-
天然水中过量的磷主要来自冶金、化工、造纸厂、水产养殖和市政等污水的过量排放[1],并导致了严重的水体富营养化及生态恶化现象[2]. 研究表明,当水体磷浓度大于0.03 mg·L–1,富营养化速率将显著加快[3]. 最近, 加拿大Schindler等通过连续37年的生态系统实验发现,控制湖泊富营养化的重点应该集中在降低水中磷的浓度,而不是氮的输入[4]. 因此,有效去除过量的磷酸盐在控制水体富营养化方面具有重要意义.
常用的除磷方法有混凝、化学沉淀、生物法、离子交换和吸附法[5-8]. 在这些方法中,吸附法由于其成本低,操作简单,易回收以及在微污染水中的吸附效率高而被广泛使用[9-10]. 目前,已有多种吸附剂被证实对磷酸盐具备有效的吸附能力,例如活性氧化铝、粉末状沸石、铝土矿残留物、改性生物质、离子交换剂等[11]. 然而,常规吸附剂存在吸附容量低,吸附选择性差的问题,难以满足日益严格的磷酸盐排放标准,甚至在竞争激烈的背景下吸附量可能降低至零[12-13]. 因此,开发对磷酸盐具有吸附容量高且吸附选择性强的新型吸附剂对于实际应用至关重要.
近年来,一类新型的微孔材料——金属有机骨架(MOFs)因具有极高的比表面积、均匀且可调的孔径等特性在催化、气体存储、分离和吸附等方向的应用中引起了广泛关注[14]. MOFs是由过渡金属离子和有机连接物组成的网状结构,层次有序,可以显著提高比表面积、增加材料活性位点[15]. 此外,与其他具有分级结构的吸附剂不同,MOFs的合成程序大大简化,节省了生产成本[16]. 然而,大多数MOFs水热稳定性较差,这限制了其在水处理中的进一步应用[17]. 最近,研究人员开发了一类具有优异的化学和水热稳定性的锆基MOFs,例如UiO-66[18]. 它是由Zr6O4(OH)4簇和对苯二甲酸酯(1,4-苯二甲酸,BDC)有机配体相连合成的,分子式为[Zr6O4(OH)4(BDC)12][19]. 由于高度的拓扑连接性和锆-氧之间的强配位键,无论在酸性还是碱性条件下,UiO-66都具备重要的水热稳定性能[20]. 更重要的是,即使在低浓度污染物条件下,UiO-66骨架的大量羟基也可以提供活性配位点并显示出对目标离子的特异性亲和力. 例如,Wang等报道,UiO-66可作为一种高效吸附剂在更宽的pH范围内去除废水中的砷[21]. 当前研究为UiO-66在水处理中的应用提供了一定的参考价值和理论依据.
本研究系统考察了UiO-66对水中磷酸盐的吸附性能与吸附机理. 采用SEM、XRD、FT-IR、TGA和N2吸附-脱附等方法对UiO-66的理化性质进行表征,并考察了UiO-66对磷酸盐的吸附等温线、pH效应、动力学和竞争离子效应. 此外,还进行了循环吸附和再生实验,以评估UiO-66在实际水体中应用的可行性.
一种水热稳定的金属有机骨架UiO-66高效捕获水中磷酸盐的性能及机理
High-affinity phosphate sequestration by a hydrothermal-stable metal-organic framework UiO-66 from water
-
摘要: 本研究采用溶剂热法制备了一种水热性能稳定的金属有机框架UiO-66,并系统考察了其对水中磷酸盐的高效捕获性能. 通过表征手段证实,合成的UiO-66具有良好的晶型结构和极大的比表面积,且稳定性良好. UiO-66吸附磷酸盐的过程受pH影响明显,最佳吸附pH值介于5.5—7.0. Langmuir吸附等温模型对吸附过程拟合更好,饱和吸附量可达43.066 mg∙g−1,且由于吸附过程为化学吸附,主要依靠羟基的配体交换作用,因此温度影响不大. 与商用阴离子吸附剂D201相比,高浓度背景离子的加入对UiO-66吸附过程无明显影响,表明UiO-66对磷酸盐具有优异的吸附选择性和高效捕获性能. 伪二级动力学模型可以很好地描述UiO-66对磷酸盐的吸附过程. 经过6次循环吸附-脱附,UiO-66仍能有效去除水中磷酸盐,并可通过DMF溶液超声解吸实现有效再生. 结果表明,UiO-66作为一种新兴的吸附剂有望实现磷酸盐在水中的深度高效去除.Abstract: A hydrothermal stable metal-organic framework UiO-66 is prepared and applied as adsorbents to capture phosphate from water. As indicated by SEM, XRD and BET analysis, the synthesized UiO-66 has an extremely large specific surface area, good crystal structure as well as good stability. Phosphate adsorption on UiO-66 is significantly affected by pH values, the optimal pH is between 5.5 and 7.0. Langmuir adsorption isotherm model fits the adsorption process better, and saturated adsorption capacity is calculated to be 43.066 mg∙g−1. The temperature has little effect on phosphate adsorption due to the chemical adsorption between UiO-66 and phosphate which mainly relies on ligand exchange of the hydroxyl groups. Compared with commercial anionic adsorbent D201, the addition of high-concentration background ions has no significant effect on adsorption process, indicating that UiO-66 has excellent adsorption selectivity towards phosphate. The pseudo second-order kinetic model can give a good description of phosphate adsorption on UiO-66. After six cycles of adsorption-regeneration, UiO-66 can still effectively remove phosphate from water, and can be regenerated by ultrasonic desorption of DMF solution. The results demonstrated that UiO-66 is expected to be an emerging adsorbent for phosphate removal from water.
