-
砷元素主要经地质活动等过程释放入大气、土壤和水体等介质,造成环境砷污染[1-3]。截止2012年,全球超过2亿人处于饮水型慢性高砷暴露[4],我国有近2000万人暴露砷超过WHO安全水平(10 μg·L−1)[5]。流行病学结果显示,人群通过摄食、饮水等途径长期暴露环境砷可导致皮肤癌、膀胱癌、肺癌等恶性疾病[6-7]。此外,砷暴露还会加速糖尿病、心血管疾病等慢性疾病的病程[8-9]。美国有毒物质和疾病登记署(ATSDR)在2011年优先风险物质清单上将砷列为头号公共健康威胁,国际癌症研究机构(IARC)也将砷化合物归为一类(Group 1)致癌物[7]。可见,砷污染引起了全球的环境健康危害。然而,砷暴露致毒/癌的确切分子机制目前仍不明确。
环境介质中砷化合物主要以三价无机砷(iAsⅢ)和五价无机砷(iAsⅤ)形态存在,而无机砷在环境微生物的作用下可转化为三价二甲基砷(DMAⅢ)和一甲基砷(MMAⅢ)、五价二甲基砷(DMAⅤ)和一甲基砷(MMAⅤ)等多种有机砷形态[7]。当环境中的无机砷进入生物体后,通过甲基化、硫化等代谢过程,可进一步转化为多种甲基化和硫化形态,而不同形态砷化合物的物理化学性质差别较大,毒性也不尽相同[10-11](如表1)。一般认为,五价砷化合物的毒性低于三价砷化合物,有机砷的毒性比无机砷小。但也有例外,如DMAⅢ和MMAⅢ的毒性比iAsⅢ更强[10],五价二甲基一硫代砷酸(DMMTAV)表现出与三价无机砷和甲基砷相当的高毒性[10-11]。
目前,关于砷暴露致毒/癌分子机制的讨论主要集中在两方面:1)砷化合物可诱导产生活性氧(ROS),引起氧化应激、能量代谢异常、DNA链发生断裂或缺失突变等,从而诱导细胞癌变[12-13]。2)砷化合物可通过半胱氨酸残基与蛋白质结合[14-15],改变蛋白质构象,影响蛋白功能[16-17]。以上推测机制只关注了砷在胞内的作用途径,并未考虑砷化合物的摄入调控过程对其毒性效应的影响。一方面,砷化合物的摄入是其与细胞作用的第一步,摄入途径、摄入剂量等都直接影响砷化合物在胞内的暴露特征(形态、分布、浓度),影响胞内的生化作用/反应;另一方面,已有文献报道部分砷形态如DMMTAV、DMAⅢ和MMAⅢ的摄入、分布与其毒性密切相关[18-19]。可见,砷的分子摄入途径及摄入形态/浓度的调控机制对其致毒/癌效应具有重要影响。因此,本文对不同砷形态的摄入行为(摄入载体类型、载体调控通路和摄入模式)和毒性效应等研究结果进行归纳,发现介导砷摄入的载体蛋白类型存在一定的形态依赖性,如iAsV主要借助钠依赖性磷酸转运蛋白NaPi-IIb进入细胞,而iAsⅢ和MMAⅢ等则主要通过水通道蛋白AQPs介导入胞。介导载体的调控则主要通过改变载体表达水平或定位状况来实现,相关调控通路涉及细胞增殖、分化、凋亡等生命过程。同时,细胞摄入砷的浓度水平、空间分布及毒性效应规律存在一致性。本文强调了砷摄入对其暴露致毒/癌的重要作用,为砷暴露致毒/癌机制研究提供了新的视角和思路,同时针对摄入调控机制中待研究的内容也提出了自己的见解。
砷化合物的摄入调控机制
The regulation mechanism of the arsenical uptake
-
摘要: 流行病学结果显示慢性砷暴露可导致人群罹患皮肤癌、膀胱癌、肺癌等恶性疾病,但其致毒/癌机制尚不明确。目前关于砷暴露致毒/癌机理的讨论主要集中在砷的胞内作用途径,而较少关注砷摄入调控过程对其暴露致毒/癌的贡献。在生理条件下,部分砷化合物由于结构与磷酸根、葡萄糖、甘油等天然底物相近,可借由相应的载体被细胞摄入,摄入途径和效率存在显著的砷形态依赖性。此外,砷化合物的生物毒性效应与其赋存形态直接相关。可见,砷的摄入调控对于砷的暴露致毒/癌具有重要作用。本文主要综述了在哺乳动物体系中不同砷形态的摄入载体、载体调控及对应的砷摄入分布、效率和暴露毒性,在此基础上,强调了以往在砷致毒/癌机制研究中被忽视的砷摄入调控途径。然而,砷摄入调控过程中的诸多重要环节如砷胁迫下的摄入启动和调控机制等都是空白,需进一步系统深入地研究,为深入理解砷的致毒机制提供了新的视角和研究思路。Abstract: The epidemiological results demonstrate that chronic exposure to inorganic arsenic is closely associated with the malignant diseases of skin, bladder and lung cancer, however, the molecular toxicity mechanism has not been clarified. The related studies mainly focus on the interaction of arsenicals inside cells, while the transmembrane transport of arsenicals has been overlooked. Some arsenicals can enter into cells by the transporters specific for the natural substrates of phosphate, glucose and glycerol, because of their similar structure under the physiological conditions. Furthermore, the transport pathway and efficiency are significantly dependent on the arsenic species. Meanwhile, the toxic effects upon arsenic exposure vary a lot with different species. Thus, it is speculated that the regulation of arsenical uptake plays an important role in the toxicological/carcinogenic effects. Herein, we reviewed the transporters and their regulation signaling in mammalian system for transmembrane transport of different arsenic species. And the uptake efficiency, distribution, and resultant toxicity of arsenicals in terms of species has also been summarized. In this term, the uptake regulation of arsenicals has been emphasized in the research of the toxicological/carcinogenic mechanism upon arsenic exposure. Nevertheless, several key steps in the course of arsenic uptake, like the patterns for uptake initiation and regulation are scarcely studied, which deserve further investigation in detail. This review provides new insights into the toxicity mechanism for arsenic exposure.
