-
十溴二苯乙烷(decabromodiphenyl ethane,DBDPE)属于新型溴系阻燃剂(new brominated flame retardants,NBFRs)的一种,于1990年初开始作为十溴联苯醚(decabromodiphenyl ether, BDE-209)的替代品在商业上得到广泛应用[1]。DBDPE具有热稳定性好、抗紫外线能力强、渗出率低等优点,在高聚物合成材料、塑料、纤维、树脂、橡胶、建材等材料中都有所应用[2-3]。作为添加型阻燃剂,DBDPE以物理分散状态与基材共混,两者间没有化学键相连[4]。因此,在生产、使用和废物处置等环节,DBDPE都容易从产品中释放进入环境[5]。
近年来,随着BDE-209的逐步淘汰,DBDPE的生产和使用量逐年上升,其在大气、粉尘、土壤、沉积物、水体等环境介质中的检出浓度亦呈不断攀升的趋势。中国是溴系阻燃剂生产和使用大国,2006年至2016年DBDPE生产总量约23万吨,污染形势较国外更为严峻[6]。中国部分城市粉尘中DBDPE检出浓度已超过所有多溴联苯醚(poly brominated diphenyl ethers, PBDEs)的总和[7],杭州郊区土壤中DBDPE是检出浓度最高的新型溴系阻燃剂[8]。现有研究表明,DBDPE在生物体内也已广泛存在。如广东某电子垃圾回收站周边池塘鲤鱼肌肉组织中DBDPE的检出浓度为440—1000 ng·g−1(脂重)[9],青蛙体内的检出浓度为15.1—149 ng·g−1(脂重)[10]。浙江温岭电子拆解工人头发和血清中DBDPE的平均检出浓度分别为82.5 ng·g−1(干重)和125.2 ng·g−1(脂重)[11]。北京母乳样本中DBDPE检出率达100%,浓度为0.422—28.6 ng·g−1(脂重)[12]。
DBDPE具有持久性、生物积累性、毒性以及长距离迁移能力[4],因而对人类健康和生态环境存在潜在危害,由DBDPE引起的环境污染问题已经引起人们的高度重视。本文从污染现状、环境行为及风险评估3个方面对近年来有关DBDPE的研究进行了综述,为DBDPE的环境监管、DBDPE在环境和生物介质中的迁移转化和定向积累等行为与归趋研究提供相关资料,对科学评价DBDPE生态环境安全性具有重要意义。
-
DBDPE和BDE-209结构相似,都含有两个苯环,DBDPE的两个苯环间通过碳链相连,而BDE-209的两个苯环间通过醚键相连。与BDE-209相比,DBDPE两个苯环间的碳链使其构象柔性和疏水性更强[13]。由于分子内不含氧原子,DBDPE在热解过程中产生的多溴代二苯并二噁英(PBDDs)及多溴代二苯并呋喃(PBDFs)等高毒性化合物的浓度将远低于分子内含氧原子的溴系阻燃剂[14]。
表1列出了DBDPE一些重要的物理化学性质:相对分子质量、蒸汽压、正辛醇/水分配系数(KOW)、正辛醇/空气分配系数(KOA)等。DBDPE的这些性质会对其环境行为及转化归趋产生重要影响。例如,DBDPE的低蒸汽压和高KOA值使得其难以挥发到空气中,而易吸附于空气中的颗粒表面。DBDPE的低溶解度和高KOW值使得其在进入水生环境后主要在沉积物中积累。DBDPE的高KOC值则使其容易吸附于土壤有机碳。
-
作为BDE-209的替代品,DBDPE已在世界范围内大量生产和使用。DBDPE在2006年的全球产量为4540—22700吨,2012年则为22700—45400吨[5]。中国是DBDPE的生产大国,2006年的年产量为12000吨,2016年增加到31000吨[6,17]。且自2012年以来,我国DBDPE的年产量(25000吨)就已经超过BDE-209,占中国溴系阻燃剂总产量的四分之一[18-19]。在日本,DBDPE的年消费量在1993—2014年间逐年增加,并自1997年起超过BDE-209[20]。2000—2016年间,北美共从中国的电气与电子设备中进口了超过19500吨DBDPE[6]。而随着各国对BDE-209禁令的出台以及2017年BDE-209被列入《斯德哥尔摩公约》的持久性有机污染物清单,作为其替代品的DBDPE今后的需求和生产量将极有可能进一步增加[21]。
-
目前,DBDPE广泛存在于大气、粉尘、土壤、水体、沉积物、污水污泥等环境介质中,并且浓度呈不断攀升的趋势。表2总结了不同环境介质、不同地区、不同采样时间DBDPE的检出浓度。
-
DBDPE具有低蒸汽压(25 ℃下为6.00×10−15 Pa)和高KOA值(25 ℃下lg KOA为19.22),因此不易挥发到空气中,在大气中的检出浓度一般较低。例如,DBDPE在爱尔兰垃圾填埋场空气中的检出浓度为<0.9—2 pg·m−3,在瑞典斯德哥尔摩室外空气中的检出浓度则为<0.12—0.33 pg·m−3[22-23]。Venier等[24]检测到加拿大、美国室内空气中的DBDPE浓度中值分别为9.2 pg·m−3和42 pg·m−3,在捷克共和国室内空气中则未检测到DBDPE。但由于不同国家和地区的DBDPE生产和使用情况不同,其在空气中的检出浓度也有所差别。在印度比哈尔邦的室内建筑和中国广州的工业园区中,DBDPE的检出浓度中值分别为273 pg·m−3和414 pg·m−3[25-26]。在巴基斯坦的电子垃圾回收站中DBDPE的检出浓度中值达67.5 ng·m−3,在中国山东的DBDPE生产厂中则高达213 μg·m−3[27-28]。Li等[29]在2014年检测了我国9个城市大气中DBDPE的浓度,发现在汽车制造业发达的广州以及电视和有线电视机顶盒制造业发达的绵阳,DBDPE的检出浓度要远于其他城市。
-