-
Key words:
- eutrophication /
- MOF /
- phosphate /
- adsorption
-
图 9 (a) UiO-66吸/脱附前后XRD表征;(b) UiO-66脱附后SEM表征;(c) UiO-66吸附前后FT-IR图;(d) UiO-66吸附磷酸盐后SEM-mapping图
Figure 9. (a) XRD characterization of UiO-66 before and after adsorption/desorption;(b) SEM characterization of UiO-66 after desorption;(c) FT-IR diagram of UiO-66 before and after adsorption;(d) SEM-mapping diagram of UiO-66 after phosphate adsorption
表 1 UiO-66吸附等温线拟合参数
Table 1. Adsorption isotherm fitting parameters of UiO-66
温度/K
TemperatureLangmuir Freundlich qm/(mg·g−1) KL/(L·g−1) R2 KF/(L·g−1) n R2 288 43.066 0.133 0.921 14.937 0.236 0.906 298 39.777 0.135 0.962 11.845 0.294 0.933 308 38.595 0.139 0.920 9.582 0.338 0.911 表 2 不同吸附剂对磷酸盐的吸附量对比
Table 2. Comparison of phosphate adsorption capacity for different adsorbents
Materials T/ K pH Qmax/(mg·g−1) 参考文献Ref. ZrO2·xH2O 295±2 6.5 <18 [27] ZrO(OH)2·(Na2O)0.05·1.5H2O — 5.0 <30 [28] magnetic Fe-Zr binary oxide — 4.0 13.65 [29] mesoporous ZrO2 293 6.7—6.9 29.7 [30] Fe-Zr binary oxide 298±1 5.5±0.1 33.4 [31] Zirconia-functionalized SBA-15 298 6.2 <18 [32] Zr(Ⅳ)-loaded activated carbon — 2—4 <8 [33] Zr(Ⅳ)-doped mesoporous silica 298 7—10 <4 [34] UiO-66 (Zr-MOFs) 288 6 43.066 本研究 表 3 吸附动力学拟合参数
Table 3. Adsorption kinetics fitting parameters of UiO-66
温度/K
Temperature伪一级动力学Pseudo first order kinetics 伪二级动力学Pseudo second order kinetics qe/(mg·g−1) k1/min−1 R2 qe/(mg·g−1) k2/( g·mg·min–1) R2 298 22.289 0.164 0.914 23.203 0.012 0.96 -
[1] PENN C, BOWEN J M. Design and construction of phosphorus removal structures for improving water quality[M]. The United States: Springer International Publishing, 2017. [2] 何思琪, 周亚义, 林建伟, 等. 氢氧化镧改良沉积物对水中磷的吸附特征 [J]. 环境化学, 2018, 37(11): 2565-2574. doi: 10.7524/j.issn.0254-6108.2018011104 HE S Q, ZHOU Y Y, LIN J W, et al. Adsorption characteristics of phosphate in water on lanthanum hydroxide-amended sediments [J]. Environmental Chemistry, 2018, 37(11): 2565-2574(in Chinese). doi: 10.7524/j.issn.0254-6108.2018011104
[3] ZAMPARAS M, GIANNI A, STATHI P, et al. Removal of phosphate from natural waters using innovative modified bentonites[J]. Applied Clay Science, 2012, 62–63: 101–106. [4] SCHINDLER D W, CARPENTER S R, CHAPRA S C, et al. Reducing phosphorus to curb lake eutrophication is a success [J]. Environmental Science & Technology, 2016, 50(17): 8923-8929. [5] 隋克俭, 李家驹, 李鹏峰, 等. 溶气气浮工艺用于城镇污水处理厂二级出水的深度除磷研究 [J]. 环境工程, 2020, 38(7): 66-70,65. SUI K J, LI J J, LI P F, et al. Study on deep dephosphorization of effluent from urban sewage treatment plant by dissolved air floatation process [J]. Environmental Engineering, 2020, 38(7): 66-70,65(in Chinese).
