-
随着工业化和城市化的快速推进,人类对能源的需求量日益增加,能源短缺和环境恶化是当前人类面临的两大挑战[1-5]. 催化剂已被广泛应用于环境保护、降低能耗以及能源生产中[6-9]. 催化过程对于能量的储存和转换起着重要的作用,而在这些催化过程中,高效催化剂起着核心作用[10-11]. 人们对催化剂的研究已逐渐从纳米水平(>5 nm)延伸到金属团簇(>1 nm)和单原子(0.1—0.2 nm)水平,然而随着尺寸的减小,催化剂会表现出截然不同的催化行为[12].
金属单原子催化剂的概念由中国科学院大连化学物理研究所的张涛院士、清华大学李隽教授及美国亚利桑那州立大学刘景月教授于2011年共同提出[13]. 他们利用原子锚定,在FeOx载体上负载Pt原子,成功制备出首例铂单原子催化剂Pt/FeOx,且最大限度地利用金属单原子独特的优势,提高了催化剂对CO的催化活性和选择性,其效率高达100%. 与多数传统的多相催化剂相比,单原子催化剂拥有极大的金属利用率、优异的催化活性和结构稳定性,已经在多相催化领域展现出极大的潜力与优势[14-15].
在金属催化剂的多相反应中,金属颗粒的尺寸起着至关重要的作用[16-17]. 将颗粒从几纳米减小到原子尺寸的分散单一原子会极大地改变金属的形态和电子性质,从而极大地调节其催化性能[18-19],同时,还能增加催化活性位点的数量和暴露的活性表面积[20]. 在金属催化剂中,低配位的金属原子通常作为活性位点,而尺寸减小往往会在活性增强的金属物种上产生不饱和的配位位点,因此金属催化剂的催化活性可随着金属颗粒尺寸的减小而相应提高(图1)[21]. 近年来有实验和理论研究表明,与纳米催化剂相比,单原子催化剂具有独特的电子性质,并在多种反应中表现出优异的活性和选择性[22].
均相催化剂具有高原子利用率、高活性和高选择性的优点. 但均相催化剂存在难以从原料和产品中分离的问题,严重限制其在工业上的实际应用. 相反,传统的多相催化剂通常具有稳定性,而且易于从反应混合物中分离出来,有利于催化剂的回收,但其在催化过程往往表现出较低的原子利用率. 而单原子催化剂,具有均相催化剂独立活性位点、高活性和高选择性的优点,也具有多相催化剂稳定且易于分离的优点,有望架起均相和非均相催化剂之间的桥梁(图2)[10, 23-25]. 但单原子催化剂也存在不足,如:金属单原子比相关的金属纳米粒子和团簇具有更高的表面能,使其在反应条件下容易发生金属原子团聚[26-28],进而影响后续反应. 然而,将单原子与合适的载体结合是有效减少团聚发生的方法之一. 最近的研究证实,以适当的合成策略,通过强电子或共价相互作用可以使单原子与载体紧密结合[17, 29].
基于上述优点,近年来,金属单原子作为催化剂在催化领域已取得重要进展(表1). 本文首先从金属单原子的稳定条件出发,对单原子稳定负载的条件或研究方法进行讨论;其次,总结单原子催化剂常用的制备方法及近年来在环境和能源方面的应用;最后对该研究领域的发展与应用前景进行了展望.
金属单原子催化剂稳定、制备与应用的研究进展
Research progress in stabilization, preparation and application of metal single atom catalysts
-
摘要: 金属单原子通常具有独特的物理和化学特性,在催化应用中展现出优越的催化剂活性,已成为催化领域的一个研究热点. 单原子催化剂是一种由单个金属原子锚定在载体上的催化剂,其最大限度地提高了金属原子的利用效率. 单原子催化剂的制备方法主要有湿法化学法、金属-有机配位法、原子层沉积法和高温裂解法. 本文基于近几年国内外单原子催化剂的研究,总结了单原子稳定负载的主要条件,单原子最优结合位点的预测和判断方法. 同时,围绕单原子催化剂的特性,系统地讨论了单原子催化剂在环境和能源等方面的应用,并进行了展望.Abstract: Single-atom catalysts (SACs) usually have unique physical and chemical properties, showing excellent catalytic activity in catalytic applications, which has become a new research hotspot in the field of catalysis. SACs is a kind of catalyst anchored on the support by single metal atoms, which can maximize the utilization efficiency of metal atoms. The preparation methods of SACs mainly include wet-chemistry, metal organic coordination, atomic layer deposition (ALD) and pyrolysis method. Based on the research of SACs at home and abroad in recent years, this paper summarizes the main conditions of stable loading of single-atoms, the prediction and judgment methods of the optimal binding sites of single-atoms. Based on the characteristics of SACs, the applications of SACs in environment and energy were systematically discussed. Finally, the prospect of SACs was given.
