管疾病[26]之间的正相关关系,暗示了其可能与心血管疾病发生有关。总体而言,营养素与疾病的发生之间存在着复杂的关系,而不是单向关系,在补充营养素时也应该慎重考虑。

    • 不饱和脂肪酸如亚油酸是人体的必需脂肪酸,关联研究发现高棕榈酸和油酸水平以及较低的亚油酸与代谢综合征显著相关[19],暗示了不饱和脂肪酸相对于饱和脂肪酸对人体更有益。C-反应蛋白(CPR)是机体受到感染或组织损伤后急剧上升的蛋白质,EWAS发现C-反应蛋白和白细胞端粒长度显著负相关[21],和心血管疾病以及动脉粥样硬化显著正相关[26-27],暗示了炎症反应对机体的不良影响,并可能与衰老有关。先前的研究中已经发现C反应蛋白与心血管疾病和死亡率之间的正相关关系[62-64],可以作为心血管疾病的生物标志物[65]。另外EWAS研究发现血糖、尿酸和尿白蛋白与动脉粥样硬化、心血管疾病相关[26-27],与先前的研究结果具有一致性[66-68]

    • 已有研究表明暴露于污染物可能对人类健康产生诸多不利影响[69-72],在全暴露组关联分析中也发现了污染物和疾病之间显著的相关关系。多氯联苯是一类人工合成的有机物,由于其持久存在和高毒性被斯德哥尔摩公约(POPs公约)禁止使用,Patel等[12]发现多氯联苯和2型糖尿病存在显著的正相关关系,在先前的病例对照研究中也发现了多氯联苯和2型糖尿病患病率显著正相关[73],为多关联分析的结果进行了佐证。此外,多氯联苯被发现和白细胞端粒长度有显著的正相关关系[21],孕妇体内的多氯联苯可能导致儿童收缩压较低[30],这种关联难以解释,可能存在因果颠倒或间接相关。其它卤代有机物也被发现和不良结局之间的显著关联,如二氯二苯二氯乙烯(DDE)被发现与代谢综合征显著正相关[19],和儿童收缩压显著负相关[30]。在最近的研究中已经发现DDE会显著改变小鼠肠道微生物组成并影响血浆脂质代谢和导致脂肪组织功能障碍[74-75],这可能是其导致代谢综合征的机理。环氧七氯是一种杀虫剂,毒性较强且难以降解,被发现与2型糖尿病显著正相关[12],有机氯农药曾被报道和糖尿病之间的关联[76-77],但这是首次发现环氧七氯和2型糖尿病的正相关关系。全氟化合物由于广泛的使用和在环境中难以降解而被广泛检出,全氟辛酸(PFOA)由于其较强的毒性和生物蓄积性已被列入POPs公约。关联分析发现儿童体内PFOA水平和收缩压正相关[30],和肺功能显著负相关[33]。最近的一项关于全氟化合物和儿童肺功能的队列研究也证明了这一关联[78]。塑化剂类物质如双酚A、邻苯二甲酸酯等是广受关注的内分泌干扰物[79],且被发现与多种不良出生结局相关[80],关联分析表明双酚A与孕妇早产显著正相关[20],这与流行病学结果一致[81]。邻苯二甲酸卞酯和儿童收缩压降低有关[30],邻苯二甲酸酯类物质可能导致儿童肺功能损伤[33],这些结果提示我们关注孕期和儿童早期的塑化剂暴露。另外一类与疾病关联的污染物是金属离子,血清中的镉浓度和全因死亡率、动脉粥样硬化、蛋白尿风险正相关[18, 27, 38],和白细胞端粒长度负相关[21],在其它流行病学研究中也发现了镉和死亡率、心血管疾病的相关性[82-83],并且母亲产前镉暴露和新生儿端粒长度呈反比[84]。孕妇血清中铯的浓度和早产显著正相关[20],儿童血液中的铜、铯的含量与较高的BMI相关[36]。孕产妇血清中铅浓度和胎儿体重负相关[37],而成人体内血铅含量和蛋白尿风险正相关[38]。对于和疾病关联显著的污染物应加以重视。

    • 吸烟是导致疾病的重要风险因素[85],全暴露组关联分析研究发现吸烟行为和全因死亡率有显著的正相关关系[18],其它流行病学研究有着相似的结果[86]。尼古丁的生物标志物可替宁被发现与较高的儿童血压[30]、超重[36]、蛋白尿[38]显著正相关,临床研究也发现吸烟会使蛋白尿风险增加5倍[87]。另外一个不良生活方式是饮酒,被发现与血压正相关[23],酒精和高血压之间的关系已经被多次报道[88-90]。较为健康的生活方式主要是体育活动,体育活动被发现与全因死亡率[18]、腹部肥胖[25]、代谢综合症[19]和血细胞比容[22]显著负相关。另外有一些有趣的发现,如拥有一辆自行车和艾滋病患病率显著负相关[28]。还有一些难以解释的关联,牙齿卫生、榛子可可的摄入和被蜜蜂蛰伤与儿童Ⅰ型糖尿病显著负相关[24],这可能源于家庭收入导致的间接相关。