与BDE-209类似,DBDPE可能会由于产品磨损或风化进入大气环境,主要吸附于粉尘[30]。He等[31]发现中国广东城市室内环境中DBDPE的检出浓度与农村无显著差异,但低于广东清远电子垃圾回收站车间中的DBDPE含量。在广东、浙江的4个电子垃圾拆解场车间地板上,DBDPE的平均浓度达39000—63000 ng·g−1[32]。在办公室粉尘中,DBDPE含量通常要高于家庭,这可能是由于办公室内含DBDPE的电子电器产品更多[33-34]。DBDPE在汽车中的检出浓度也较高,在巴西的检出浓度中值为1360 ng·g−1,在爱尔兰则为7700 ng·g−1[35-36]。这可能是由于车内通风受限和温度升高增加了DBDPE的释放[37]。而在不同的室内物品上,DBDPE的浓度也各不相同。Zheng等[38]发现DBDPE在家庭和办公室的空调过滤器及电脑桌面上的浓度要比地板和床上更高。Niu等[39]检测出家庭地板上DBDPE的浓度中值为185.4 ng·g−1,高于桌子、椅子等家具上的DBDPE浓度(71.43 ng·g−1)。此外,BDE-209/DBDPE的比值变化似乎反映了近年来DBDPE替代BDE-209程度的增加。比如,在2006—2010年,比利时室内粉尘中BDE-209/DBDPE的比值为2.5,到2016—2017年则变化为1.05[40]。
-
DBDPE进入土壤环境的主要途径:一是随着污水处理厂的生物固体(含DBDPE)以有机肥料的形式施用于土壤,二是粉尘中的DBDPE经大气沉降降落于土壤。DBDPE在其生产厂和电子垃圾回收站周边土壤中有较高的检出浓度。如在中国山东寿光的DBDPE生产厂附近,其检出浓度中值为610 ng·g−1(干重)[41];在澳大利亚墨尔本一个电子垃圾回收站附近,DBDPE的最高检出浓度为37000 ng·g−1(干重)[34]。Lin等[42]对华北地区5个省份(北京、天津、河北、山东、山西)土壤中DBDPE的含量进行检测,结果发现山东(中国DBDPE主要生产地区)和天津(电子垃圾回收活动频繁地区)的土壤中DBDPE检出浓度最高。此外,在农业土壤、森林土壤甚至青藏高原地区的土壤中,DBDPE也有所检出[43-45]。
-
DBDPE是强疏水性化合物(lg KOW=11.1),因此在进入水体环境后容易在沉积物中累积,在水环境介质中的检出频率和浓度相对较低。在北美五大湖中,DBDPE的检出浓度为0.25—10.8 pg·L−1[46]。在中国渤海和东江中,DBDPE则分别以ND(未检出)—91.44 pg·L−1和13—38 pg·L−1的浓度检出[47-48]。
DBDPE具有较高的KOC值(lg KOC=7.00),据此可推测其容易吸附于土壤有机碳,而不易淋溶进入地下水。Gottschall等[49]将含有DBDPE的生物固体施用于土壤后,在地下水环境中未检测到DBDPE。然而,2018—2019年采样自爱尔兰垃圾填埋场的地下水样品中,DBDPE首次被检出,检出频率为100%,浓度为1.3—630 ng·L−1,甚至超过了BDE-209的检出浓度(5.8—26 ng·L−1)[22]。这表明DBDPE的地下水污染风险仍不可忽视。
-
近年来,DBDPE在沉积物中的检出浓度已经高于BDE-209[50-53]。在南非瓦尔河流域的沉积物样品中,DBDPE的检出浓度为59—350 ng·g−1(干重),DBDPE/BDE-209的比值高达7.3[50]。在中国珠江三角洲地区,DBDPE的检出浓度最高值达1714 ng·g−1(干重),大多数沉积物样品中DBDPE/BDE-209的比值大于1[52]。我国南方红树林沉积物中有机碳含量丰富,是DBDPE积累的重要场所。如在中国广州、珠海、深圳的红树林沉积物中,DBDPE的检出浓度为3.70—26.0 ng·g−1(干重)[54]。此外,由于污水处理厂污水排放等人类活动,在一些封闭/半封闭海湾的沉积物中,DBDPE也有所检出[53]。
-
污水处理厂是有机污染物运输和转化的重要场所[55]。在污水处理厂中,有机污染物会发生一系列转化并被污泥吸附和积累[37]。在西班牙加泰罗尼亚州17个污水处理厂的污泥中,DBDPE的检出浓度中值为62.5 ng·g−1(干重)[56]。Lee等[57]根据污水的来源,将韩国41个污水处理厂分为了3类——生活污水处理厂、生活-工业混合污水处理厂和工业污水处理厂,平均检出浓度分别为20.0、29.3、594 ng·g−1(干重)。而在中国的污水处理厂中,DBDPE的检出浓度更高。如在中国哈尔滨污水处理厂污泥中,DBDPE的检出浓度中值为255.8 ng·g−1(干重)[58]。在中国广州的5个污水处理厂中,则报道了迄今为止DBDPE检出最高浓度为680—27400 ng·g−1(干重),是其他报道的10—100倍[59]。
-
DBDPE生产厂以及电子垃圾回收站是环境中DBDPE的重要释放源,而正在使用中的电子电器产品(以DBDPE作为阻燃剂)是室内环境中DBDPE的主要来源。此外,含DBDPE产品的运输、固体垃圾填埋、污水处理等环节都可能释放DBDPE。进入环境中的DBDPE经大气迁移、大气沉降、吸附、淋溶等过程可实现在各环境介质中的再分配。如图1所示是环境中DBDPE的具体来源和迁移示意图。
-
DBDPE在环境中的迁移行为具体表现为,存在于大气环境中的DBDPE可以通过长距离大气迁移转移至其他地区,也可以通过大气沉降迁移至表层土壤和水体环境。存在于土壤环境中的DBDPE可以通过地表径流汇入江河。污水处理厂的污水可能会被重新排放进入地表径流,而其产生的生物固体则可能作为有机肥料进入土壤环境。目前,关于DBDPE在环境介质中迁移行为的研究主要集中在DBDPE的长距离大气迁移和大气沉降两个方面,下文就这两部分展开讨论。
有机污染物的蒸汽压和KOA值是预测它们在大气环境中行为的重要物理化学参数。在25 ℃下,具有低蒸汽压(6.00×10−15 Pa)和高KOA值(lg KOA=19.22)的DBDPE较难挥发到空气中,而容易吸附于空气中的颗粒表面,被认为不容易进行长距离迁移[65]。然而,近年来,在人为干扰较少的南极、北极、青藏高原等地区都以较高频率检测出了DBDPE[44,66-67],表明DBDPE能够进行长距离大气迁移。究其原因,可能是由于DBDPE可以在干燥和高风速条件下与空气中的颗粒一起进行长距离迁移[15,44]。
