-
汞是一种全球性的环境污染物[1]。甲基汞作为最重要的有机汞形态,具有极强的神经毒性,可在生物体内累积并在食物链中放大,从而造成生态与健康风险。零价汞的大气半衰期为0.5—1 a,可随大气环流在全球范围内进行长距离传输。因此,在无明显汞排放源的偏远地区(如南北极、青藏高原),也观测到了一定程度的汞污染。经由人为源(如化石燃料燃烧、金属冶炼、垃圾焚烧等)排放到大气中的汞约为2000—3000 t·a−1[2]。而自然源(如火山喷发、森林大火、土壤与森林释放、海洋释放等)导致的一次与二次汞排放(沉降后的再排放)可达5500 t·a−1,约为人为源汞通量的2倍[2]。自《水俣公约》的实施,汞的使用和人为排放得到了有效的控制,大气汞浓度逐步降低。但汞自然源的一次与二次排放使得全球汞污染问题仍将长期存在。此外,在后水俣时代,除了受汞排放减少的控制外,生物体内汞累积将受到环境介质中汞分子转化等过程的显著影响[2]。因此,汞在环境多介质中的形态转化过程对汞的全球分布与生态健康效应具有深远影响。
汞还原是汞环境分子转化的重要过程,控制着汞的局域/长距离传输与甲基化。零价汞水溶性低,大气传输半衰期较长,汞的还原可促进汞从其它环境介质向大气气相的迁移,从而增强汞的区域与全球传输。另一方面,汞的还原与挥发可降低汞在土壤、水体、底泥和冰雪等介质中汞的含量,进而降低汞微生物甲基化的底物浓度与甲基汞的生成。此外,由于零价汞的甲基化率低于二价汞,汞的还原也可能降低微生物汞甲基化的效率[3-4]。
汞的还原反应在大气、地表水、底泥、土壤、冰雪等多种环境介质中均可发生,主要分为化学还原与微生物还原。本文介绍了汞的化学/微生物还原在汞生物地球化学循环中的重要作用;聚焦于微生物还原,详细总结了有氧与缺氧条件下汞微生物还原的途径与机制,提出了微生物还原汞其它可能的新机制,对相关领域的研究进行了展望。
环境中汞的微生物还原过程及机制
Microbial reduction process and mechanism of mercury in the environment
-
摘要: 汞是一种全球性的环境污染物。汞的还原过程可降低地表环境汞浓度,促进汞的大气传输,对汞的区域/全球循环、甲基化及生物积累具有重要的作用。地表环境微生物还原是汞还原的重要过程,在多种环境介质中均可发生。本文介绍了多种环境介质中微生物汞还原在汞生物地球化学循环中的重要作用,详细总结了有氧与缺氧条件下微生物汞还原的途径与机制,提出了微生物还原汞的其它可能机制,并对相关领域的研究进行了展望。Abstract: Mercury (Hg) is a global environmental pollutant. The reduction of Hg2+ in multiple environmental matrices, which can reduce the Hg concentrations in terrestrial and marine systems and promote the transport of Hg in atmosphere, is of great importance in the regional/global cycle, methylation, and bioaccumulation of Hg. Microbial reduction is one of the important processes of Hg reduction, which can occur in a variety of environmental compartments. This review introduced the important role of microbial reduction in Hg biogeochemical cycle in a variety of environmental compartments, summarized the detailed pathways and mechanisms regarding microbial Hg2+ reduction under aerobic and anoxic conditions, and proposed other possible mechanisms of microbial Hg2+ reduction and future research perspective in related fields.
