-
目前,铜离子(Cu2+)已被美国环境保护署(EPA)列入需要优先控制的污染物,规定其在水体中浓度不得超过1.3 mg·L−1,世界卫生组织(WHO)标准中饮用水Cu2+的限制浓度为2.0 mg·L−1[1]。我国生活饮用水标准中总铜浓度为1.0 mg·L−1, 工业废水三级标准中总铜排放标准是1.0 mg·L−1[2]。为避免废水中Cu2+累积造成的污染,对废水中Cu2+污染的控制至关重要。
化学沉淀法、离子交换法、生物法和吸附法等是水体中重金属离子去除的主要方法[3]。其中, 吸附法因具备成本低、操作简便、工序简单、去除效果佳且无二次污染等优点备受关注。吸附剂的选择是吸附法成功实施的关键。活性炭、分子筛、硅胶、活性氧化铝等都是优异的吸附剂,但是成本较高限制上述吸附剂的广泛使用[4]。
近年来,生物炭作为吸附剂引起了研究者极大的关注[5-6]。然而,研究显示[7-11],原状生物炭对废水中污染物的吸附容量有限,需要进行定向的改性以进一步提升其吸附效果。生物炭改性的方法包括化学酸碱改性[12- 13]、金属改性[14-15]、物理改性[16]、矿物质负载改性[17]等。改性主要目的是增大生物炭的比表面积、制造更大孔隙、丰富表面的官能团、完备芳香结构和引入磁性组分等。
目前,氮改性生物炭逐渐引起了更多的研究,主要是用作催化剂降解废水中的污染物,而作为吸附剂的研究报道却较少。氮改性如何影响生物炭的表面形貌、孔隙结构、元素组成和官能团类型等仍有待进一步探究。Lian等[18]研究发现NH3改性玉米秸秆生物炭对酸性橙7和亚甲基蓝染料的吸附量可达292 mg·g−1和436 mg·g−1, 是原状生物炭吸附量的15—20倍。Yang等[19]研究发现氨基生物炭对铜离子的吸附量为(15.95±0.15) mg·g−1, 是原状生物炭吸附量的5倍多((4.14±0.11) mg·g−1),因为氨基的引入强化了生物炭对铜离子的络合作用。侯素珍等[20]研究发现在pH=3,温度为20 ℃, 投加量为0.5 g·L−1, Cr(Ⅵ) 初始浓度20 mg·L−1条件下, 反应5 min和60 min后氨基改性生物炭负载纳米零价铁对Cr(Ⅵ) 的去除率可分别达到87.1%和98.8%。然而上述研究存在制备成本较高、制备工艺复杂以及生物炭吸附机理探究不深等问题。因此,需要采取其它改性方法进一步提升生物炭对铜离子吸附效果。无毒、低成本、操作简便的尿素可作为生物炭改性的氮源选择,尿素改性不仅可增加生物炭的氮基团数量和电荷密度[21],优化生物炭对污染物的吸附性能,还可有效降低改性成本。
本文以水稻秸秆为对象,在700 ℃热解制备原状生物炭(RSBC)。同时,以尿素为氮改性剂,制备氮改性生物炭(N-RSBC)。通过仪器分析表征研究氮改性对生物炭理化性质的影响,考察pH、离子类型和强度对废水中Cu2+的吸附影响,并结合吸附等温线和吸附动力学实验,探究生物炭对废水中Cu2+的吸附机理。研究希冀为水稻秸秆的资源化和废水中Cu2+的去除提供理论依据和技术支撑。
氮改性对生物炭理化性质的影响及其对废水中铜离子的吸附特性
Effect of nitrogen modification on the properties of biochars and their adsorption behavior on Cu2+ removal from wastewater
-
摘要: 原状生物炭对废水中污染物的去除效果有限,改性是提高其吸附能力的重要途径。本文以水稻秸秆为对象,尿素为改性剂,在700 ℃无氧热解条件下分别制备了原状秸秆生物炭(RSBC)和氮改性秸秆生物炭(N-RSBC),采用扫描电子显微镜(SEM)、比表面积分析仪(BET)、元素分析仪(EA)、Zeta电位、X射线衍射(XRD)、傅里叶红外光谱(FTIR)以及X射线光电子能谱(XPS)对RSBC和N-RSBC的形貌、比表面积、元素组成、矿物类型和官能团进行表征,考察溶液初始pH值、离子类型和离子强度对生物炭吸附Cu2+的影响,并结合吸附等温线和吸附动力学实验、吸附后表征结果探究生物炭对废水中Cu2+的吸附性能和机理。结果表明,氮改性导致了生物炭的比表面积和孔体积的降低,而生物炭的官能团类型却更加丰富,特别是含氮官能团。当溶液初始pH值从2.0增加到6.0,生物炭对于Cu2+的去除率逐渐增加。对RSBC而言,Na+、K+、Ca2+、Mg2+的存在能略微增加其对Cu2+的去除率。相反的是,Na+、K+、Ca2+、Mg2+的存在却降低了氮改性生物炭对Cu2+的去除率。拟二级动力学模型和Freundlich模型能较好的拟合生物炭吸附Cu2+的过程。