存在于空气颗粒物中的DBDPE经由大气沉降会降落至地表土壤和水面,从而对土壤和水体环境等造成进一步污染。Hao等[67]和Yadav等[68]分别对北极地区和尼泊尔的DBDPE土壤-大气交换情况进行了研究,均发现其从土壤到大气的逸度远低于平衡值,表明了从大气到土壤发生了DBDPE的大气沉降和净运输。在莱州湾地区(中国最大的溴系阻燃剂生产基地)的小清河河水中,大气沉降是除工业点源和污水处理厂外DBDPE的主要污染来源[69]。Liu等[48]认为,渤海海水中DBDPE的高浓度(ND—622 pg·L−1)主要可归因于大气沉降,而非来自河流输入。他们对春、夏、冬的3个季节DBDPE的干湿沉降通量进行了估算,得到的总沉降通量分别为15.824、29.388、63.175 kg,其中DBDPE在夏季的高湿沉降通量(24.774 kg)和冬季的高干沉降通量(40.966 kg)分别受到夏季雨水冲刷和冬季季风的影响[48]。
-
动物主要通过呼吸道吸入、消化道摄入、皮肤和黏膜接触吸收这3种途径吸收环境中的有机污染物。进入生物体后,DBDPE随后运输到各组织和器官中。在动物的不同组织和器官中,DBDPE的浓度会有所差别。比如,DBDPE在董鸡的肌肉、肝脏、肾脏中的浓度分别为9.6—16.3、13.7—54.6、24.5—124 ng·g−1(脂重)[70];在田螺腹足中的最高浓度为1.2 mg·kg−1,在内脏中则为5.2 mg·kg−1[71]。究其原因,一方面,不同组织器官的脂肪含量不同,富集DBDPE的能力可能存在差异。另一方面,在动物的不同生理过程中,DBDPE可能会随脂肪发生被动扩散和转运,使DBDPE在各组织中重新分配[72]。
DBDPE的生物富集程度可以用生物富集因子(bioaccumulation factor, BAF)、生物放大因子(biomagnification factor, BMF)和营养级放大因子(trophic magnification factor, TMF)等来衡量。BAF可以表示为DBDPE在生物脂质中的浓度与其在环境溶解相中的浓度之比。当BAF>5000 (lg BAF>3.7)时,即可认定化合物具有生物富集能力[73]。DBDPE在中国东江3种鱼类(鲮鱼、罗非鱼、清道夫)体内的BAF介于6.1到7.1之间,甚至表现出了比BDE-209更强的生物富集能力,猜测可能与其不易在生物体内脱溴降解的特性有关[47]。BMF可以表示为DBDPE在捕食者脂质中的浓度与其在被捕食者脂质中的浓度之比,大于1意味着DBDPE沿食物链发生了生物放大[74]。通常认为BMF在化合物lg KOW约等于7时达到最大,总体呈现抛物状变化[75]。考虑到DBDPE的高度疏水性,其生物放大效应可能受到抑制。比如,Wu等[76]在草腹链蛇/青蛙捕食关系中所得DBDPE的BMF小于1;华南某电子垃圾回收站附近的普通翠鸟及其猎物(叉尾斗鱼、大肚鱼、马口鱼)所表现出的BMF为0.10—0.77[75]。但也有报道发现,DBDPE在加拿大温尼伯湖[74]和中国南方红树林[77]的食物网中存在生物放大。除了不同生物的食物资源、对DBDPE的代谢能力不同等因素以外,营养级差异也可能是造成DBDPE在不同生物体内放大潜力不同的原因之一。TMF的计算基于各生物体的营养级和DBDPE对数浓度之间的关系,大于1意味着在食物链中发生了营养级放大[78]。在中国广东珠江口红树林生物群落中,DBDPE浓度与营养级之间并没有显着相关性,这可能是由于DBDPE在水生生物中的低检出率和低生物可利用性降低了其营养传递能力[78]。而在太湖水生生态系统中,DBDPE表现出沿营养级稀释的特征(TMF=0.37),且营养级越高,生物代谢能力越弱,越不利于营养级稀释[79]。
-
植物吸收富集有机污染物的主要途径有两种:一是植物根部可以从土壤中主动或被动吸收有机污染物,随后通过木质部转移至其地上部分;二是大气中的有机污染物可以通过大气扩散、大气沉降等途径降落至植物叶片[8,80]。目前,DBDPE在树叶叶片[81-82]、松针[83]、树皮[84-85]、蔬菜[86-87]中都有所检出。
根部生物富集因子(root bioaccummlation factor, RCF)是衡量植物根部吸收富集有机污染物能力的重要参数。目前计算所得DBDPE的RCF大多小于1,生物可利用性较低[87-89]。有关研究认为DBDPE作为新型溴系阻燃剂,使用时间短于PBDEs,与土壤有机碳之间还未表现出紧密结合,因此DBDPE更易于被植物吸收,生物可利用性可能会高于PBDEs[75,77]。植物根部吸收富集DBDPE后,可以通过木质部将其运输到植物的地上部分(茎、叶、果实等)[8,72]。但由于DBDPE的高度疏水性,其在植物体内的转运能力较弱[88-89]。而对于植物叶片中DBDPE的积累,除了来自于根部的运输外,绝大部分可能来自于大气沉降。因此,具有较大叶片的玉米和水稻,叶片中积累的DBDPE浓度要高于植物的茎[80,88]。
植物吸收富集DBDPE的过程和能力可能会受到以下因素的影响。DBDPE环境容量、植物种类、环境条件(包括温度、湿度、光照等)、土壤理化性质以及植物生理学[90]。此外,Fan等[80]发现处于不同生长阶段的作物累积DBDPE的潜力有所不同,例如处于生殖生长期的花生中DBDPE的含量要远高于营养生长期。Sun等[8]比较了大棚蔬菜和普通蔬菜中DBDPE的含量差异,发现大棚蔬菜中DBDPE含量高于普通蔬菜。这可能是由于大棚蔬菜的生长周期长于普通蔬菜,而DBDPE在蔬菜的整个生长周期中都在不断积累。
最近的一项研究报道了DBDPE在植物中吸收转运的微观机制[91]。实验结果表明,植物脂含量更高的植物体具有更强的DBDPE吸收和转运能力;DBDPE与不同植物载脂蛋白间的结合位点和方式存在差异;DBDPE与植物载脂蛋白结合能力的强弱顺序和植物的RCF大小顺序相一致。