    • 公共设施密度被发现与儿童血压、肺活量、胎儿体重和儿童BMI显著负相关[30, 32-33, 36],这意味着公共设施密集的地区儿童超重会减少,但是血压和肺活量会下降。房屋密度与胎儿体重和儿童肺活量显著负相关[32-33],在一个纵向队列中得到了相同的结果[91]。同时EWAS发现房屋密度与儿童1型糖尿病患病率[40]显著正相关,这是一个较为新颖的结果。另外,母亲孕期交通设施便利和胎儿体重显著正相关[32]

    • 大气条件主要包括大气污染物如PM2.5和氮氧化物,以及紫外线、空气湿度等。两篇EWAS研究均发现孕期暴露于PM2.5和胎儿体重显著负相关[32, 37],在其它流行病学研究中也发现了类似的关联[92-93]。另外一些空气毒物如丙烯醛、马来酸酐等物质被发现与妊娠高血压显著正相关[35]。空气中的二氧化氮被发现与儿童BMI显著正相关[36]

    • 社会因素主要包括收入、就业和婚姻状况等社会经济因素。EWAS研究发现收入与身体活动和园艺活动显著正相关[15],而和前列腺癌显著负相关[14],这意味着收入更高的人锻炼和园艺活动更多,前列腺癌患病比例更低。婚姻状态和艾滋病有非常强烈的相关关系,已婚和丧偶与艾滋病患病率显著正相关,而正在哺乳与艾滋病显著负相关[28]

    • 环境因素对人类健康有着重要的影响,已经有许多研究表明了化学污染物、自然环境、建筑环境和社会因素与疾病发展之间的显著关系[94-95]。然而这些研究主要针对于一种或几种已知的环境因素进行,而个人经历的暴露是多样而动态的,在日常生活中可能暴露于数千种生物物种和化学品[96],在社会生活中会受到广泛的影响,对单个因素的评估已经难以满足暴露组的需求。EWAS作为一种高通量、不可知的方法,可以同时评估多种环境因素并识别与疾病相关的因素,由于其并不需要先验知识,有助于我们发现新的结果,对环境-疾病的关系产生新的见解。如Hu等发现空气中的丙烯醛、马来酸酐等物质和妊娠期高血压相关[35],Patel等发现环氧七氯和二型糖尿病的正相关关系[12]。而研究中也发现了诸多和以往单因素-疾病关联研究中类似的结果,这也证明了EWAS方法的可重现性。相较于遗传因素,环境因素具有较大的时空变异性,相对更容易改变,因此EWAS不仅可以用于疾病风险预测,还可以用于疾病预防或干预。EWAS研究有以下特点:(1)无假设、无目标、不可知论的研究,即事先并不假设和结果相关联的物质;(2)通常存在确定的结局,一般为疾病或生理状态;(3)评估多个暴露组变量;(4)研究人数通常较多,由于评估的环境变量较多,基于统计学需求,通常需要足够的样本量[31]

      尽管有好的应用前景,目前的EWAS研究仍然存在诸多局限。首先,EWAS研究只能表征暴露因素和不良结果之间的相关关系,但难以说明其因果关系和作用机制。尤其是横断面研究中可能存在的反向因果偏差,即疾病状态影响了生物标志物的毒理学和浓度而不是其导致了疾病的发展。例如关联研究中发现β-隐黄素和早产的正相关关系[20],甲基叔丁基醚和妊娠高血压显著的负相关关系[35]。第二,对于暴露变量的评估存在着不同尺度和不同类型的误差,例如在化学品测定方面的误差和在问卷调查方面的误差便不相同,因此难以比较变量的显著性水平而对其重要程度进行排序。第三,尽管EWAS研究试图涵盖更多的暴露变量,其仍然难以表征整个暴露组,暴露组是一个复杂的动态概念[97],而文献对于变量的选择和数据来源各不相同。另外,如何在不牺牲对每种暴露评估准确性的前提下增加暴露变量种类仍然是一个问题。第四,由于大多数研究采用的是广义线性模型,而忽略了对于暴露变量和结果之间的非线性关联以及变量中潜在的相互作用。第五,尽管一些研究将数据集分为发现集和复制集[35],或通过内部数据集进行验证[28],然而对于结果的外部验证仍然是非常缺乏的。最后,尽管协变量通常被考虑和在模型中被调整,仍然不能排除未测定的混杂因素。

    • 目前的EWAS体系仍然不够完善,对于EWAS的概念并不统一,EWAS研究也存在较大的异质性[98]。为了保证EWAS结果的可重复性和再现性,仍然需要付出大量的努力。实验设计中应充分考虑样本的合理选取和分层,内部验证和外部验证,对于缺失值的合理处理(敏感性分析和多次估算),对于暴露变量的客观测量,对结局的验证评估,暴露和结局所来自数据源的可信程度等。在统计方法上,相较于传统的线性回归模型,机器学习可能会给我们新的见解[99]。另外, EWAS和GWAS的结合[28],甚至于多组学的联合[100]可能更有利于我们理解基因、环境如何联合作用于疾病。

    参考文献 (100)

目录

/

返回文章
返回