RSBC和N-RSBC对Cu2+最大吸附量分别为24.46 mg·g−1和40.56 mg·g−1。络合作用、静电作用、离子交换和阳离子-π机制是生物炭吸附Cu2+的主要机理,氮改性可以提高生物炭对Cu2+的络合和静电作用。因此,氮改性生物炭有潜力应用于废水中Cu2+的去除。Abstract: The removal effect of pollutant by pristine biochar was limited. Modification is an important pathway to enhance its adsorption capacity. In this study, rice straw was pyrolyzed to prepare biochar at 700 °C (named as RSBC), and rice straw and urea was mixed to produce N-modified straw biochar (labelled as N-RSBC) under an oxygen-limited atmosphere. Biochars were characterized by scanning electron microscope (SEM), elemental analyzer (EA), surface area analyzer (BET), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Zeta potential and X-ray photoelectron spectroscopy (XPS). The influencing factor on Cu removal, such as solution pH, solid-to-liquid ratio, co-existing ions, were systematically investigated. The adsorption mechanisms were explored by combination adsorption kinetics, adsorption isotherms and instrumental analysis. The results showed that specific surface area and pore volume of biochar decreased after N modification, and the functional groups of N-RSBC became more abundant, especially the nitrogen-containing groups. When the pH value in solution increased from 2.0 to 6.0, the removal rate of Cu2+ ions on biochar increased. The present of co-existing Na+, K+, Ca2+, and Mg2+ promoted the Cu removal by RSBC, whereas inhibited the Cu removal by N-RSBC. The pseudo-second-order model and Freundlich model well fitted the Cu adsorption process onto biochar. The maximum adsorption capacity of Cu2+ on RSBC and N-RSBC were 24.46 mg·g−1 and 40.56 mg·g−1, respectively. The adsorption mechanisms of Cu2+ ions on biochar involved complexation, electrostatic interaction, ion exchange, and cation-π interaction. Nitrogen modification promoted the Cu2+ adsorption on N-RSBC via complexation and electrostatic interaction. Therefore, N-modified biochar has the potential to be used as a copper ions adsorbent in wastewater control.