-
Key words:
- metal single-atom catalysts /
- stability of single-atom /
- preparation /
- application
-
图 4 设计特定位置的单原子光催化剂(a) TiO2锐钛矿(101)表面上单个金属原子的候选结合位点. (b) 计算SAC形成能(EF)的Born-Haber热力学循环:结合位点制备能(EP)+单原子结合能(EB) [57]
Figure 4. Designing a site-specific single-atom photocatalyst (a) Candidate binding sites for single metal atoms on a TiO2anatase (101) surface. (b) Born-Haber thermodynamic cycle for calculating SAC formation energies (EF): the binding site preparation energy (EP) + the single atom binding energy (EB) [57]
图 6 Pt1/FeOx单原子催化剂在800℃焙烧前(A, B)后(C, D)的球差透射电镜表征(图6B中以圆圈标注Pt原子) [59]
Figure 6. Aberration-corrected high-angle annular dark field scanning transmission electron microscopy (AC HAADF-STEM) characterization of Pt1/FeOx single atom catalyst before (A, B) and after (C, D) calcination at 800℃ (Pt atom is marked with circle in Fig. 6B)[59]
图 9 (a) 原子银掺杂MnO2-PHMs的合成路线;催化剂对大肠杆菌(107cfu·mL−1)的灭活效率:(b)氙灯照射下、不同滤光片(420、480、560、690、830 nm)的(c)灭活效率[82]
Figure 9. (a) Synthetic route of atomic Ag-doped MnO2-PHMs; inactivation efficiency against E. coli (107 cfu·mL−1) with catalysts, (b) under Xenon lamp irradiation,(c) with different filter (420, 480, 560, 690 and 830 nm)[82]
图 10 (a–d) MCM@MoS2–镍纳米纤维的FESEM图和 (e、f) TEM图像;(g) MCM@MoS2–Ni的电化学性能;(h) 合成MCM@MoS2–Ni的工艺示意图:I)MoS2纳米片的生长,II)孤立Ni原子的表面修饰[88]
Figure 10. (a–d) FESEM images, and (e,f) TEM images of the hierarchical MCM@MoS2–Ni nanofibers; (g) electrochemical performance of theMCM@MoS2–Ni; (h) schematic illustration of the synthetic process for MCM@MoS2–Ni: I) growth of MoS2nanosheets, II) surface decoration of isolated Ni atoms[88]
图 11 (a) 在1mol·L-1 KOH溶液中的活性和稳定性:扫描速率为5 mV·s−1时的线性扫描伏安(LSV)极化曲线(iR补偿);(b)Tafel斜率;(c)EIS数据;(d)50 mV过电位下的TOF;(e)耐久性试验;(f)10 mA·cm−2的过电位计时电流曲线(左)和法拉第效率(右)[89]
Figure 11. (a) HER activity and stability in 1mol·L−1 KOH solution: linear sweep voltammetry (LSV) polarization curves (iR compensated) at scan rate of 5 mV·s−1; (b) Tafel slopes derived from (a); (c) EIS data; (d) TOF at 50 mV overpotential; (e) durability test; (f) chronoamperometric curve at an overpotential of 10 mA·cm−2 (left) and Faradaic efficiency (right).[89]
图 12 (a)分散在N掺杂碳气凝胶中的单个Fe原子(NCAST/Fe)的合成示意图;(b-c) 各种碳气凝胶以及Pt/C作为ORR催化剂在1600 r·min-1和5 mV· s−1下的LSV曲线;(d) NCALR/Fe炭气凝胶催化剂和Pt/C的Eonset、E1/2和Jk(在+0.85 V下)[5]
Figure 12. (a) Schematic illustration for the synthesis of single Fe atoms dispersed in N-doped carbon aerogels (NCAST/Fe); (b-c) LSV curves of the various carbon aerogels as well as Pt/ C as ORR catalysts at 1600 r·min-1 and 5 mV·s−1. (d)
Eonset , E1/2 and Jk (at +0.85 V) of the NCALR/Fe carbon aerogel catalyst and Pt/C[5] 图 13 (a) 以上6种电极的半波电位(E1/2,顶部)、动力电流密度(Jk,0.88 V,中间)和扩散限制电流密度(Jd,0.40 V,底部);SA-Fe/NHPC的 (b) 高倍镜STEM图像和相应的 (c) HAADF-STEM图像[45]
Figure 13. (a) The half-wave potential (E1/2, top), kinetic current density (Jk at 0.88 V, middle), and diffusion limited current density (Jd at 0.40 V, bottom) for the above six electrodes; (b) High-magnification STEM and the corresponding (c) HAADF-STEM images of SA-Fe/NHPC[45]
图 14 (a) ZnNx/C催化剂在不同外加电位下的TOFs;(b) -0.43V电位负载下ZnNx/C的长期稳定性及CO和H2的相应FEs;(c)提出的碳负载Zn-N4活性中心上完全CO2RR的反应途径[102]
Figure 14. (a) TOFs of ZnNx/C catalyst at different applied potentials;(b) long-term stability of ZnNx/C at a potential load of -0.43 V and the corresponding FEs of CO and H2; (c) the proposedreaction pathwaysfor complete CO2RR on carbon supported Zn-N4active site[102]
表 1 近年来关于金属单原子催化剂的研究、制备方法和应用
Table 1. Some recent reported metal single-atom catalysts with varied preparation and application.