[6] PAHUNANG R R, BALLESTEROS F C, DE LUNA M D G, et al. Optimum recovery of phosphate from simulated wastewater by unseeded fluidized-bed crystallization process [J]. Separation and Purification Technology, 2019, 212: 783-790. doi: 10.1016/j.seppur.2018.11.087 [7] ZENG W, ZHANG L M, FAN P C, et al. Community structures and population dynamics of “Candidatus Accumulibacter” in activated sludges of wastewater treatment plants using ppk1 as phylogenetic marker [J]. Journal of Environmental Sciences (China), 2018, 67: 237-248. doi: 10.1016/j.jes.2017.09.001 [8] WAN J, WU B, LO I M C. Development of Fe0/Fe3O4 composites with tunable properties facilitated by Fe2+ for phosphate removal from river water [J]. Chemical Engineering Journal, 2020, 388(January): 124242. [9] CHEN L, LI Y, SUN Y, et al. La(OH)3 loaded magnetic mesoporous nanospheres with highly efficient phosphate removal properties and superior pH stability [J]. Chemical Engineering Journal, 2019, 360: 342-348. doi: 10.1016/j.cej.2018.11.234 [10] ZHOU K, WU B, SU L, et al. Enhanced phosphate removal using nanostructured hydrated ferric-zirconium binary oxide confined in a polymeric anion exchanger[J]. Chemical Engineering Journal, 2018, 345(December 2017): 640–647. [11] 李聪, 钟溢健, 解庆林, 等. 不同吸附材料处理水中砷的效应分析 [J]. 现代化工, 2018, 38(7): 21-25. LI C, ZHONG Y J, XIE Q L, et al. Effect analysis on arsenic removal from water by different adsorption materials [J]. Modern Chemical Industry, 2018, 38(7): 21-25(in Chinese).
[12] QIU H, NI W, ZHANG H, et al. Fabrication and evaluation of a regenerable HFO-doped agricultural waste for enhanced adsorption affinity towards phosphate [J]. Science of the Total Environment, 2020, 703(PTa2): 135493.1-135493.11. [13] ZHANG Q R, BOLISETTY S, CAO Y P, et al. Selective and efficient removal of fluoride from water: In situ engineered amyloid fibril/ZrO2 hybrid membranes [J]. Angewandte Chemie (International Ed. in English), 2019, 58(18): 6012-6016. doi: 10.1002/anie.201901596 [14] 陈丹丹, 衣晓虹, 王崇臣. 机械化学法制备金属-有机骨架及其复合物研究进展 [J]. 无机化学学报, 2020, 36(10): 1805-1821. doi: 10.11862/CJIC.2020.212 CHEN D D, YI X H, WANG C C. Preparation of metal-organic frameworks and their composites using mechanochemical methods [J]. Chinese Journal of Inorganic Chemistry, 2020, 36(10): 1805-1821(in Chinese). doi: 10.11862/CJIC.2020.212
[15] CHENG K, SVEC F, LV Y, et al. Hierarchical micro- and mesoporous Zn-based metal–organic frameworks templated by hydrogels: Their use for enzyme immobilization and catalysis of knoevenagel reaction [J]. Small, 2019, 15(44): 1-10. [16] XU H Q, WANG K C, DING M L, et al. Seed-mediated synthesis of metal-organic frameworks [J]. Journal of the American Chemical Society, 2016, 138(16): 5316-5320. doi: 10.1021/jacs.6b01414 [17] GHALEI B, WAKIMOTO K, WU C Y, et al. Rational tuning of zirconium metal–organic framework membranes for hydrogen purification [J]. Angewandte Chemie International Edition, 2019, 58(52): 19034-19040. doi: 10.1002/anie.201911359 [18] HUANG K, WANG B, GUO S, et al. Micropatterned ultrathin MOF membranes with enhanced molecular sieving property [J]. Angewandte Chemie International Edition, 2018, 57(42): 13892-13896. doi: 10.1002/anie.201809872 [19] BAI Y, DOU Y B, XIE L H, et al. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications [J]. Chemical Society Reviews, 2016, 45(8): 2327-2367. doi: 10.1039/C5CS00837A [20] 李昭, 顾博翰, 蒋自展, 等. UiO-66系列材料在CO2吸附存储与分离中的应用研究进展 [J]. 化工新型材料, 2018, 46(11): 216-221. LI Z, GU B H, JIANG Z Z, et al. Research progress of UiO-66 series materials in CO2 adsorption storage and separation [J]. New Chemical Materials, 2018, 46(11): 216-221(in Chinese).