-
Key words:
- arsenical /
- toxicity/carcinogenesis mechanism /
- cellular uptake /
- transporter /
- regulation signaling
-
表 1 典型砷形态的名称及结构
Table 1. Names and structures of typical arsenicals
典型砷化合物
Typical arsenicals结构及名称
Names and structures五价砷
Pentavalent arsenic三价砷
Trivalent arsenic注:表中标注*砷形态具有相近的生物毒性,其中iAsⅢ被列为一类(Group 1)致癌物.
*The arsenicals exhibit similar toxicity. Among them, iAsIII has been classified as the “carcinogenic to humans” (Group 1).表 2 砷化合物的摄入载体与载体蛋白的表达调控
Table 2. Transporters of typical arsenicals and related regulation signaling
载体蛋白类别及名称
Transporter category and name砷形态
Arsenic species载体蛋白调控通路
Regulation signaling载体蛋白调控方式
Regulation fashion磷酸盐转运蛋白 NaPi-Ⅱb iAsV[24-26] AQPs AQP3 iAsⅢ[10,30,32] EGF[47-49]、ERE[50]、AC、cAMP、
PPAR-γ、AMPK、Akt/PKB[55]mRNA、蛋白表达 PKC[54] 膜易位 AQP7 iAsIII[30] AC、cAMP、PPAR-γ、
AMPK、Akt/PKB[55]mRNA表达 AQP9 iAsⅢ[30,31,33]、MMAⅢ[38-39] MMAV[39]、DMAV[39] AMPK、Akt/PKB[56] mRNA表达 GLUTs
GLUT1MMAⅢ[40] 转录因子c-Myc[57]、SIX1[58] mRNA表达 PI3K/mTOR/Akt[59]、cAMP、
AMPK、Akt[60]mRNA、蛋白表达和
膜易位GLUT2、GLUT5 iAsⅢ[26] OATPs OATP1B1 iAsⅢ、iAsV[36] HNF-1α[64],HNF-3β[65] mRNA表达、
蛋白表达OATP2B1 iAsⅢ[26] PKC[63] 蛋白修饰 -
[1] DUKER A A, CARRANZA E J M, HALE M. Arsenic geochemistry and health [J]. Environment International, 2005, 31(5): 631-641. doi: 10.1016/j.envint.2004.10.020 [2] MANDAL B K, SUZUKI K T. Arsenic round the world: A review [J]. Talanta, 2002, 58(1): 201-235. doi: 10.1016/S0039-9140(02)00268-0 [3] LI Y B, DUAN Z W, LIU G L, et al. Evaluation of the possible sources and controlling factors of toxic metals/metalloids in the Florida Everglades and their potential risk of exposure [J]. Environmental Science & Technology, 2015, 49(16): 9714-9723. [4] NAUJOKAS M F, ANDERSON B, AHSAN H, et al. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem [J]. Environmental Health Perspectives, 2013, 121(3): 295-302. doi: 10.1289/ehp.1205875 [5] RODRÍGUEZ-LADO L, SUN G F, BERG M, et al. Groundwater arsenic contamination throughout China [J]. Science, 2013, 341(6148): 866-868. doi: 10.1126/science.1237484 [6] HUNT K M, SRIVASTAVA R K, ELMETS C A, et al. The mechanistic basis of arsenicosis: Pathogenesis of skin cancer [J]. Cancer Letters, 2014, 354(2): 211-219. doi: 10.1016/j.canlet.2014.08.016 [7] STRAIF K, BENBRAHIM-TALLAA L, BAAN R, et al. A review of human carcinogens—Part C: Metals, arsenic, dusts, and fibres [J]. The Lancet Oncology, 2009, 10(5): 453-454. doi: 10.1016/S1470-2045(09)70134-2 [8] CHEN Y, WU F, GRAZIANO J H, et al. Arsenic exposure from drinking water, arsenic methylation capacity, and carotid intima-media thickness in Bangladesh [J]. American Journal of Epidemiology, 2013, 178(3): 372-381. doi: 10.1093/aje/kwt001 [9] MAULL E A, AHSAN H, EDWARDS J, et al. Evaluation of the association between arsenic and diabetes: A National Toxicology Program workshop review [J]. Environmental Health Perspectives, 2012, 120(12): 1658-1670. doi: 10.1289/ehp.1104579 [10] NARANMANDURA H, IBATA K, SUZUKI K T. Toxicity of dimethylmonothioarsinic acid toward human epidermoid carcinoma A431 cells [J]. Chemical Research in Toxicology, 2007, 20(8): 1120-1125. doi: 10.1021/tx700103y [11] NARANMANDURA H, CAREW M W, XU S, et al. Comparative toxicity of arsenic metabolites in human bladder cancer EJ-1 cells [J]. Chemical Research in Toxicology, 2011, 24(9): 1586-1596. doi: 10.1021/tx200291p [12] LIU F, JAN K Y. DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells [J]. Free Radical Biology and Medicine, 2000, 28(1): 55-63. doi: 10.1016/S0891-5849(99)00196-3 [13] LI Y X, HE M, CHEN B B, et al. Inhibition of arsenite methylation induces synergistic genotoxicity of arsenite and benzo(a)Pyrene diol epoxide in SCC-7 cells [J]. Metallomics, 2018, 11(1): 176-182. [14] ZHOU X X, SUN X, MOBARAK C, et al. Differential binding of monomethylarsonous acid compared to arsenite and arsenic trioxide with zinc finger peptides and proteins [J]. Chemical Research in Toxicology, 2014, 27(4): 690-698. doi: 10.1021/tx500022j [15] ZHAO L H, CHEN S M, JIA L Y, et al. Selectivity of arsenite interaction with zinc finger proteins [J]. Metallomics, 2012, 4(9): 988-994. doi: 10.1039/c2mt20090b [16] RATNAIKE R N. Acute and chronic arsenic toxicity [J]. Postgraduate Medical Journal, 2003, 79(933): 391-396. doi: 10.1136/pmj.79.933.391 [17] SHEN S W, LI X F, CULLEN W R, et al. Arsenic binding to proteins [J]. Chemical Reviews, 2013, 113(10): 7769-7792. doi: 10.1021/cr300015c [18] SUZUKI K T, IWATA K, NARANMANDURA H, et al. Metabolic differences between two dimethylthioarsenicals in rats [J]. Toxicology and Applied Pharmacology, 2007, 218(2): 166-173. doi: 10.1016/j.taap.2006.10.027 [19] NARANMANDURA H, IWATA K, SUZUKI K T, et al. Distribution and metabolism of four different dimethylated arsenicals in hamsters [J]. Toxicology and Applied Pharmacology, 2010, 245(1): 67-75. doi: 10.1016/j.taap.2010.02.001 [20] GARBINSKI L D, ROSEN B P, CHEN J. Pathways of arsenic uptake and efflux [J]. Environment International, 2019, 126: 585-597. doi: 10.1016/j.envint.2019.02.058 [21] ROGGENBECK B A, BANERJEE M, LESLIE E M. Cellular arsenic transport pathways in mammals [J]. Journal of Environmental Sciences, 2016, 49: 38-58. doi: 10.1016/j.jes.2016.10.001 [22] CHÁVEZ-CAPILLA T, MAHER W, KELLY T, et al. Evaluation of the ability of arsenic species to traverse cell membranes by simple diffusion using octanol-water and liposome-water partition coefficients [J]. Journal of Environmental Sciences, 2016, 49: 222-232. doi: 10.1016/j.jes.2016.08.007 [23] RICARDOVILLA-BELLOSTA, GIRAL H, FERRER-DUFOL A, et al. Role of phosphate transporters in the membrane transport of arsenate [J]. Toxicology Letters, 2006, 164: S150. [24] VILLA-BELLOSTA R, SORRIBAS V. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate [J]. Toxicology and Applied Pharmacology, 2008, 232(1): 125-134. doi: 10.1016/j.taap.2008.05.026 [25] VILLA-BELLOSTA R, SORRIBAS V. Arsenate transport by sodium/phosphate cotransporter type IIb [J]. Toxicology and Applied Pharmacology, 2010, 247(1): 36-40. doi: 10.1016/j.taap.2010.05.012 [26] CALATAYUD M, BARRIOS J A, VÉLEZ D, et al. In vitro study of transporters involved in intestinal absorption of inorganic arsenic [J]. Chemical Research in Toxicology, 2012, 25(2): 446-453. doi: 10.1021/tx200491f [27] LAFORENZA U, BOTTINO C, GASTALDI G. Mammalian aquaglyceroporin function in metabolism [J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016, 1858(1): 1-11. doi: 10.1016/j.bbamem.2015.10.004 [28] ROJEK A, PRAETORIUS J, FRØKIAER J, et al. A current view of the mammalian aquaglyceroporins [J]. Annual Review of Physiology, 2008, 70: 301-327. doi: 10.1146/annurev.physiol.70.113006.100452 [29] RAMÍREZ-SOLÍS A, MUKOPADHYAY R, ROSEN B P, et al. Experimental and theoretical characterization of arsenite in water: Insights into the coordination environment of As-O [J]. Inorganic Chemistry, 2004, 43(9): 2954-2959. doi: 10.1021/ic0351592 [30] LIU Z J. Roles of vertebrate aquaglyceroporins in arsenic transport and detoxification [J]. Advances in Experimental Medicine and Biology, 2010, 679: 71-81. [31] LEUNG J, PANG A N, YUEN W H, et al. Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells [J]. Blood, 2007, 109(2): 740-746. doi: 10.1182/blood-2006-04-019588 [32] NARANMANDURA H, OGRA Y, IWATA K, et al. Evidence for toxicity differences between inorganic arsenite and thioarsenicals in human bladder cancer cells [J]. Toxicology and Applied Pharmacology, 2009, 238(2): 133-140. doi: 10.1016/j.taap.2009.05.006 [33] LEE T C, HO I C, LU W J, et al. Enhanced expression of multidrug resistance-associated protein 2 and reduced expression of aquaglyceroporin 3 in an arsenic-resistant human cell line [J]. Journal of Biological Chemistry, 2006, 281(27): 18401-18407. doi: 10.1074/jbc.M601266200 [34] HAGENBUCH B, STIEGER B. The SLCO (former SLC21) superfamily of transporters [J]. Molecular Aspects of Medicine, 2013, 34(2/3): 396-412. [35] ROTH M, OBAIDAT A, HAGENBUCH B. OATPs, OATs and OCTs: The organic anion and cation transporters of the SLCO and SLC22A gene superfamilies [J]. British Journal of Pharmacology, 2012, 165(5): 1260-1287. doi: 10.1111/j.1476-5381.2011.01724.x [36] LU W J, TAMAI I, NEZU J I, et al. Organic anion transporting polypeptide-C mediates arsenic uptake in HEK-293 cells [J]. Journal of Biomedical Science, 2006, 13(4): 525-533. doi: 10.1007/s11373-006-9071-0 [37] MUECKLER M, THORENS B. The SLC2 (GLUT) family of membrane transporters [J]. Molecular Aspects of Medicine, 2013, 34(2/3): 121-138. [38] LIU Z J, STYBLO M, ROSEN B P. Methylarsonous acid transport by aquaglyceroporins [J]. Environmental Health Perspectives, 2006, 114(4): 527-531. doi: 10.1289/ehp.8600 [39] MCDERMOTT J R, JIANG X, BEENE L C, et al. Pentavalent methylated arsenicals are substrates of human AQP9 [J]. BioMetals, 2010, 23(1): 119-127. doi: 10.1007/s10534-009-9273-9 [40] LIU Z J, SANCHEZ M A, JIANG X, et al. Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid [J]. Biochemical and Biophysical Research Communications, 2006, 351(2): 424-430. doi: 10.1016/j.bbrc.2006.10.054 [41] DRUWE I L, VAILLANCOURT R R. Influence of arsenate and arsenite on signal transduction pathways: An update [J]. Archives of Toxicology, 2010, 84(8): 585-596. doi: 10.1007/s00204-010-0554-4 [42] QIAN Y, CASTRANOVA V, SHI X L. New perspectives in arsenic-induced cell signal transduction [J]. Journal of Inorganic Biochemistry, 2003, 96(2/3): 271-278. [43] KISHIDA K, SHIMOMURA I, KONDO H, et al. Genomic structure and insulin-mediated repression of the aquaporin adipose (AQPap), adipose-specific glycerol channel [J]. The Journal of Biological Chemistry, 2001, 276(39): 36251-36260. doi: 10.1074/jbc.M106040200 [44] KURIYAMA H, KAWAMOTO S, ISHIDA N, et al. Molecular cloning and expression of a novel human aquaporin from adipose tissue with glycerol permeability [J]. Biochemical and Biophysical Research Communications, 1997, 241(1): 53-58. doi: 10.1006/bbrc.1997.7769 [45] ISHIBASHI K, YAMAUCHI K, KAGEYAMA Y, et al. Molecular characterization of human Aquaporin-7 gene and its chromosomal mapping [J]. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1998, 1399(1): 62-66. doi: 10.1016/S0167-4781(98)00094-3 [46] MARLAR S, JENSEN H H, LOGIN F H, et al. Aquaporin-3 in cancer [J]. International Journal of Molecular Sciences, 2017, 18(10): 2106. doi: 10.3390/ijms18102106 [47] LI A, LU D H, ZHANG Y P, et al. Critical role of aquaporin-3 in epidermal growth factor-induced migration of colorectal carcinoma cells and its clinical significance [J]. Oncology Reports, 2013, 29(2): 535-540. doi: 10.3892/or.2012.2144 [48] JI C, CAO C, LU S, et al. Curcumin attenuates EGF-induced AQP3 up-regulation and cell migration in human ovarian cancer cells [J]. Cancer Chemotherapy and Pharmacology, 2008, 62(5): 857-865. doi: 10.1007/s00280-007-0674-6 [49] LIU W J, WANG K H, GONG K M, et al. Epidermal growth factor enhances MPC-83 pancreatic cancer cell migration through the upregulation of aquaporin 3 [J]. Molecular Medicine Reports, 2012, 6(3): 607-610. doi: 10.3892/mmr.2012.966 [50] HUANG Y T, ZHOU J, SHI S, et al. Identification of estrogen response element in aquaporin-3 gene that mediates estrogen-induced cell migration and invasion in estrogen receptor-positive breast cancer [J]. Scientific Reports, 2015, 5: 12484. doi: 10.1038/srep12484 [51] Walz T, Fujiyoshi Y, Engel A. The AQP structure and functional implications [J]. Handbook of Experimental Pharmacology, 2009(190): 31-56. [52] FISCHER G, KOSINSKA-ERIKSSON U, APONTE-SANTAMARÍA C, et al. Crystal structure of a yeast aquaporin at 1.15 angstrom reveals a novel gating mechanism [J]. PLoS Biology, 2009, 7(6): e1000130. doi: 10.1371/journal.pbio.1000130 [53] CONNER A C, BILL R M, CONNER M T. An emerging consensus on aquaporin translocation as a regulatory mechanism [J]. Molecular Membrane Biology, 2013, 30(1): 101-112. doi: 10.3109/09687688.2012.743194 [54] YASUI H, KUBOTA M, IGUCHI K, et al. Membrane trafficking of aquaporin 3 induced by epinephrine [J]. Biochemical and Biophysical Research Communications, 2008, 373(4): 613-617. doi: 10.1016/j.bbrc.2008.06.086 [55] GREGOIRE F, LUCIDI V, ZERRAD-SAADI A, et al. Analysis of aquaporin expression in liver with a focus on hepatocytes [J]. Histochemistry and Cell Biology, 2015, 144(4): 347-363. doi: 10.1007/s00418-015-1341-3 [56] YOKOYAMA Y, IGUCHI K, USUI S, et al. AMP-activated protein kinase modulates the gene expression of aquaporin 9 via forkhead box a2 [J]. Archives of Biochemistry and Biophysics, 2011, 515(1/2): 80-88. [57] OSTHUS R C, SHIM H, KIM S, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-myc [J]. Journal of Biological Chemistry, 2000, 275(29): 21797-21800. doi: 10.1074/jbc.C000023200 [58] LI L, LIANG Y C, KANG L, et al. Transcriptional regulation of the Warburg effect in cancer by SIX1 [J]. Cancer Cell, 2018, 33(3): 368-385.e7. doi: 10.1016/j.ccell.2018.01.010 [59] MAKINOSHIMA H, TAKITA M, SARUWATARI K, et al. Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma [J]. The Journal of Biological Chemistry, 2015, 290(28): 17495-17504. doi: 10.1074/jbc.M115.660498 [60] ANCEY P B, CONTAT C, MEYLAN E. Glucose transporters in cancer - from tumor cells to the tumor microenvironment [J]. The FEBS Journal, 2018, 285(16): 2926-2943. doi: 10.1111/febs.14577 [61] WIEMAN H L, WOFFORD J A, RATHMELL J C. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking [J]. Molecular Biology of the Cell, 2007, 18(4): 1437-1446. doi: 10.1091/mbc.e06-07-0593 [62] OLSEN J M, SATO M, DALLNER O S, et al. Glucose uptake in brown fat cells is dependent on mTOR complex 2-promoted GLUT1 translocation [J]. The Journal of Cell Biology, 2014, 207(3): 365-374. doi: 10.1083/jcb.201403080 [63] KÖCK K, KOENEN A, GIESE B, et al. Rapid modulation of the organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) function by protein kinase C-mediated internalization [J]. Journal of Biological Chemistry, 2010, 285(15): 11336-11347. doi: 10.1074/jbc.M109.056457 [64] JUNG D, HAGENBUCH B, GRESH L, et al. Characterization of the human OATP-C (SLC21A6) gene promoter and regulation of liver-specific OATP genes by hepatocyte nuclear factor 1α [J]. Journal of Biological Chemistry, 2001, 276(40): 37206-37214. doi: 10.1074/jbc.M103988200 [65] VAVRICKA S R, JUNG D, FRIED M, et al. The human organic anion transporting polypeptide 8 (SLCO1B3) gene is transcriptionally repressed by hepatocyte nuclear factor 3β in hepatocellular carcinoma [J]. Journal of Hepatology, 2004, 40(2): 212-218. doi: 10.1016/j.jhep.2003.10.008 [66] STYBLO M, del RAZO L M, VEGA L, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells [J]. Archives of Toxicology, 2000, 74(6): 289-299. doi: 10.1007/s002040000134 [67] OCHI T, KITA K, SUZUKI T, et al. Cytotoxic, genotoxic and cell-cycle disruptive effects of thio-dimethylarsinate in cultured human cells and the role of glutathione [J]. Toxicology and Applied Pharmacology, 2008, 228(1): 59-67. doi: 10.1016/j.taap.2007.11.023 [68] APOSHIAN H V. Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity [J]. Annual Review of Pharmacology and Toxicology, 1997, 37: 397-419. doi: 10.1146/annurev.pharmtox.37.1.397 [69] HUGHES M F, KENYON E M, EDWARDS B C, et al. Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate [J]. Toxicology and Applied Pharmacology, 2003, 191(3): 202-210. doi: 10.1016/S0041-008X(03)00249-7 [70] BRADHAM K D, DIAMOND G L, BURGESS M, et al. In vivo and in vitro methods for evaluating soil arsenic bioavailability: Relevant to human health risk assessment [J]. Journal of Toxicology and Environmental Health, Part B, 2018, 21(2): 83-114. doi: 10.1080/10937404.2018.1440902 [71] KENYON E M, del RAZO L M, HUGHES M F. Tissue distribution and urinary excretion of inorganic arsenic and its methylated metabolites in mice following acute oral administration of arsenate [J]. Toxicological Sciences, 2005, 85(1): 468-475. doi: 10.1093/toxsci/kfi107 [72] LIN S, SHI Q, NIX F B, et al. A novel S-adenosyl-l-methionine: Arsenic(III) methyltransferase from rat liver cytosol [J]. Journal of Biological Chemistry, 2002, 277(13): 10795-10803. doi: 10.1074/jbc.M110246200 [73] NARANMANDURA H, SUZUKI N, IWATA K, et al. Arsenic metabolism and thioarsenicals in hamsters and rats [J]. Chemical Research in Toxicology, 2007, 20(4): 616-624. doi: 10.1021/tx700038x [74] WANG T S, CHUNG C H, WANG A S S, et al. Endonuclease III, formamidopyrimidine-DNA glycosylase, and proteinase K additively enhance arsenic-induced DNA strand breaks in human cells [J]. Chemical Research in Toxicology, 2002, 15(10): 1254-1258. doi: 10.1021/tx025535f [75] PARVEZ F, CHEN Y, YUNUS M, et al. Arsenic exposure and impaired lung function. Findings from a large population-based prospective cohort study [J]. American Journal of Respiratory and Critical Care Medicine, 2013, 188(7): 813-819. doi: 10.1164/rccm.201212-2282OC [76] AHMAD S, ANDERSON W L, KITCHIN K T. Dimethylarsinic acid effects on DNA damage and oxidative stress related biochemical parameters in B6C3F1 mice [J]. Cancer Letters, 1999, 139(2): 129-135. doi: 10.1016/S0304-3835(99)00022-1 [77] LIU J, ZHENG B, APOSHIAN H, et al. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China [J]. Journal of the Peripheral Nervous System, 2002, 7(3): 208. [78] SINGH R D, TIWARI R, KHAN H, et al. Arsenic exposure causes epigenetic dysregulation of IL-8 expression leading to proneoplastic changes in kidney cells [J]. Toxicology Letters, 2015, 237(1): 1-10. doi: 10.1016/j.toxlet.2015.05.014 [79] JOMOVA K, JENISOVA Z, FESZTEROVA M, et al. Arsenic: toxicity, oxidative stress and human disease [J]. Journal of Applied Toxicology, 2011, 31(2): 95-107. [80] FISCHER A B, BUCHET J P, LAUWERYS R R. Arsenic uptake, cytotoxicity and detoxification studied in mammalian cells in culture [J]. Archives of Toxicology, 1985, 57(3): 168-172. doi: 10.1007/BF00290882 [81] KLIGERMAN A D, DOERR C L, TENNANT A H, et al. Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic: Induction of chromosomal mutations but not gene mutations [J]. Environmental and Molecular Mutagenesis, 2003, 42(3): 192-205. doi: 10.1002/em.10192 [82] MOE B, PENG H Y, LU X F, et al. Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing [J]. Journal of Environmental Sciences, 2016, 49: 113-124. doi: 10.1016/j.jes.2016.10.004