催化剂
Catalyst金属单原子
Metal single-atom载体
Carrier制备方法
Preparation method应用
Application参考文献
ReferenceSA-Fe/NHPC Fe N掺杂层状多孔碳 湿法化学法 氧还原反应 [43] Pt/FeOx Pt Fe2O3 湿法化学法 甲烷氧化反应 [59] Fe-N-C Fe 氮掺杂多孔碳 金属-有机配位法 氧还原反应 [66] Pt1/CeO2 Pt 二氧化铈(CeO2) 原子层沉积法 一氧化碳氧化反应 [68] I-FeNx/g-C3N4 Fe 氮化碳(g-C3N4) 高温裂解法 降解亚甲基蓝(MB) [43] Co-N-C Co N掺杂碳 湿法化学法 降解污染物 [81] Ag/MnO2-PHMs Ag MnO2多孔空心微球 氧化还原沉淀法 光照下大肠杆菌的灭活 [82] MCM@MoS2–Ni Ni 多通道碳基(MCM)纳米纤维支撑的多层MoS2纳米片 湿法化学法 催化析氢 [88] CoSA/HCNFs Co 石墨化纳米纤维材料 静电纺丝法 二氧化碳还原反应 [103] -
[1] HUA Q F, ZHOU X, ZHANG B S, et al. Band modulation and interfacial engineering to generate efficient visible-light-induced bifunctional photocatalysts [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2919-2930. [2] CHEN L, REN J T, YUAN Z Y. Atomic heterojunction-induced electron interaction in P-doped g-C3N4 nanosheets supported V-based nanocomposites for enhanced oxidative desulfurization [J]. Chemical Engineering Journal, 2020, 387: 124164. doi: 10.1016/j.cej.2020.124164 [3] R L P, ZHOU W, SUN B J, et al. Defects-engineering of magnetic γ-Fe2O3 ultrathin nanosheets/mesoporous black TiO2 hollow sphere heterojunctions for efficient charge separation and the solar-driven photocatalytic mechanism of tetracycline degradation [J]. Applied Catalysis B:Environmental, 2019, 240: 319-328. doi: 10.1016/j.apcatb.2018.08.033 [4] ZHAO W P, WAN G, PENG C L, et al. Key single-atom electrocatalysis in metal-organic framework (MOF)-derived bifunctional catalysts [J]. ChemSusChem, 2018, 11(19): 3473-3479. doi: 10.1002/cssc.201801473 [5] HE T, ZHANG Y Q, CHEN Y, et al. Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum–air batteries [J]. Journal of Materials Chemistry A, 2019, 7(36): 20840-20846. doi: 10.1039/C9TA05981D [6] MACLAUGHLIN C. Role for standardization in electrocatalytic ammonia synthesis: a conversation with leo liu, lauren greenlee, and douglas macfarlane [J]. ACS Energy Letters, 2019, 4(6): 1432-1436. doi: 10.1021/acsenergylett.9b01123 [7] MPOURMPAKIS G, TAN K Y, DIXIT M. et al. Predicting metal−support interactions in oxide-supported single atom catalysts [J]. Industrial & Engineering Chemistry Research, 2019, 58: 20236-20246. [8] AHMAD M, CHEN S, YE F, et al. Efficient photo-Fenton activity in mesoporous MIL-100(Fe) decorated with ZnO nanosphere for pollutants degradation [J]. Applied Catalysis B:Environmental, 2019, 245: 428-438. doi: 10.1016/j.apcatb.2018.12.057 [9] ZHANG M, XIAO C M, YAN X, et al. Efficient removal of organic pollutants by metal-organic framework derived Co/C yolk-shell nanoreactors: size-exclusion and confinement effect [J]. Environmental Science & Technology, 2020, 54(16): 10289-10300. [10] JIAO L, JIANG H L. Metal-organic-framework-based single-atom catalysts for energy applications [J]. Chem, 2019, 5(4): 786-804. doi: 10.1016/j.chempr.2018.12.011 [11] ZHAO C X, LI B Q, LIU J N, et al. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for oxygen reduction reaction [J]. Angewandte Chemie International Edition, 2020, 60(9): 4448-4463. [12] LIU L C, CORMA A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles [J]. Chemical Reviews, 2018, 118(10): 4981-5079. doi: 10.1021/acs.chemrev.7b00776 [13] QIAO B T, WANG A Q, YANG X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx [J]. Nature Chemistry, 2011, 3(8): 634-641. doi: 10.1038/nchem.1095 [14] GUO Z, XIE Y B, XIAO J D, et al. Single-atom Mn–N4site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution [J]. Journal of the American Chemical Society, 2019, 141(30): 12005-12010. doi: 10.1021/jacs.9b04569 [15] HE T W, PUENTE SAR, DU A J. Atomically embedded asymmetrical dual-metal dimers on N-doped graphene for ultra-efficient nitrogen reduction reaction [J]. Journal of Catalysis, 2020, 388: 77-83. doi: 10.1016/j.jcat.2020.05.009 [16] CHEN Y, LIN J, LI L, et al. Identifying size effects of Pt as single atoms and nanoparticles supported on FeOx for the water-gas shift