[21] WANG C, LIU X, CHEN J P, et al. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66 [J]. Scientific Reports, 2015, 5: 1-10. doi: 10.9734/JSRR/2015/14076 [22] 韩易潼, 刘民, 李克艳, 等. 高稳定性金属有机骨架UiO-66的合成与应用 [J]. 应用化学, 2016, 33(4): 367-378. doi: 10.11944/j.issn.1000-0518.2016.04.150439 HAN Y T, LIU M, LI K Y, et al. Preparation and application of high stability metal-organic framework UiO-66 [J]. Chinese Journal of Applied Chemistry, 2016, 33(4): 367-378(in Chinese). doi: 10.11944/j.issn.1000-0518.2016.04.150439
[23] FANG S Y, ZHANG P, GONG J L, et al. Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation[J]. Chemical Engineering Journal, 2020, 385(August 2019): 123400. [24] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. doi: 10.1021/ja8057953 [25] CHAVAN S M, SHEARER G C, SVELLE S, et al. Synthesis and characterization of amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology [J]. Inorganic Chemistry, 2014, 53(18): 9509-9515. doi: 10.1021/ic500607a [26] SAFARI G H, ZARRABI M, HOSEINI M, et al. Trends of natural and acid-engineered pumice onto phosphorus ions in aquatic environment: Adsorbent preparation, characterization, and kinetic and equilibrium modeling [J]. Desalination and Water Treatment, 2015, 54(11): 3031-3043. doi: 10.1080/19443994.2014.915385 [27] CHUBAR N I, KANIBOLOTSKYY V A, STRELKO V V, et al. Adsorption of phosphate ions on novel inorganic ion exchangers [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2005, 255(1/2/3): 55-63. [28] CHITRAKAR R, TEZUKA S, SONODA A, et al. Selective adsorption of phosphate from seawater and wastewater by amorphous zirconium hydroxide [J]. Journal of Colloid and Interface Science, 2006, 297(2): 426-433. doi: 10.1016/j.jcis.2005.11.011 [29] LONG F, GONG J L, ZENG G M, et al. Removal of phosphate from aqueous solution by magnetic Fe-Zr binary oxide [J]. Chemical Engineering Journal, 2011, 171(2): 448-455. doi: 10.1016/j.cej.2011.03.102 [30] LIU H L, SUN X F, YIN C Q, et al. Removal of phosphate by mesoporous ZrO2 [J]. Journal of Hazardous Materials, 2008, 151(2/3): 616-622. [31] REN Z M, SHAO L N, ZHANG G S. Adsorption of phosphate from aqueous solution using an iron-zirconium binary oxide sorbent [J]. Water, Air, & Soil Pollution, 2012, 223(7): 4221-4231. [32] TANG Y Q, ZONG E M, WAN H Q, et al. Zirconia functionalized SBA-15 as effective adsorbent for phosphate removal [J]. Microporous and Mesoporous Materials, 2012, 155: 192-200. doi: 10.1016/j.micromeso.2012.01.020 [33] HASHITANI H, OKUMURA M, FUJINAGA K. Preconcentration method for phosphate in water using activated carbon loaded with zirconium [J]. Fresenius' Zeitschrift Für Analytische Chemie, 1987, 326(6): 540-542. [34] DELANEY P, MCMANAMON C, HANRAHAN J P, et al. Development of chemically engineered porous metal oxides for phosphate removal [J]. Journal of Hazardous Materials, 2011, 185(1): 382-391. doi: 10.1016/j.jhazmat.2010.08.128 [35] LI J, ZHANG S W, CHEN C L, et al. Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles [J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4991-5000. [36] 王凯, 邱广明, 魏利强, 等. 氨基功能化P(St-HEMA)磁性微球的制备及对Pb(Ⅱ)的吸附性能 [J]. 功能材料, 2020, 51(3): 3176-3181,3188. WANG K, QIU G M, WEI L Q, et al. Amino functional P (St-HEMA) the preparation of magnetic microspheres and adsorption properties of Pb(Ⅱ) [J]. Functional Materials, 2020, 51(3): 3176-3181,3188(in Chinese).
[37] MA Y, ZHENG Y M, CHEN J P. A zirconium based nanoparticle for significantly enhanced adsorption of arsenate: Synthesis, characterization and performance [J]. Journal of Colloid and Interface Science, 2011, 354(2): 785-792. doi: 10.1016/j.jcis.2010.10.041 [38] ZHU X Y, LI B, YANG J, et al. Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67 [J]. ACS Applied Materials & Interfaces, 2015, 7(1): 223-231. [39] ZHAO X, LIU D, HUANG H, et al. The stability and defluoridation performance of MOFs in fluoride solutions [J]. Microporous and Mesoporous Materials, 2014, 185: 72-78. doi: 10.1016/j.micromeso.2013.11.002