-
Key words:
- rice straw /
- biochar /
- N-modification /
- copper ions /
- adsorption mechanism
-
表 1 生物炭的比表面积和孔径参数
Table 1. Specific surface area and pore diameter parameters of biochar
生物炭
Biochar比表面积/(m 2 ·g−1)
SBET总体积/(cm3·g-1)
Vtotal微孔体积/(cm3 ·g-1 )
Vmicro平均孔径/nm
Pore sizeRSBC 234.3874 0.133822 0.094230 2.28 N-RSBC 16.9736 0.019148 0.009875 4.51 表 2 生物炭的元素组成、元素比、灰分及zeta电位
Table 2. The element composition, element ratio, ash content and Zeta potential of biochar
生物炭
Biochar元素/%
ElementH/C O/C (N + O) / C 灰分/%
AshZeta电位/mV
Zeta potentialC N H O RSBC 55.76 0.22 0.843 9.187 0.01512 0.1648 0.1687 33.99 −43.89 N-RSBC 53.45 7.33 0.968 10.632 0.01811 0.1989 0.3361 27.62 −37.97 表 3 RSBC和N-RSBC的官能团类型
Table 3. Functional groups of RSBC and N-RSBC
RSBC N-RSBC 波数/cm−1
Wavenumber对应官能团
Corresponding functional groups波数/cm−1
Wavenumber对应官能团
Corresponding functional groups3432 —OH[31] 3450 —OH/N—H stretching[31] 2923 —CH3[31] 2923 —CH3[31] 2852 —CH3[31] 2852 —CH3[31] 1617 C=C和C=O[32] 1630 C=C 和C=O[32] 1437 COOH 和CHO[33] 1458 COOH 和 CHO[33] 1102 Si—O—Si/C—O[34] 1401 —COOH[34] 1166 C—N[35] 1040 C—O vibration[35] 424 Si—O—Si[31] 表 4 生物炭对Cu2+吸附动力学的拟合参数
Table 4. Fitting parameters of adsorption kinetic of Cu2+ onto RSBC and N-RSBC
生物炭
Biochar铜离子初始浓度/(mg·L−1)
Initial concentration of Cu拟一级模型
Pseudo-first-order model model拟二级模型
Pseudo-second-order modelqe/(mg·g−1) k1/min−1 R2 qe / (mg·g−1) k2/(g·(mg·min)−1) R2 RSBC 10 23.7563 0.02578 0.87613 25.91756 0.00139 0.934 30 12.39649 0.24405 0.82307 13.09237 0.0268 0.90195 50 9.41831 0.37022 0.97837 9.64357 0.09308 0.99452 N-RSBC 10 29.11295 0.00857 0.69686 32.62433 3.9091×10-4 0.73724 30 14.80378 0.05468 0.77431 15.85085 0.00511 0.88164 50 7.94829 0.11224 0.80149 8.45889 0.01957 0.90857 表 5 生物炭对Cu2+吸附等温线的拟合参数
Table 5. Fitting parameters of adsorption isotherms of Cu2+ onto RSBC and N-RSBC
生物炭
BiocharLangmuir Freundlich Q0/(mg·g−1) bL/(L·mg−1) R2 KF 1/n R2 RSBC 24.46 0.1391 0.6239 6.38683 0.33 0.76521 N-RSBC 40.56 0.0624 0.70909 5.29633 0.48 0.80967 表 6 生物炭吸附Cu2+后的FTIR官能团
Table 6. FTIR functional group of biochar after Cu2+ adsorption
RSBC+Cu N-RSBC+Cu 波数/cm−1
Wavenumber对应官能团
Corresponding functional groups波数/cm−1
Wavenumber对应官能团
Corresponding functional groups3450 —OH 3448 —OH 2924 —CH3 2924 —CH3 2854 —CH3 2854 —CH3 1633 C=C和C=O 1633 C=C 和C=O 1384 C—C 1384 C—C 1235 C—O 1240 C—O 1168 C—O和O—H 弯曲/拉伸 1162 C—N 1116 C—O和O—H弯曲/拉伸 1119 C—N 1037 C—O振动 1037 C—O 振动 465 Si—O—Si -
[1] 顾平, 武耘羽, 刘阳, 等. 废水中除铜研究的最新进展 [J]. 工业水处理, 2017, 37(5): 1-5. doi: 10.11894/1005-829x.2017.37(5).001 GU P, WU Y Y, LIU Y, et al. Latest research progress in the removal of copper from waste water [J]. Industrial Water Treatment, 2017, 37(5): 1-5(in Chinese). doi: 10.11894/1005-829x.2017.37(5).001
[2] BANG S, CHOI J W, CHO K, et al. Simultaneous reduction of copper and toxicity in semiconductor wastewater using protonated alginate beads [J]. Chemical Engineering Journal, 2015, 288: 525-531. [3] FU F L, WANG Q. Removal of heavy metal ions from wastewaters: A review [J]. Journal of Environmental Management, 2011, 92(3): 407-418. doi: 10.1016/j.jenvman.2010.11.011 [4] M NDEZ-D AZ J D, PRADOS-JOYA G, RIVERA-UTRILLA J, et al. Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase [J]. Journal of Colloid and Interface Science, 2010, 345(2): 481-490. doi: 10.1016/j.jcis.2010.01.089 [5] LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota – A review [J]. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836. doi: 10.1016/j.soilbio.2011.04.022 [6] 佟雪娇. 生物质炭对水体/红壤中Cu(Ⅱ)的去除和固定作用[D]. 南京: 南京农业大学, 2011. TONG X J. Removal of Cu(Ⅱ)from aqueous solutions and its fixation in red soil by biochars from crop straws[D]. Nanjing: Nanjing Agricultural University, 2011(in Chinese).