reaction [J]. ACS Catalysis, 2018, 8(2): 859-868. doi: 10.1021/acscatal.7b02751 [17] CHEN W L, MA Y L, LI F, et al. Strong electronic interaction of amorphous Fe2O3 nanosheets with single-atom Pt toward enhanced carbon monoxide oxidation [J]. Advanced Functional Materials, 2019, 29(42): 1904278. doi: 10.1002/adfm.201904278 [18] SHI X X, LIN Y, HUANG L, et al. Copper catalysts in semihydrogenation of acetylene: From single atoms to nanoparticles [J]. ACS Catalysis, 2020, 10(5): 3495-3504. doi: 10.1021/acscatal.9b05321 [19] WANG J, LI Z, WU Y, et al. Fabrication of single-atom catalysts with precise structure and high metal loading [J]. Advanced Materials, 2018, 30(48): 1801649. doi: 10.1002/adma.201801649 [20] SUN T T, XU L B, WANG D S, et al. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion [J]. Nano Research, 2019, 12(9): 2067-2080. doi: 10.1007/s12274-019-2345-4 [21] XIANG H J, FENG W, CHEN Y. Single-atom catalysts in catalytic biomedicine [J]. Advanced Materials, 2020, 32(8): 1905994. doi: 10.1002/adma.201905994 [22] LU Y B, KUO C T, KOVARIK L, et al. A versatile approach for quantification of surface site fractions using reaction kinetics: the case of CO oxidation on supported Ir single atoms and nanoparticles [J]. Journal of Catalysis, 2019, 378: 121-130. doi: 10.1016/j.jcat.2019.08.023 [23] CHEN F, JIANG X Z, ZHANG L L, et al. Single-atom catalysis: bridging the homo- and heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2018, 39(5): 893-898. doi: 10.1016/S1872-2067(18)63047-5 [24] CHEN F, WU X L, YANG L, et al. Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom cu catalyst [J]. Chemical Engineering Journal, 2020, 394: 124904. doi: 10.1016/j.cej.2020.124904 [25] LI X N, YANG X F, HUANG Y Q, et al. Supported noble-metal single atoms for heterogeneous catalysis [J]. Advanced Materials, 2019, 31(50): e1902031. doi: 10.1002/adma.201902031 [26] WANG J, HEIL T, ZHU B C, et al. A single Cu-center containing enzyme-mimic enabling full photosynthesis under CO2reduction [J]. ACS Nano, 2020, 14(7): 8584-8593. doi: 10.1021/acsnano.0c02940 [27] LI X, SURKUS A E, RABEAH J, et al. Cobaltsingle atom site catalysts with high stability for selective dehydrogenation of Formic Acid [J]. Angewandte Chemie International Edition, 2020, 59(37): 15849-15854. doi: 10.1002/anie.202004125 [28] LI J, HUANG H L, LIU P, et al. Metal-organic framework encapsulated single-atom Pt catalysts for efficient photocatalytic hydrogen evolution [J]. Journal of Catalysis, 2019, 375: 351-360. doi: 10.1016/j.jcat.2019.06.024 [29] HUANG L Z, WEI X L, GAO E L, et al. Single Fe atoms confined in two-dimensional MoS2 for sulfite activation: a biomimetic approach towards efficient radical generation [J]. Applied Catalysis B:Environmental, 2020, 268: 118459. doi: 10.1016/j.apcatb.2019.118459 [30] TIAN C C, ZHANG H Y, ZHU X, et al. A new trick for an old support: stabilizing gold single atoms on LaFeO3 perovskite [J]. Applied Catalysis B:Environmental, 2020, 261: 118178. doi: 10.1016/j.apcatb.2019.118178 [31] LAI W H, MIAO Z, WANG Y X, et al. Atomic-local environments of single-atom catalysts: synthesis, electronic structure, and activity [J]. Advanced Energy Materials, 2019, 9(43): 1900722. doi: 10.1002/aenm.201900722 [32] LIU J C, WANG Y G, LI J. Toward rational design of oxide-supported single-atom catalysts: atomic dispersion of gold on ceria [J]. Journal Of The American Chemical Society, 2017, 139(17): 6190-6199. doi: 10.1021/jacs.7b01602 [33] LIU C J, ZHANG T, LI J, et al. Theoretical understanding of the stability of single-atom catalysts [J]. National Science Review, 2018, 5(5): 638-641. doi: 10.1093/nsr/nwy094 [34] YANG J, LI W, WANG D, et al. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis [J]. Advanced Material, 2020, 32(49): e2003300. doi: 10.1002/adma.202003300 [35] YAN Q Q, WU D X, CHU S Q, et al. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution [J]. Nature Communications, 2019, 10(1): 4977. doi: 10.1038/s41467-019-12851-w [36] WANG K, WANG X, LIANG X. Synthesis of high metal loading single atom catalysts and exploration of the active center structure [J]. Chem Cat Chem, 2020, 13(1): 28-58. [37] PENG Y, LU B Z, CHEN S W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage [J]. Advanced Materials, 2018, 30(48): 1801995. doi: 10.1002/adma.201801995 [38] LIU K P, ZHAO X T, REN G Q, et al. Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts [J]. Nature Communications, 2020, 11(1): 1263. doi: 10.1038/s41467-020-14984-9 [39] MIERCZYNSKI P, MANIUKIEWICZ W, MANIECKI T. Comparative studies of Pd, Ru, Ni, Cu/ZnAl2O4 catalysts for the water gas shift reaction [J]. Open Chemistry, 2013, 11(6): 912-919. doi: 10.2478/s11532-013-0223-6 [40] ZHANG Q, QIN X X, DUAN MU F P, et al. Isolated platinum atoms stabilized by amorphous tungstenic acid: metal-support interaction for synergistic oxygen activation [J]. Angewandte Chemie International Edition, 2018, 57(30): 9351-9356. doi: 10.1002/anie.201804319 [41] TAN K, DIXIT M, DEAN J, et al. Predicting metal–support interactions in oxide-supported single-atom catalysts [J]. Industrial & Engineering Chemistry Research, 2019, 58(44): 20236-20246. [42] SU J W, GE R X, DONG Y, et al. Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion [J]. Journal of Materials Chemistry A, 2018, 6(29): 14025-14042. doi: 10.1039/C8TA04064H [43] AN S F, ZHANG G H, WANG T W, et al. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes [J]. ACS Nano, 2018, 12(9): 9441-9450. doi: 10.1021/acsnano.8b04693 [44] WANG Q, LI J, TU X J, et al. Single atomically anchored cobalt on carbon quantum dots as efficient photocatalysts for visible light-promoted oxidation reactions [J]. Chemistry of Materials, 2019, 32(2): 734-743. [45] ZHANG Z P, GAO X J, DOU M L, et al. Biomass derived N-doped porous carbon supported single fe atoms as superior electrocatalysts for oxygen reduction [J]. Small, 2017, 13(22): 1604290. doi: 10.1002/smll.201604290 [46] YANG J, ZENG D, ZHANG Q, et al. Single Mn atom anchored on N-doped porous carbon as highly efficient Fenton-like catalyst for the degradation of organic contaminants [J]. Applied Catalysis B:Environmental, 2020, 279: 119363. doi: 10.1016/j.apcatb.2020.119363 [47] LI X, HUANG X, XI S, et al. Single cobalt atoms anchored on porous N-Doped graphene with dual reaction sites for efficient Fenton-like catalysis [J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475. doi: 10.1021/jacs.8b05992 [48] DU W, ZHANG Q, SHANG Y, et al. Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation [J]. Applied Catalysis B:Environmental, 2020, 262: 118302. doi: 10.1016/j.apcatb.2019.118302 [49] WANG G L, NIE X W, JI X J, et al. Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porous carbon for degradation of organic pollutants: the synergism between Co and N [J]. Environmental Science:Nano, 2019, 6(2): 399-410. doi: 10.1039/C8EN01231H [50] MIAO J, GENG W, ALVAREZ P J J, et al. 2D N-doped porous carbon derived from polydopamine-coated graphitic carbon nitride for efficient nonradical activation of peroxymonosulfate [J]. Environmental Science & Technology, 2020, 54(13): 8473-8481. [51] SUN J F, XU Q Q,QI J L, et al. Isolated single atoms anchored on N-doped carbon materials as a highly efficient catalyst for electrochemical and organic reactions [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(39): 14630-14656. [52] AITBEKOVA A, WRASMAN C J, RISCOE A R, et al. Determining number of sites on ceria stabilizing single atoms via metal nanoparticle redispersion [J]. Chinese Journal of Catalysis, 2020, 41(6): 998-1005. doi: 10.1016/S1872-2067(19)63504-7 [53] ZHANG L, ZHAO X, YUAN Z, et al. Oxygen defect-stabilized heterogeneous single atom catalysts: preparation, properties and catalytic application [J]. Journal of Materials Chemistry A, 2021, 9(7): 3855-3879. doi: 10.1039/D0TA10541D [54] WAN J, CHEN W, JIA C, et al. Defect effects on TiO2nanosheets: stabilizing single atomic site Au and promoting catalytic properties [J]. Advanced Materials, 2018, 30(11): 1705369. doi: 10.1002/adma.201705369 [55] XIONG X, MAO C, YANG Z, et al. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia [J]. Advanced Energy Materials, 2020, 10(46): 2002928. doi: 10.1002/aenm.202002928 [56] 殷立峰, 李惠惠, 张圆正, 等. 单原子光催化剂的合成、表征及在环境与能源领域的应用 [J]. 材料导报, 2020, 34(2): 3056-3068. YIN L F, LI H H, ZHANG Y Z, et al. Single atom photocatalysts: synthesis, characterization and applications in the fields of environment and energy [J]. Materials Reports, 2020, 34(2): 3056-3068(in Chinese).
[57] LEE B H, PARK S, KIM M, et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts [J]. Nature Materials, 2019, 18(6): 620-626. doi: 10.1038/s41563-019-0344-1 [58] LIU W, ZHANG L, LIU X, et al. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond [J]. Journal Of The American Chemical Society, 2017, 139(31): 10790-10798. doi: 10.1021/jacs.7b05130 [59] LANG R, XI W, LIU J C, et al. Non defect-stabilized thermally stable single-atom catalyst, Nature Communications, 2019, 10 (1): 234. [60] ZHANG L L, WANG A Q, MILLER J T, et al. Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of Aryl chlorides in water [J]. ACS Catalysis, 2014, 4(5): 1546-1553. doi: 10.1021/cs500071c [61] 栾金义, 王成鸿, 孟凡宁, 等. 金属-有机框架材料在石化环保领域的应用 [J]. 化工进展, 2020, 39(2): 429-438. LUAN J Y, WANG C H, MENG F N, et al. Environmental applications of metal-organic frameworks in petrochemical industries [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 429-438(in Chinese).
[62] ZHANG H B, WEI J, DONG J C, et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework [J]. Angewandte Chemie International Edition, 2016, 55(46): 14310-14314. doi: 10.1002/anie.201608597 [63] ZUO Q, LIU T T, CHEN C S, et al. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution [J]. Angewandte Chemie International Edition, 2019, 58(30): 10198-10203. doi: 10.1002/anie.201904058 [64] CHEN X, MA DD, CHEN B, et al. Metal–organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe–N active sites for efficient bifunctional oxygen and carbon dioxide electroreduction [J]. Applied Catalysis B:Environmental, 2020, 267: 118720. doi: 10.1016/j.apcatb.2020.118720 [65] LI Z H, HE H Y, CAO H B, et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis [J]. Applied Catalysis B:Environmental, 2019, 240: 112-121. doi: 10.1016/j.apcatb.2018.08.074 [66] WANG J P, HAN G K, WANG L G, et al. ZIF-8 with ferrocene encapsulated: apromising precursor to single-atom Fe embedded nitrogen-doped carbon as highly efficient catalyst for oxygen electroreduction [J]. Small, 2018, 14(15): 1704282. doi: 10.1002/smll.201704282 [67] XIAO F, XU G L, SUN C J, et al. Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction [J]. Nano Energy, 2019, 61: 60-68. doi: 10.1016/j.nanoen.2019.04.033 [68] YE X X, WANG H W, LIN Y, et al. Insight of the stability and activity of platinum single atoms on ceria [J]. Nano Research, 2019, 12(6): 1401-1409. doi: 10.1007/s12274-019-2351-6 [69] LIANG S, HAO C, SHI Y. The power of single-atom catalysis [J]. ChemCatChem, 2015, 7(17): 2559-2567. doi: 10.1002/cctc.201500363 [70] ZUO S, JIN X, WANG X, et al. Sandwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values [J]. Applied Catalysis B:Environmental, 2021, 282: 119551. doi: 10.1016/j.apcatb.2020.119551 [71] LI Z, LI K, MA S, et al. Activation of peroxymonosulfate by iron-biochar composites: comparison of nanoscale Fe with single-atom Fe [J]. Journal of Colloid and Interface Science, 2021, 582: 598-609. doi: 10.1016/j.jcis.2020.08.049 [72] LI Y, YANG T, QIU S, et al. Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species [J]. Chemical Engineering Journal, 2020, 389: 124382. doi: 10.1016/j.cej.2020.124382 [73] JIANG N, XU H, WANG L, et al. Nonradical oxidation of pollutants with single-atom-Fe(III)-activated persulfate: Fe(V) being the possible intermediate oxidant [J]. Environmental Science & Technology, 2020, 54(21): 14057-14065. [74] CHEN M, WANG N, ZHU L. Single-atom dispersed Co-N-C: A novel adsorption-catalysis bifunctional material for rapid removing bisphenol A [J]. Catalysis Today, 2020, 348(15): 187-193. [75] YIN Y, LIW L, XU CL, et al. Ultrafine copper nanoclusters and single sites for Fenton-like reactions with high atom utilities [J]. Environmental Science:Nano, 2020, 7: 2595-2606. doi: 10.1039/D0EN00505C [76] CUI Y, XU J W, ZHENG X L, et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2 [J]. Nature Sustainability, 2021, 4: 233-241. doi: 10.1038/s41893-020-00635-w [77] LUO T, HU X, SHE Z, et al. Synergistic effects of Ag-doped and morphology regulation of graphitic carbon nitride nanosheets for enhanced photocatalytic performance [J]. Journal of Molecular Liquids, 2021, 324: 114772. doi: 10.1016/j.molliq.2020.114772 [78] XU T, ZHENG H, ZHANG P. Isolated Pt single atomic sites anchored on nanoporous TiO2 film for highly efficient photocatalytic degradation of low concentration toluene [J]. Journal of Hazardous Materials, 2020, 388: 121746. doi: 10.1016/j.jhazmat.2019.121746 [79] XU T, ZHAO H, ZHENG H, et al. Atomically Pt implanted nanoporous TiO2 film for photocatalytic degradation of trace organic pollutants in water [J]. Chemical Engineering Journal, 2020, 385: 123832. doi: 10.1016/j.cej.2019.123832 [80] YANG Y, ZENG G, HUANG D, et al. In situ grown single-atom cobalt on polymeric carbon nitride with bidentate ligand for efficient photocatalytic degradation of refractory antibiotics [J]. Small, 2020, 16(29): e2001634. doi: 10.1002/smll.202001634 [81] XU HD, JIANG N, WANG D, et al. Improving pms oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways [J]. Applied Catalysis B:Environmental, 2020, 263: 118350. doi: 10.1016/j.apcatb.2019.118350 [82] XIA D H, LIU H D, XU BH, et al. Single Ag atom engineered 3D-MnO2 porous hollow microspheres for rapid photothermocatalytic inactivation of E. coli under solar light [J]. Applied Catalysis B:Environmental, 2019, 245: 177-189. doi: 10.1016/j.apcatb.2018.12.056 [83] CAI J, JAVED R, YE D, et al. Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction [J]. Journal of Materials Chemistry A, 2020, 8(43): 22467-22487. doi: 10.1039/D0TA06942F [84] LIU H, PENG X, LIU X. Single-atom catalysts for the hydrogen evolution reaction [J]. ChemElectroChem, 2018, 5(20): 2963-2974. doi: 10.1002/celc.201800507 [85] JIN H, SULTAN S, HA M, et al. Simple and scalable mechanochemical synthesis of noble metal catalysts with single atoms toward highly efficient hydrogen evolution [J]. Advanced Functional Materials, 2020, 30(25): 2000531. doi: 10.1002/adfm.202000531 [86] LI J, BANIS M N, REN Z, et al. Unveiling the nature of Pt single-atom catalyst during electrocatalytic hydrogen evolution and oxygen reduction reactions [J]. Small, 2021: e2007245. [87] LV X, WEI W, ZHAO P, et al. Oxygen-terminated BiXenes and derived single atom catalysts for the hydrogen evolution reaction [J]. Journal of Catalysis, 2019, 378: 97-103. doi: 10.1016/j.jcat.2019.08.019 [88] ZHANG H B, YU L, CHEN T, et al. Urface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution [J]. Advanced Functional Materials, 2018, 28(51): 1807086. doi: 10.1002/adfm.201807086 [89] CHEN C H, WU D Y, LI Z, et al. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution [J]. Advanced Energy Materials, 2019, 9(20): 1803913. doi: 10.1002/aenm.201803913 [90] 陈卫, 张友林, 李晓坤, 等. 金催化-还原策略制备单原子层铂的Au@Pt核壳结构及电催化应用[J], 中国科学: 化学, 2017, 47(5): 655-662. CHEN W, ZHANG Y L, LI X K, et al. Synthesis of Au@Pt core-shell nanoparticles with a monolayer Pt shell using the Au-catalytic-reduction strategy and theapplication in electrocatalysis[J]. Scientia Sinica Chimica, 2017, 47(5): 655-662(in Chinese).