-
Key words:
- mercury /
- reduction /
- microorganisms /
- aerobic /
- anaerobic
-
-
[1] DRISCOLL C T, MASON R P, CHAN H M, et al. Mercury as a global pollutant: sources, pathways, and effects [J]. Environmental Science & Technology, 2013, 47(10): 4967-4983. [2] UNEP. Global Mercury Assessment [R]. Geneva, Switzerland, UNEP Chemicals and Health Branch. [3] COLOMBO M J, HA J, REINFELDER J R, et al. Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricans ND132 [J]. Geochimica Et Cosmochimica Acta, 2013, 112(7): 166-177. [4] HU H, LIN H, ZHENG W, et al. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria [J]. Nature Geoscience, 2013, 6(9): 751-754. doi: 10.1038/ngeo1894 [5] PONGPRUEKSA P, LIN C J, LINDBERG S E, et al. Scientific uncertainties in atmospheric mercury models Ⅲ: Boundary and initial conditions, model grid resolution, and Hg(Ⅱ) reduction mechanism [J]. Atmospheric Environment, 2008, 42(8): 1828-1845. doi: 10.1016/j.atmosenv.2007.11.020 [6] SEIGNEUR C, VIJAYARAGHAVAN K, LOHMAN K, et al. Modeling the atmospheric fate and transport of mercury over North America: Power plant emission scenarios [J]. Fuel Processing Technology, 2004, 85(6-7): 441-450. doi: 10.1016/j.fuproc.2003.11.001 [7] LIN C J, PEHKONEN S O. The chemistry of atmospheric mercury: A review [J]. Atmospheric Environment, 1999, 33(13): 2067-2079. doi: 10.1016/S1352-2310(98)00387-2 [8] SAIZ-LOPEZ A, SITKIEWICZ S, ROCA-SANJUÁN D, et al. Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition [J]. Nature Communications, 2018, 9(1): 4796. doi: 10.1038/s41467-018-07075-3 [9] MUNTHE J, XIAO Z F, LINDQVIST O. The aqueous reduction of divalent mercury by sulfite [J]. Water Air & Soil Pollution, 1991, 56(1): 621-630. [10] LIN S I, ARIYA P A. Reduction of oxidized mercury species by dicarboxylic acids (C2-C4): Kinetic and product studies [J]. Environmental Science & Technology, 2008, 42(14): 5150-5155. [11] LIN C J, PEHKONEN S O. Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol [J]. Atmospheric Environment, 1997, 31(24): 4125-4137. doi: 10.1016/S1352-2310(97)00269-0 [12] ALBERTSJJ S J E, MILLER R W, NUTTER D E. Elemental mercury evolution mediated by humic acid [J]. Science, 1974, 184(4139): 895-896. doi: 10.1126/science.184.4139.895 [13] TPERETYAZH K O, CHARLET L, MURESAN B. Formation of dissolved gaseous mercury in a tropical lake (Petit-Saut reservoir, French Guiana) [J]. Science of the Total Environment, 2006, 364(1-3): 260-271. doi: 10.1016/j.scitotenv.2005.06.016 [14] MONPERRUS M, TESSIER E, AMOUROUX D, et al. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea [J]. Marine Chemistry, 2007, 107(1): 49-63. doi: 10.1016/j.marchem.2007.01.018 [15] KIM H, RHEE T S, HAHM D, et al. Contrasting distributions of dissolved gaseous mercury concentration and evasion in the North Pacific Subarctic Gyre and the Subarctic Front [J]. Oceanographic Research Papers, 2016, 110: 90-98. doi: 10.1016/j.dsr.2016.02.001 [16] BARKAY T, LIEBERT C, GILLMAN M. Environmental significance of the potential for mer(Tn21)-mediated reduction of Hg2+ to Hg0 in natural waters [J]. Applied & Environmental Microbiology, 1989, 55(5): 1196-1202. [17] VANDAL G M, FITZGERALD W F, ROLFHUS K R, et al. Modeling the elemental mercury cycle in Pallette Lake, Wisconsin, USA [J]. Water Air & Soil Pollution, 1995, 80(1-4): 529-538. [18] MASON R, MOREL F, HEMOND H. The role of microorganisms in elemental mercury formation in natural waters [J]. Heavy Metals in the Environment, 1995, 80(1-4): 775-787. [19] POULAIN A J, NI CHADHAIN S M, ARIYA P A, et al. Potential for mercury reduction by microbes in the High Arctic [J]. Applied & Environmental