-
有研究认为DBDPE比BDE-209具有更强的抗紫外线辐射能力,在自然光暴露的224 d内,被掺入高抗冲聚苯乙烯(HIPS)中的DBDPE没有明显变化,而BDE-209的光解半衰期为51 d[92]。然而,Wang等[17]在以正己烷为反应介质时,发现DBDPE在自然光下的降解速率与BDE-209相近,两者的光解半衰期分别为16.6 min和18.1 min。
DBDPE的光解反应速率与其反应介质密切相关。Wang等[17]研究了DBDPE在不同反应介质中的光解行为,其光解半衰期(t1/2)顺序为:四氢呋喃(t1/2=6.0 min)<正己烷(t1/2=16.6 min)<腐殖质/水(30 min<t1/2<60 min)<硅胶(t1/2=75.9 min)<甲醇/水(t1/2>240 min)。这可能主要与不同反应介质的供氢能力强弱有关。在此需要指出的是,甲醇的键离解焓为402.0 kJ·mol−1,供氢能力较强,其他研究中DBDPE在甲醇溶液中的半衰期要明显小于此研究[93-94]。除反应介质外,紫外线波长、辐射强度和温度等也会影响DBDPE的光解速率。Nadjia等[95]发现在紫外灯照射下,DBDPE在四氢呋喃中的光解半衰期仅为1.89 min。DBDPE在UVA、UVB、UVC以及自然光下具有不同的半衰期,光解速率顺序为:UVC>UVB>自然光>UVA;在UVB光照下,DBDPE在14 °C时的半衰期是20 °C时的1.82倍[95]。而在研究吸附于硅胶上的DBDPE光解行为时,Li等[96]发现pH以及DBDPE浓度也会影响其降解速率。
目前,也有部分研究人员对DBDPE光解机理及产物进行了研究。如图2所示为DBDPE在有机溶剂中的光解途径及产物。Wang等[17]认为,DBDPE光解是个逐步脱溴的过程,在70 min光照时间内,鉴定出DBDPE的光解产物有3种nona-BDPEs、2种octa-BDPEs以及2种hepta-BDPEs。Ling等[94]则预测随着光照时间的延长,DBDPE会进一步脱溴。Klimm等[97]报道了DBDPE光解过程中形成了以Br8OxyTPs为主的多溴代含氧转化产物,并推测它们可能是平面的三环化合物。在以硅胶为反应介质的模拟太阳光照射实验中,由于硅胶在光照下容易产生·OH,DBDPE光解产物除了nona-BDPEs、octa-BDPEs等脱溴产物外,还有OH-nona-BDPEs、OH-penta-BDPEs等羟基化产物[96]。
-
在较高温度下(高于320 ℃),DBDPE可能会发生热分解[5]。相关研究表明,在仪器分析过程中,DBDPE可能会因热分解生成脱溴产物,其热解速率与BDE-209相近,但对热的敏感性更低一些[1,47]。Liu等[14]研究了含DBDPE的电子废塑料的热化学分解过程。在热解反应初期,DBDPE会生成脱溴产物,而随着反应温度的升高,脱溴产物会进一步分解生成溴化单芳香族化合物(图3)。
-
在实验室中,也有研究人员开展了有关DBDPE化学降解的研究。陈静[98]研究了DBDPE在高锰酸钾/硫酸体系中的去除效果,发现反应8 min后能够有效去除99.7%的DBDPE。此研究一共分析鉴定出了28种DBDPE降解产物,并提出了DBDPE乙基的C—C键直接氧化和乙基碳与相邻碳之间的C—C键断裂两种可能的降解途径。Grause等[99]发现DBDPE在150—190 ℃的氢氧化钠/乙二醇溶液中会发生脱溴反应,并检测到了含有菲和其他芳环结构的低溴代化合物。
-
相关研究表明,DBDPE在生物体内能够发生生物降解,其代谢产物可能并非简单的低溴代化合物[100-101]。Wang等[101]给雄性大鼠口服含100 mg·kg−1(体重)DBDPE的玉米油90 d后,在其体内至少观察到7种未知化合物,推测其中的两种化合物可能是MeSO2-nona-BDPE和EtSO2-nona-BDPE(图4)。通过与DBDPE光解产物的对比,认为脱溴加氢不是DBDPE在大鼠体内的主要代谢途径。在北极海洋动物体外肝微粒体实验中,44%—74%的DBDPE被降解[100]。对代谢产物进行研究发现,只能检测到两种酚类代谢物,未发现由于生物代谢而产生DBDPE低溴化产物的直接证据。然而,将田螺在含50 mg·kg−1DBDPE的沉积物中培养28 d后,发现了nona-BDPEs、octa-BDPEs、hepta-BDPEs等脱溴产物的存在(图4),表明DBDPE在田螺体内存在逐步脱溴的代谢过程[71]。
-
风险熵(risk quotient, RQ)是评估有机污染物生态风险的常用表征方法之一,其含义为所测得的有机污染物环境浓度(measured environmental concentration, MEC)与预测的无效应浓度(predicted no effect concentration, PNEC)的比值[102]。根据Hernando等[103]提出的RQ分类法划定生态风险等级:0.01≤RQ<0.1表示低风险;0.1≤RQ<1表示中等风险;RQ≥1表示高风险。在多溴联苯醚的沉积物生态风险评估中,常采用源于水生生物毒理学研究结果的《联邦沉积物质量指南》(FSeQGs),给出的tri-BDE、tetra-BDE、penta-BDE、hexa-BDE、octa-BDE和deca-BDE的PNEC值分别为44、39、0.4、440、5600、19 ng·g−1(干重)[104]。然而,对于DBDPE而言,目前尚无可用的PNEC值。Wu等[105]和Chokwe等[50]以100000 ng·g−1(干重)作为PNEC,保守地评估DBDPE对于大多数底栖生物的生态风险。结果表明,尽管DBDPE的检出浓度远高于BDE-209,但计算所得的RQ<0.01。然而,把100000 ng·g−1(干重)用作DBDPE的PNEC值是有待商榷的,有必要进行进一步的毒理学研究,获得更为可靠的PNEC值,以更准确地评估DBDPE的生态风险。