[7] CHEN X C, CHEN G C, CHEN L G, et al. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution [J]. Bioresource Technology, 2011, 102(19): 8877-8884. doi: 10.1016/j.biortech.2011.06.078 [8] 尹英杰, 朱司航, 徐东昊, 等. 生物炭和乙醇改性生物炭对铜的吸附研究 [J]. 农业环境科学学报, 2017, 36(9): 1877-1883. doi: 10.11654/jaes.2017-0269 YIN Y J, ZHU S H, XU D H, et al. Comparison of copper adsorption onto wheat biochar and ethanol-modified biochar [J]. Journal of Agro-Environment Science, 2017, 36(9): 1877-1883(in Chinese). doi: 10.11654/jaes.2017-0269
[9] PARK J H, OK Y S, KIM S H, et al. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions [J]. Chemosphere, 2016, 142: 77-83. doi: 10.1016/j.chemosphere.2015.05.093 [10] MEI Y L, LI B, FAN S S. Biochar from rice straw for Cu2+ removal from aqueous solutions: Mechanism and contribution made by acid-soluble minerals [J]. Water, Air, & Soil Pollution, 2020, 231(8): 1-13. [11] 周沈格颖. 秸秆生物质炭吸附处理含铜废水研究[D]. 温州: 温州大学, 2018. ZHOU S G Y. Study on adsorption treatment of Cu(Ⅱ) by rice straw-derived biochar from wastewater[D]. Wenzhou, China: Wenzhou University, 2018 (in Chinese).
[12] DENG J, LI X, WEI X, et al. Sulfamic acid modified hydrochar derived from sawdust for removal of benzotriazole and Cu(II) from aqueous solution: Adsorption behavior and mechanism [J]. Bioresource Technology, 2019, 290: 121765. doi: 10.1016/j.biortech.2019.121765 [13] GAO Y, ZHU X Z, YUE Q Y, et al. Facile one-step synthesis of functionalized biochar from sustainable prolifera-green-tide source for enhanced adsorption of copper ions [J]. Journal of Environmental Sciences (China), 2018, 73: 185-194. doi: 10.1016/j.jes.2018.02.012 [14] SON E B, POO K M, CHANG J S, et al. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass [J]. The Science of the Total Environment, 2018, 615: 161-168. doi: 10.1016/j.scitotenv.2017.09.171 [15] ZHOU Q, LIAO B, LIN L, et al. Adsorption of Cu(Ⅱ) and Cd(Ⅱ) from aqueous solutions by ferromanganese binary oxide-biochar composites [J]. Science of the Total Environment, 2018, 615(FEBa15): 115-122. [16] WEN R, YUAN B, WANG Y, et al. Improving Cu(Ⅱ) sorption by biochar via pyrolyzation under CO2: The importance of inherent inorganic species [J]. Environmental Science and Pollution Research, 2018, 25(6): 5105-5114. doi: 10.1007/s11356-017-9753-3 [17] WANG Y Y, LIU Y X, LU H H, et al. Competitive adsorption of Pb(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions [J]. Journal of Solid State Chemistry, 2018, 261: 53-61. doi: 10.1016/j.jssc.2018.02.010 [18] LIAN F, CUI G N, LIU Z Q, et al. One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity [J]. Journal of Environmental Management, 2016, 176: 61-68. doi: 10.1016/j.jenvman.2016.03.043 [19] YANG G X, JIANG H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater [J]. Water Research, 2014, 48: 396-405. doi: 10.1016/j.watres.2013.09.050 [20] 侯素珍, 田浩然, 黄超, 等. 氨基改性生物炭负载纳米零价铁去除水中Cr(Ⅵ) [J]. 环境科学学报, 2020, 40(11): 3931-3938. HOU S Z, TIAN H R, HUANG C, et al. Removal of Cr (Ⅵ) from aqueous solution by amino-modified biochar supported nano zero-valent iron [J]. Acta Scientiae Circumstantiae, 2020, 40(11): 3931-3938(in Chinese).