[91] ZHU C Z, FU S F, SONG J H, et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts [J]. Small, 2017, 13(15): 1603407. doi: 10.1002/smll.201603407 [92] DU Z Y, YU P, WANG L, et al. Cubic imidazolate frameworks-derived CoFe alloy nanoparticles-embedded N-doped graphitic carbon for discharging reaction of Zn-air battery [J]. Science China Materials, 2019, 63(3): 327-338. [93] SUN W, DU L, TAN Q, et al. Engineering of nitrogen coordinated single cobalt atom moieties for oxygen electroreduction [J]. ACS Appl Mater Interfaces, 2019, 11(44): 41258-41266. doi: 10.1021/acsami.9b11830 [94] CHEN Z W, SU D, XIAO M L, et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction [J]. Angewandte Chemie International Edition, 2019, 58(28): 9648-9648. doi: 10.1002/anie.201907250 [95] ZENG H, LIU X, CHEN F, et al. Single atoms on a nitrogen-doped boron phosphide monolayer: anew promising bifunctional electrocatalyst for ORR and OER [J]. ACS Appl Mater Interfaces, 2020, 12(47): 52549-52559. doi: 10.1021/acsami.0c13597 [96] ZHU C, SHI Q, XU B Z, et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust M-Nx active moieties enable enhanced ORR performance [J]. Advanced Energy Materials, 2018, 8(29): 1801956. doi: 10.1002/aenm.201801956 [97] LIU D, LI J C, DING S, et al. 2D single-atom catalyst with optimized iron sites produced by thermal melting of metal-organic frameworks for oxygen reduction reaction [J]. Small Methods, 2020, 4(6): 1900827. doi: 10.1002/smtd.201900827 [98] XU Y, ZHU L, CUI X, et al. Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly efficient oxygen reduction reaction [J]. Nano Research, 2020, 13(3): 752-758. doi: 10.1007/s12274-020-2689-9 [99] 郑岳青, 朱红林, 李文英, 等. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7) : 939-953. ZHENG Y Q, ZHU H H, LI W Y, et al. N-doped porous carbon supported transition metal single atomic catalysts for CO2 electroreduction reaction[J], Progress in Chemistry, 2019, 31(7) : 939-953(in Chinese).
[100] ZHANG E H, WANG T, YU K, et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction [J]. Journal of the American Chemical Society, 2019, 141(42): 16569-16573. doi: 10.1021/jacs.9b08259 [101] HOSSAIN MD, HUANG Y, YU T H, et al. Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics [J]. Nature Communications, 2020, 11(1): 2256. doi: 10.1038/s41467-020-16119-6 [102] YANG F, SONG P, LIU X Z, et al. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst [J]. Angewandte Chemie International Edition, 2018, 57(38): 12303-12307. doi: 10.1002/anie.201805871 [103] YANG HP, LIN Q, WU Y, et al. Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density [J]. Nano Energy, 2020, 70: 104454. doi: 10.1016/j.nanoen.2020.104454 [104] MA Z M, SONG T, YUAN Y Z, et al. Synergistic catalysis on Fe–Nx sites and Fe nanoparticles for efficient synthesis of quinolines and quinazolinones via oxidative coupling of amines and aldehydes [J]. Chemical Science, 2019, 10(44): 10283-10289. doi: 10.1039/C9SC04060A [105] YUAN J Y, ZHANG W H, LI X X, et al. A high performance catalyst for methane conversion to methanol: graphene supported single atom Co [J]. Chemical Communications, 2018, 54(18): 2284-2287. doi: 10.1039/C7CC08713F [106] LIU Y M, XU Q, FAN X F, et al. Electrochemical reduction of N2 to ammonia on Co single atom embedded N-doped porous carbon under ambient conditions [J]. Journal of Materials Chemistry A, 2019, 7(46): 26358-26363. doi: 10.1039/C9TA10382A [107] ZOU X P, WANG L N, LI X N, et al. Noble-metal-free single-atom catalysts CuAl4O7-9(-) for CO oxidation by O2 [J]. Angewandte Chemie International Edition, 2018, 57(34): 10989-10993. doi: 10.1002/anie.201807056 [108] 高李杰, 孟凯, 姜伟丽, 等. 负载固相的铑基催化剂应用于烯烃氢甲酰化反应的研究进展 [J]. 化工进展, 2018, 37(4): 1433-1441. GAO L J, MENG K, JIANG W L, et al. Research progress of immobilized Rh-based catalysts on solid supports for olefin hydroformylation [J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1433-1441(in Chinese).