-
人体可通过土壤或灰尘摄入、皮肤接触吸收、呼吸吸入、饮食摄入等途径暴露于DBDPE[106-107]。采用危害指数(hazard quotient, HQ)来评估人体暴露于DBDPE的健康风险,其含义为每日估计摄入量(estimated daily intake, EDI)与相应参考剂量(reference dose, RfD)的比值。若HQ≤1,表明该化合物尚无可预见的风险;若HQ>1,表明该化合物可能会对人体造成不利影响[108]。对于DBDPE而言,Ali等[109]建议的RfD值为333333 ng·kg−1·d−1 bw。表3总结了部分文献所报道的EDI值。从表3可以看出,不同地区不同环境中DBDPE的EDI值差别较大,但均明显低于RfD值,即HQ远小于1。在DBDPE污染较为严重的地区(如DBDPE生产厂和电子垃圾回收站),计算所得的EDI值明显更高。儿童较成人有着更高的DBDPE暴露风险,这可能是由于儿童的体重较低,并且儿童更有可能通过手-足接触等途径误食DBDPE[42]。但值得注意的是,在当前研究中通过饮食摄入的人体暴露风险评估未考虑生物放大效应,且大多数研究未同时评估多种暴露途径的风险以得到总EDI值。
-
随着全球范围内PBDEs等传统溴系阻燃剂的限制使用,DBDPE作为BDE-209的主要替代品,使用量和产量逐年上升,在生态环境中的污染水平亦不断攀升。DBDPE易从产品中溢出进入大气和粉尘,经由大气迁移、大气沉降、吸附、淋溶等过程在各环境介质中重新分配。环境中的DBDPE可通过呼吸道、消化道、皮肤等途径进入动物体,经由根部或叶片进入植物体,并在生物体内发生富集放大,其生态风险和健康风险不容忽视。
现针对DBDPE研究现状及存在问题,做出以下展望:(1)现有研究表明,DBDPE在电子垃圾回收站和DBDPE生产厂周边的检出浓度远高于其他地区。因此,今后应当更为重视DBDPE在这两类场所附近的环境监管。(2)今后应当加强对DBDPE污染时空特征及演变规律的研究,为DBDPE环境监管和防治提供支持。(3)目前关于DBDPE生物富集放大效应的研究主要集中于鱼类和鸟类,今后应当扩大所研究的生物类型,增加研究生物放大效应的食物链长度。(4)深入研究DBDPE在环境及生物介质中的代谢降解机理,积极寻找DBDPE环境去除途径,如可开展DBDPE降解菌种筛选和鉴定相关研究。(5)重视DBDPE代谢和降解产物对环境的影响,开展有关DBDPE代谢和降解产物的环境行为、毒性效应等方面的研究。(6)尽快建立并不断完善DBDPE的风险评估体系,并利用各种系统的评价方法来评价其生态环境和人体健康风险。
十溴二苯乙烷的污染现状及环境行为研究进展
Research progress on the pollution status and environmental behaviors of decabromodiphenyl ethane
-
摘要: 新型溴系阻燃剂十溴二苯乙烷(decabromodiphenyl ethane, DBDPE)是十溴联苯醚(decabromodiphenyl ether, BDE-209)的主要替代品,使用量和产量逐年上升,其环境安全性问题备受重视。本文在论述DBDPE基本理化性质及环境污染现状的基础上,系统总结了目前有关DBDPE在不同环境介质中的行为与归趋研究进展(如环境迁移、代谢与降解、动植物吸收富集等),并从风险熵法和危害指数法两个方面对有关DBDPE风险评估的研究进行了综述。最后,指出了当前研究存在的不足并对今后的研究方向作出展望。本文将有助于系统认识DBDPE的环境效应,为后续DBDPE环境行为研究及环境污染监管提供参考依据。Abstract: Decabromodiphenyl ethane (DBDPE), a novel brominated flame retardant, is a primary substitute for decabromodiphenyl ether (BDE-209). The use and production of DBDPE are increasing year by year, and its environmental safety has received extensive attention. This paper summarized the physicochemical properties and pollution status of DBDPE in the environment and reviewed the main research progress on the behaviors and fate of DBDPE in the environment (such as environmental transportation, metabolism, degradation, absorption, and bioaccumulation in plants and animals). It also summarized the research progress on DBDPE risk assessment basing on the risk quotient method and hazard index method. The existing problems and future research prospects were also discussed. The review will help better understand the environmental impacts of DBDPE and guide the subsequent study on its environmental behaviors and pollution supervision.