[21] ZHAHG J J, SHAO J G, HUANG D R, et al. Influence of different precursors on the characteristic of nitrogen-enriched biochar and SO2 adsorption properties [J]. Chemical Engineering Journal, 2020, 285: 123932. [22] LI W, ZHANG L, GUAN Y, et al. A Slow pyrolysis biochar derived from tetrapanax papyriferum petiole as an effective sorbent for removing copper ions from aqueous solution [J]. Bioresources, 2019, 14(2): 4430-4453. doi: 10.15376/biores.14.2.4430-4453 [23] LI M, LIU Q, GUO L, et al. Cu(Ⅱ) removal from aqueous solution by Spartina alterniflora derived biochar [J]. Bioresource Technology, 2013, 141: 83-88. doi: 10.1016/j.biortech.2012.12.096 [24] SHIM T, YOO J, RYU C, et al. Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity [J]. Bioresource Technology, 2015, 197: 85-90. doi: 10.1016/j.biortech.2015.08.055 [25] DUAN X, O'DONNELL K, SUN H, et al. Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions [J]. Small, 2015, 11(25): 3036-3044. doi: 10.1002/smll.201403715 [26] LIU S, ZHAO C, WANG Z, et al. Urea-assisted one-step fabrication of a novel nitrogen-doped carbon fiber aerogel from cotton as metal-free catalyst in peroxymonosulfate activation for efficient degradation of carbamazepine [J]. Chemical Engineering Journal, 2020, 386: 124015. doi: 10.1016/j.cej.2020.124015 [27] 王淑娟. 氨基磁化生物炭对水中铅、铜、铀的吸附性能研究[D]. 北京: 华北电力大学(北京), 2018. WANG S J. The removai of lead, copper and uranium by amnino modified magnetic biochar from aquecus solutions[D]. Beijing: North China Electric Power University, 2018(in Chinese).
[28] WU W, YANG M, FENG Q, et al. Chemical characterization of rice straw-derived biochar for soil amendment [J]. Biomass and Bioenergy, 2012, 47: 268-276. doi: 10.1016/j.biombioe.2012.09.034 [29] XU L, WU CX, LIU PH, et al. Peroxymonosulfate activation by nitrogen-doped biochar from sawdust for the efficient degradation of organic pollutants [J]. Chemical Engineering Journal, 2020, 387: 124056. doi: 10.1016/j.cej.2020.124056 [30] LI D P, ZHAO L, CAO X D, et al. Nickel-catalyzed formation of mesoporous carbon structure promoted capacitive performance of exhausted biochar [J]. Chemical Engineering Journal, 2021, 406: 126856. doi: 10.1016/j.cej.2020.126856 [31] XIAO X, CHEN B L, ZHU L Z. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures [J]. Environmental Science & Technology, 2014, 48(6): 3411-3419. [32] LENG L J, XU S Y, LIU R F, et al. Nitrogen containing functional groups of biochar: An overview [J]. Bioresource Technology, 2020, 298: 122286. doi: 10.1016/j.biortech.2019.122286 [33] SHAFEEYAN M S, DAUD W, HOUSHMAND A, et al. A review on surface modification of activated carbon for carbon dioxide adsorption [J]. Journal of Analytical and Applied Pyrolysis, 2010, 89: 143-151. doi: 10.1016/j.jaap.2010.07.006 [34] SHAFEEYAN M S, DAUD W, HOUSHMAND A, et al. Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation', Applied Surface Science, 2011, 257: 3936-3942. [35] WANG D H, HUI S E, LIU C C. Mass loss and evolved gas analysis in thermal decomposition of solid urea [J]. Fuel, 2017, 207: 268-273. doi: 10.1016/j.fuel.2017.06.117 [36] 吴晴雯, 孟梁, 张志豪, 等. 芦苇秸秆生物炭对水体中重金属Ni2+的吸附特性 [J]. 环境化学, 2015, 34(9): 1703-1709. doi: 10.7524/j.issn.0254-6108.2015.09.2015031108 WU Q W, MENG L, ZHANG Z H, et al. Adsorption behaviors of Ni2+onto reed straw biochar in the aquatic solutions [J]. Environmental Chemistry, 2015, 34(9): 1703-1709(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.09.2015031108
[37] 黄柱坚, 朱子骜, 吴学深, 等. 皇竹草生物炭的结构特征及对重金属吸附作用机制 [J]. 环境化学, 2016, 35(4): 766-772. HUANG Z J, ZHU Z A, WU X S, et al. Adsorption of heavy metals by biochar derived from Pennisetum sinese Roxb [J]. Environmental Chemistry, 2016, 35(4): 766-772(in Chinese).