Microbiology, 2007, 73(7): 2230-2238. [20] BOUFFARD A, AMYOT M. Importance of elemental mercury in lake sediments [J]. Chemosphere, 2009, 74(8): 1098-1103. doi: 10.1016/j.chemosphere.2008.10.045 [21] GUEVARA S R, IEK S, REPINC U K, et al. Novel methodology for the study of mercury methylation and reduction in sediments and water using 197Hg radiotracer [J]. Analytical & Bioanalytical Chemistry, 2007, 387(6): 2185-2197. [22] BRAZEAU M L, BLAIS J M, PATERSON A M, et al. Evidence for microbially mediated production of elemental mercury (Hg0) in subarctic lake sediments [J]. Applied Geochemistry, 2013, 37: 142-148. doi: 10.1016/j.apgeochem.2013.07.020 [23] CHOI H D, HOLSEN T M. Gaseous mercury emissions from unsterilized and sterilized soils: The effect of temperature and UV radiation [J]. Environmental Pollution, 2009, 157(5): 1673-1678. doi: 10.1016/j.envpol.2008.12.014 [24] PANNU R, SICILIANO S D, O'DRISCOLL N J. Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils [J]. Environmental Pollution, 2014, 193: 138-146. doi: 10.1016/j.envpol.2014.06.023 [25] POULIN B A A, GEORGE R, KATHRYN L, et al. Mercury transformation and release differs with depth and time in a contaminated riparian soil during simulated flooding [J]. Geochimica Et Cosmochimica Acta, 2016, 176: 118-138. doi: 10.1016/j.gca.2015.12.024 [26] OSTERWALDER S, HUANG J H, SHETAYA W H, et al. Mercury emission from industrially contaminated soils in relation to chemical, microbial, and meteorological factors [J]. Environmental Pollution, 2019, 250: 944-952. doi: 10.1016/j.envpol.2019.03.093 [27] LU Z, YUAN W, LUO K, et al. Litterfall mercury reduction on a subtropical evergreen broadleaf forest floor revealed by multi-element isotopes [J]. Environmental Pollution, 2020, 268: 115867. [28] DOMMERGUE A, GAUCHARD P A, BOUTRON C F, et al. The fate of mercury species in a sub-arctic snowpack during snowmelt [J]. Geophysical Research Letters, 2003, 30(12): 1621-1625. [29] LALONDE J D, DOYON M R, AUCLAIR J C. Photo-induced Hg(Ⅱ) reduction in snow from the remote and temperate Experimental Lakes Area (Ontario, Canada) [J]. Geophysical Research-Atmospheres, 2003, 108(6): 4200. [30] MOLLER A K, AL-SOUD W, SORENSEN S J, et al. Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic [J]. Fems Microbiology Ecology, 2011, 75(3): 390-401. doi: 10.1111/j.1574-6941.2010.01016.x [31] BARKAY T, GILLMAN M. Environmental significance of the potential for mer-mediated reduction of Hg2+to Hg0 in natural-waters [J]. Applied & Environmental Microbiology, 1985, 55(5): 1196-1202. [32] BARKAY T. Adaptation of aquatic microbial communities to Hg2+ stress [J]. Applied & Environmental Microbiology, 1987, 53(12): 2725-2732. [33] BARKAY T, SAOUTER E, HORN J. Mercury biotransformations and their potential for remediation of mercury contamination [J]. Biodegradation, 1992, 3(2-3): 147-159. doi: 10.1007/BF00129080 [34] BARKAY T, MILLER S M, SUMMERS A O. Bacterial mercury resistance from atoms to ecosystems [J]. FEMS Microbiology Reviews, 2003, 27(2-3): 355-384. doi: 10.1016/S0168-6445(03)00046-9 [35] BENISON G C, PAOLA D, JACOB E, et al. A stable mercury-containing complex of the organomercurial lyase MerB: Catalysis product releaseand direct transfer to MerA [J]. Biochemistry, 2004, 43(26): 8333-8345. doi: 10.1021/bi049662h [36] BOYD E S, TAMAR B. The mercury resistance operon: From an origin in a geothermal environment to an efficient detoxification machine [J]. Frontiers in Microbiology, 2012, 3: 349. [37] IWAHORI K, TAKEUCH F, KAMIMURA K, et al. Ferrous ion-dependent volatilization of mercury by the plasma membrane of Thiobacillus ferrooxidans [J]. Applied & Environmental Microbiology, 2000, 66(9): 3823-3827. [38] TSUYOSHI S, FUMIAKI T, ATSUNORI N, et al. Cytochrome c oxidase purified from a mercury-resistant strain of Acidithiobacillus ferrooxidans Volatilizes Mercury [J]. Bioscience & Bioengineering, 2001, 92(1): 44-49. [39] APPIA-AYME C, GUILIANI N, RATOUCHNIAK J, et al. Characterization of an operon encoding two c-type cytochromes, an aa(3)-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020 [J]. Environmental Microbiology Reports, 1999, 65(11): 4781-4787. [40] SHI L, RICHARDSON D J, WANG Z, et al. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer [J]. ChemInform, 2009, 1(4): 220-227. [41] HAIYAN H, HUI L, WANG Z, et al. Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA [J]. Environmental Science & Technology, 2013, 47(19): 10922-10930. [42] MASON R P, REINFELDER J R, MOREL F. Uptake, toxicity, and trophic transfer of mercury in a coastal diatom [J]. Environmental Science & Technology, 1996(30): 1835-1845. [43] GRÉGOIRE D S, POULAIN A J. A physiological role for Hg(Ⅱ) during phototrophic growth [J]. Nature Geoscience, 2016, 9(2): 121-125. doi: 10.1038/ngeo2629 [44] POULAIN A J, FINDLAY D, TELOR S, et al. Biological and photochemical production of dissolved gaseous mercury in a boreal lake [J]. Limnology Oceanography, 2004(49): 2265-2275. [45] WIATROWSKI H A, WARD P M, BARKAY T. Novel reduction of mercury (Ⅱ) by mercury-sensitive dissimilatory metal reducing bacteria [J]. Environmental Science & Technology, 2006, 40(21): 6690-6696. [46] LLOYDJRS V A, VAN-PRAAGH C V, LOVLEY D R. Direct and Fe(Ⅱ)-mediated reduction of technetium by Fe(Ⅲ)-reducing bacteria [J]. Applied & Environmental Microbiology, 2000, 66(9): 3743-3749. [47] CHADHAIN S M N, SCHAEFER J K, CRANE S, et al. Analysis of mercuric reductase (merA) gene diversity in an anaerobic mercury-contaminated sediment enrichment [J]. Environmental Microbiology Reports, 2010, 8(10): 1746-1752. [48] LU X, LIU Y, JOHS A, et al. Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis Bem [J]. Environmental Science & Technology, 2016, 50(8): 4366-4373. [49] REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires [J]. Nature, 2005, 435(7045): 1098-1101. doi: 10.1038/nature03661 [50] DOIG P, TODD T, SASTRY P A, et al. Role of pili in adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells [J]. Infection & Immunity, 1988, 56(6): 1641-1646. [51] NEVIN K P, LOVLEY D R. Lack of production of electron-shuttling compounds or solubilization of Fe(Ⅲ) during reduction of insoluble Fe(Ⅲ) oxide by Geobacter metallireducens [J]. Environmental Microbiology Reports, 2000, 66(5): 2248-2251. [52] WOLFENDEN S, CHARNOCK J M, HILTON J, et al. Sulfide species as a sink for mercury in lake sediments [J]. Environmental Science & Technology, 2005, 39(17): 6644-6648. [53] VÁZQUEZ-RODRíGUEZ A, HANSEL C, ZHANG T, et al. Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury [J]. Frontiers in Microbiology, 2015, 6: 596. [54] 王莹, 李芳柏, 刘同旭. 微生物—矿物间半导体介导电子传递机制研究进展 [J]. 地球科学进展, 2016, 31(4): 347-356. doi: 10.11867/j.issn.1001-8166.2016.04.0347. WANG Y, LI F B, LIU T X. Advances in the semiconductor-mediated electron transfer mechanism at microbe-mineral interface [J]. Advances in Earth Science, 2016, 31(4): 347-356(in Chinese). doi: 10.11867/j.issn.1001-8166.2016.04.0347.
[55] LIU T, LI X, ZHANG W, et al. Fe(Ⅲ) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17 [J]. Journal of Colloid Interface Science, 2014, 423: 25-32. doi: 10.1016/j.jcis.2014.02.026 [56] VARGAS M, KASHEFI K, BLUNT-HARRIS E L, et al. Microbiological evidence for Fe(Ⅲ) reduction on early Earth [J]. Nature, 1998, 1(30): 565-571.