-
-
表 1 DBDPE的物理化学性质
Table 1. Physicochemical properties of DBDPE
表 2 DBDPE在不同环境介质中的浓度
Table 2. Concentration of DBDPE in different environmental media
环境介质
Environmental media采样点
Sampling site中位数和/或浓度范围
Median and/or concentration range采样时间
Sampling time参考文献
Reference大气 爱尔兰垃圾填埋场 <0.9—2 pg·m−3 2018.11—2019.1 [22] 瑞典斯德哥尔摩(室外) 0.15 (<0.12—0.33) pg·m−3 2012 [23] 瑞典斯德哥尔摩(室内) <90—250 pg·m−3 2012 [23] 印度比哈尔邦(室内) 273 (116—15358) pg·m−3 2015.8—2015.10 [26] 中国广东广州工业园区 414 (57.6—2472) pg·m−3 2015—2016 [25] 巴基斯坦卡拉奇
电子垃圾回收站67.5 (8.5—99.5) ng·m−3 2014.8 [28] 中国山东DBDPE生产厂 213 (12.7—435) μg·m−3 2016 [27] 粉尘 英国伯明翰家庭 41 (<1.2—2300) ng·g−1 2015.2—2015.5 [33] 英国伯明翰办公室 440 (<1.2—17000) ng·g−1 2015.2—2015.5 [33] 澳大利亚墨尔本家庭 1600 (ND—9000) ng·g−1 2016.9 [60] 澳大利亚墨尔本办公室 1900 (ND—10000) ng·g−1 2016.9 [60] 澳大利亚墨尔本汽车 1900 (ND—3900) ng·g−1 2016.9 [60] 中国广州家庭 4600 (153—96410) ng·g−1 2015.9—2016.7 [61] 中国广东广州城市(室内) 727 (241—4420) ng·g−1 2013.9—2014.3 [31] 中国广东清远农村(室内) 665 (211—1900) ng·g−1 2013.9—2014.3 [31] 中国广东清远电子垃圾
回收站车间2720 (669—15000) ng·g−1 2013.9—2014.3 [31] 中国浙江、广东电子垃圾拆解场地 140—170000 ng·g−1 2013.7—2013.12 [32] 巴西垃圾填埋场 2664 (ND—5910) ng·g−1 2015 [62] 土壤 中国山东寿光DBDPE生产厂周边 610 (12—9000) ng·g−1(干重) 2014.8 [41] 澳大利亚墨尔本电子垃圾回收站周边 <45 (ND—37000) ng·g−1(干重) 2017.11 [34] 中国广东贵屿电子垃圾回收站周边(非根际土壤) 15.35 (7.33—134) ng·g−1(干重) 2012.12 [63] 土壤 中国广东贵屿电子垃圾回收站周边(根际土壤) 33.1 (10.1—348) ng·g−1(干重) 2012.12 [63] 巴西垃圾填埋场 1.7 (ND—83) ng·g−1(干重) 2015 [62] 中国山东寿光农田 12—344 ng·g−1(干重) 2008.5 [43] 中国青藏高原 <LOQ—1450 pg·g−1(干重) 2012.5 [44] 沉积物 中国广东广州红树林湿地 14.9 (3.7—26) ng·g−1(干重) 2015.11 [54] 中国广东珠海红树林湿地 9.33 (5.16—21.5) ng·g−1(干重) 2015.11 [54] 中国广东深圳红树林湿地 10.5 (7.7—14.41) ng·g−1(干重) 2015.11 [54] 南非瓦尔河 176.06 (59—350) ng·g−1(干重) 2017.10—2017.12 [50] 中国珠江三角洲地区 1.520—1714 ng·g−1(干重) 2013 [52] 中国大鹏湾 122.1 (4.37—276.4) ng·g−1(干重) 2013 [52] 中国黄海海湾 0.16—39.7 ng·g−1(干重) 2014 [53] 欧洲水产养殖场底泥 <0.01—2.41 ng·g−1(干重) 2016 [64] 水体 中国广东东江(颗粒相) 48 (37—110) ng·g−1 2010.5 [47] 中国广东东江(溶解相) 13 (13—38) pg·L−1 2010.5 [47] 中国渤海海水(溶解相) ND—91.44 pg·L−1 2016—2017 [48] 爱尔兰垃圾填埋场地下水 9.35 (1.3—630) ng·L−1 2018.11—2019.1 [22] 污水污泥 中国哈尔滨污水处理厂污水(入口) <LOQ—86.13 ng·L−1 2012—2013 [55] 中国哈尔滨污水处理厂污水(出口) <LOQ—17 ng·L−1 2012—2013 [55] 中国哈尔滨污水处理厂(好氧污泥) 50.8—911 ng·g−1(干重) 2012—2013 [55] 中国哈尔滨污水处理厂(脱水污泥) 57.6—577 ng·g−1(干重) 2012—2013 [55] 西班牙加泰罗尼亚污水处理厂污泥 62.5 (ND—257) ng·g−1(干重) 2009 [58] 中国广州污水处理厂污泥 4090 (675.4—27438.6) ng·g−1(干重) 2013—2014 [59] 韩国生活污水处理厂污泥 <LOQ—89.2 ng·g−1(干重) 2011.7—2011.10 [57] 韩国生活-工业混合污水处理厂污泥 <LOQ—108 ng·g−1(干重) 2011.7—2011.10 [57] 韩国工业污水处理厂污泥 <LOQ—3100 ng·g−1(干重) 2011.7—2011.10 [57] 澳大利亚污水处理厂生物固体 600 (ND—1100) ng·g−1(干重) 2017.9—2018.4 [60] 注:ND—未检出;LOQ—定量限.Note: ND—not detectable; LOQ—limit of quantitation. 表 3 不同文献中的DBDPE每日估计摄入量(EDI)
Table 3. Estimated daily intake (EDI) of DBDPE in different references
暴露途径
Exposure route样品信息
Sample information暴露人群
Exposed populationEDI/
(ng·kg−1·d−1·bw)参考文献
Reference灰尘摄入 广东,某高校17个大学宿舍室内灰尘 成人 0.58a, 1.46b [110] 广东,城市室内灰尘(n=28) 儿童 3.73a, 29.4b [31] 广东,城市室内灰尘(n=28) 成人 0.33a, 1.62b [31] 广东,电子垃圾回收站车间灰尘(n=20) 儿童 15.5a, 169b [31] 广东,电子垃圾回收站车间灰尘(n=20) 成人 1.35a, 9.27b [31] 广东,农村室内灰尘(n=30) 儿童 2.71a, 22.9b [31] 广东,农村室内灰尘(n=30) 成人 0.24a, 1.26b [31] 比利时、意大利和西班牙的室内灰尘(n=65) 儿童 0.404a, 3.19b [40] 比利时、意大利和西班牙的室内灰尘(n=65) 成人 0.0207a, 0.246b [40] 上海,室内地面灰尘(n=22) 从婴儿至成人 0.13—1.04a [39] 上海,室内桌椅等家具上灰尘(n=22) 从婴儿至成人 0.05—0.40a [39] 土壤摄入 华北,DBDPE生产厂周边土壤 成人 1.15b [42] 华北,DBDPE生产厂周边土壤 儿童 26.9b [42] 呼吸吸入 印度,城市建筑室内空气 儿童 0.534a, 8.546b [26] 印度,郊区建筑室内空气 儿童 0.199a, 0.638b [26] 印度,城市建筑室内空气 成人 0.140a, 2.234b [26] 印度,郊区建筑室内空气 成人 0.0519a, 0.167b [26] 山东,20个DBDPE生产厂车间空气 成人 11500a, 27500b [27] 华北,DBDPE生产厂周围空气 儿童 0.82b [111] 华北,DBDPE生产厂周围空气 成人 0.2b [111] 皮肤接触吸收 比利时、意大利和西班牙的室内灰尘(n=65) 儿童 4.14×10−4a, 1.64×10−3b [40] 比利时、意大利和西班牙的室内灰尘(n=65) 成人 2.39×10−5a, 9.44×10−5b [40] 北京,30个成人的手掌、手背及前臂表面擦拭样品 成人 7.0 ng·d−1a, 80.4 ng·d−1b [112] 饮食摄入 北京,20位母亲3 d重复饮食样品 母亲 23.5a, 506b [12] 北京,母乳(n=20) 婴儿(母乳喂养) 33.6a, 114b [12] 浙江,某农场温室蔬菜(番茄、黄瓜) NA 586—807 ng·d−1a [8] 浙江,某农场非温室蔬菜(番茄、黄瓜) NA 51—185 ng·d−1a [8] 注:NA—无资料;a.平均暴露量;b.日最高暴露量. Note: NA—not available; a. daily average intake; b. daily high intake. -
[1] KIERKEGAARD A, SELLSTRÖM U, MCLACHLAN M S. Environmental analysis of higher brominated diphenyl ethers and decabromodiphenyl ethane [J]. Journal of Chromatography A, 2009, 1216(3): 364-375. doi: 10.1016/j.chroma.2008.05.058 [2] 张月, 张崇海, 朱玉鹏, 等. 十溴二苯乙烷的环境分布及其毒性效应研究进展 [J]. 环境与职业医学, 2020, 37(1): 87-93. ZHANG Y, ZHANG C H, ZHU Y P, et al. Research progress on environmental distribution and toxicity effects of decabromodiphenyl ethane [J]. Journal of Environmental & Occupational Medicine, 2020, 37(1): 87-93(in Chinese).