[38] 范世锁, 刘文浦, 王锦涛, 等. 茶渣生物炭制备及其对溶液中四环素的去除特性 [J]. 环境科学, 2020, 41(3): 1308-1318. FAN S S, LIU W P, WANG J T, et al. Preparation of tea waste biochar and its application in tetracycline removal from aqueous solution [J]. Environmental Science, 2020, 41(3): 1308-1318(in Chinese).
[39] SEPULVEDA L A, SANTANA C C. Effect of solution temperature, pH and ionic strength on dye adsorption onto Magellanic peat [J]. Environmental Technology, 2013, 34(8): 967-977. doi: 10.1080/09593330.2012.724251 [40] 吴志坚, 刘海宁, 张慧芳. 离子强度对吸附影响机理的研究进展 [J]. 环境化学, 2010, 29(6): 997-1003. WU Z J, LIU H N, ZHANG H F. Research progress on mechanisms about the effect of ionic strength on adsorption [J]. Environmental Chemistry, 2010, 29(6): 997-1003(in Chinese).
[41] CAMPINAS M, ROSA M J. The ionic strength effect on microcystin and natural organic matter surrogate adsorption onto PAC [J]. Journal of Colloid and Interface Science, 2006, 299(2): 520-529. doi: 10.1016/j.jcis.2006.02.042 [42] 陈尚龙. ATRP法制备羧基化生物吸附剂及其对重金属离子的吸附[D]. 徐州: 中国矿业大学(江苏), 2020. CHEN S L. Preparation of carboxylated biosorbents via atom transfer radical polymerization for adsorption of heavy metal ions[D]. Xuzhou: China University of Mining and Technology, 2020(in Chinese).
[43] 宋泽峰, 石晓倩, 刘卓, 等. 芦苇生物炭的制备、表征及其吸附铜离子与双酚A的性能 [J]. 环境化学, 2020, 39(8): 2196-2205. SONG Z F, SHI X Q, LIU Z, et al. Synthesis and characterization of reed-based biochar and its adsorption properties for Cu2+ and bisphenol A ( BPA) [J]. Environmental Chemistry, 2020, 39(8): 2196-2205(in Chinese).
[44] JIANG J, PENG Y, YUAN M, et al. Rice straw-derived biochar properties and functions as Cu(Ⅱ) and cyromazine sorbents as influenced by pyrolysis temperature [J]. An International Journal Pedosphere, 2015, 25(5): 781-789. doi: 10.1016/S1002-0160(15)30059-X [45] HO Y, MCKAY G. Pseudo-second order model for sorption processes [J]. Process Biochemistry, 1999, 34(5): 451-465. doi: 10.1016/S0032-9592(98)00112-5 [46] INYANG M I, GAO B, YAO Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal [J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4): 406-433. doi: 10.1080/10643389.2015.1096880 [47] TANG S, SHAO N, ZHENG C, et al. Amino-functionalized sewage sludge-derived biochar as sustainable efficient adsorbent for Cu(Ⅱ) removal [J]. Waste Management, 2019, 90(MAY): 17-28.