[3] WEMKEN N, DRAGE D S, CELLARIUS C, et al. Emerging and legacy brominated flame retardants in the breast milk of first time Irish mothers suggest positive response to restrictions on use of HBCDD and Penta- and Octa-BDE formulations [J]. Environmental Research, 2020, 180: 108805. doi: 10.1016/j.envres.2019.108805 [4] 王森, 张兆祥. 环境介质中十溴二苯乙烷和1, 2-双(2, 4, 6-三溴苯氧基)乙烷分布特征的研究进展 [J]. 同济大学学报(自然科学版), 2020, 48(3): 407-417,455. doi: 10.11908/j.issn.0253-374x.19351 WANG S, ZHANG Z X. Research progress on distribution characteristics of DBDPE and BTBPE in environment [J]. Journal of Tongji University (Natural Science), 2020, 48(3): 407-417,455(in Chinese). doi: 10.11908/j.issn.0253-374x.19351
[5] 金美青, 陈紫涵, 陈雯, 等. 十溴二苯乙烷在环境中的分布及毒理学研究进展 [J]. 环境化学, 2016, 35(12): 2482-2490. doi: 10.7524/j.issn.0254-6108.2016.12.2016041302 JIN M Q, CHEN Z H, CHEN W, et al. Environmental behavior and toxicology of decabromodiphenyl ethane - a review [J]. Environmental Chemistry, 2016, 35(12): 2482-2490(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.12.2016041302
[6] SHEN K H, LI L, LIU J Z, et al. Stocks, flows and emissions of DBDPE in China and its international distribution through products and waste [J]. Environmental Pollution, 2019, 250: 79-86. doi: 10.1016/j.envpol.2019.03.090 [7] ZHENG X B, XU F C, CHEN K H, et al. Flame retardants and organochlorines in indoor dust from several e-waste recycling sites in South China: Composition variations and implications for human exposure [J]. Environment International, 2015, 78: 1-7. doi: 10.1016/j.envint.2015.02.006 [8] SUN J Q, WU Y H, JIANG P, et al. Concentration, uptake and human dietary intake of novel brominated flame retardants in greenhouse and conventional vegetables [J]. Environment International, 2019, 123: 436-443. doi: 10.1016/j.envint.2018.12.008 [9] LIU Y, LUO X J, HUANG L Q, et al. Halogenated organic pollutants in aquatic, amphibious, and terrestrial organisms from an e-waste site: Habitat-dependent accumulation and maternal transfer in watersnake [J]. Environmental Pollution, 2018, 241: 1063-1070. doi: 10.1016/j.envpol.2018.06.038 [10] 陶林. 替代型卤系阻燃剂的生物蓄积及营养级放大特征[D]. 北京: 中国科学院大学, 2019. TAO L. Bioaccumulation characteristics and trophic magnification of alternative halogenated flame retardants[D]. Beijing: University of Chinese Academy of Sciences, 2019 (in Chinese).
[11] LIANG S, XU F, TANG W B, et al. Brominated flame retardants in the hair and serum samples from an e-waste recycling area in southeastern China: The possibility of using hair for biomonitoring [J]. Environmental Science and Pollution Research, 2016, 23(15): 14889-14897. doi: 10.1007/s11356-016-6491-x [12] WANG J D, LI J, SHI Z X. Dietary exposure assessment of a nursing mother-infant cohort to legacy and novel brominated flame retardants: Results of a 3-day duplicate diet study in Beijing, China [J]. Chemosphere, 2020, 254: 126843. doi: 10.1016/j.chemosphere.2020.126843 [13] COVACI A, HARRAD S, ABDALLAH M A E, et al. Novel brominated flame retardants: A review of their analysis, environmental fate and behaviour [J]. Environment International, 2011, 37(2): 532-556. doi: 10.1016/j.envint.2010.11.007 [14] LIU W J, TIAN K, JIANG H, et al. Lab-scale thermal analysis of electronic waste plastics [J]. Journal of Hazardous Materials, 2016, 310: 217-225. doi: 10.1016/j.jhazmat.2016.02.044 [15] AL-OMRAN L S. Physiochemical properties and environmental levels of legacy and novel brominated flame retardants[C]//Flame Retardants. IntechOpen, 2018: 19-37. [16] EFSA PANEL ON CONTAMINANTS IN THE FOOD CHAIN. Scientific opinion on emerging and novel brominated flame retardants (BFRs) in food [J]. EFSA Journal, 2012, 10(10): 2908. [17] WANG J, CHEN S J, NIE X, et al. Photolytic degradation of decabromodiphenyl ethane (DBDPE) [J]. Chemosphere, 2012, 89(7): 844-849. doi: 10.1016/j.chemosphere.2012.05.006 [18] ZHANG W, WANG P, ZHU Y, et al. Brominated flame retardants in atmospheric fine particles in the Beijing-Tianjin-Hebei region, China: Spatial and temporal distribution and human exposure assessment [J]. Ecotoxicology and Environmental Safety, 2019, 171: 181-189. doi: 10.1016/j.ecoenv.2018.12.080 [19] WANG X C, LING S Y, GUAN K L, et al. Bioconcentration, biotransformation, and thyroid endocrine disruption of decabromodiphenyl ethane (Dbdpe), a novel brominated flame retardant, in zebrafish larvae [J]. Environmental Science & Technology, 2019, 53(14): 8437-8446. [20] ANH H Q, TOMIOKA K, TUE N M, et al. PBDEs and novel brominated flame retardants in road dust from northern Vietnam: Levels, congener profiles, emission sources and implications for human exposure [J]. Chemosphere, 2018, 197: 389-398. doi: 10.1016/j.chemosphere.2018.01.066 [21] ZUIDERVEEN E A R, SLOOTWEG J C, DE BOER J. Novel brominated flame retardants - A review of their occurrence in indoor air, dust, consumer goods and food [J]. Chemosphere, 2020, 255: 126816. doi: 10.1016/j.chemosphere.2020.126816 [22] HARRAD S, DRAGE D S, SHARKEY M, et al. Perfluoroalkyl substances and brominated flame retardants in landfill-related air, soil, and groundwater from Ireland [J]. Science of the Total Environment, 2020, 705: 135834. doi: 10.1016/j.scitotenv.2019.135834 [23] NEWTON S, SELLSTRÖM U, DE WIT C A. Emerging flame retardants, PBDEs, and HBCDDs in indoor and outdoor media in Stockholm, Sweden [J]. Environmental Science & Technology, 2015, 49(5): 2912-2920. [24] VENIER M, AUDY O, VOJTA Š, et al. Brominated flame retardants in the indoor environment - Comparative study of indoor contamination from three countries [J]. Environment International, 2016, 94: 150-160. doi: 10.1016/j.envint.2016.04.029 [25] 王涛, 陶林, 曾源, 等. 工业园及电子垃圾区大气中的溴代阻燃剂(BFRs) [J]. 中国环境科学, 2019, 39(9): 3691-3700. doi: 10.3969/j.issn.1000-6923.2019.09.012 WANG T, TAO L, ZENG Y, et al. Brominated flame retardants (BFRs) in the atmosphere of urban and e-waste recycling regions in South China: Concentrations, distributions, compositions, and emission [J]. China Environmental Science, 2019, 39(9): 3691-3700(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.09.012
[26] YADAV I C, DEVI N L, KUMAR A, et al. Airborne brominated, chlorinated and organophosphate ester flame retardants inside the buildings of the Indian state of Bihar: Exploration of source and human exposure [J]. Ecotoxicology and Environmental Safety, 2020, 191: 110212. doi: 10.1016/j.ecoenv.2020.110212 [27] WANG D J, CHEN T, FU Z J, et al. Occupational exposure to polybrominated diphenyl ethers or decabromodiphenyl ethane during chemical manufacturing: Occurrence and health risk assessment [J]. Chemosphere, 2019, 231: 385-392. doi: 10.1016/j.chemosphere.2019.05.165 [28] IQBAL M, SYED J H, BREIVIK K, et al. E-waste driven pollution in Pakistan: The first evidence of environmental and human exposure to flame retardants (FRs) in Karachi city [J]. Environmental Science & Technology, 2017, 51(23): 13895-13905. [29] LI Q L, YANG K, LI K C, et al. New halogenated flame retardants in the atmosphere of nine urban areas in China: Pollution characteristics, source analysis and variation trends [J]. Environmental Pollution, 2017, 224: 679-688. doi: 10.1016/j.envpol.2017.02.052 [30] PENG C F, TAN H L, GUO Y, et al. Emerging and legacy flame retardants in indoor dust from East China [J]. Chemosphere, 2017, 186: 635-643. doi: 10.1016/j.chemosphere.2017.08.038 [31] HE C T, ZHENG X B, YAN X, et al. Organic contaminants and heavy metals in indoor dust from e-waste recycling, rural, and urban areas in South China: Spatial characteristics and implications for human exposure [J]. Ecotoxicology and Environmental Safety, 2017, 140: 109-115. doi: 10.1016/j.ecoenv.2017.02.041 [32] TAO F, ABDALLAH M A E, HARRAD S. Emerging and legacy flame retardants in UK indoor air and dust: Evidence for replacement of PBDEs by emerging flame retardants? [J]. Environmental Science & Technology, 2016, 50(23): 13052-13061. [33] SUN J Q, XU Y, ZHOU H B, et al. Levels, occurrence and human exposure to novel brominated flame retardants (NBFRs) and Dechlorane Plus (DP) in dust from different indoor environments in Hangzhou, China [J]. Science of the Total Environment, 2018, 631/632: 1212-1220. doi: 10.1016/j.scitotenv.2018.03.135 [34] MCGRATH T J, MORRISON P D, BALL A S, et al. Spatial distribution of novel and legacy brominated flame retardants in soils surrounding two Australian electronic waste recycling facilities [J]. Environmental Science & Technology, 2018, 52(15): 8194-8204. [35] WEMKEN N, DRAGE D S, ABDALLAH M A E, et al. Concentrations of brominated flame retardants in indoor air and dust from Ireland reveal elevated exposure to decabromodiphenyl ethane [J]. Environmental Science & Technology, 2019, 53(16): 9826-9836. [36] CRISTALE J, ARAGÃO BELÉ T G, LACORTE S, et al. Occurrence and human exposure to brominated and organophosphorus flame retardants via indoor dust in a Brazilian city [J]. Environmental Pollution, 2018, 237: 695-703. doi: 10.1016/j.envpol.2017.10.110 [37] XIONG P, YAN X T, ZHU Q Q, et al. A review of environmental occurrence, fate, and toxicity of novel brominated flame retardants [J]. Environmental Science & Technology, 2019, 53(23): 13551-13569. [38] ZHENG X B, QIAO L, COVACI A, et al. Brominated and phosphate flame retardants (FRs) in indoor dust from different microenvironments: Implications for human exposure via dust ingestion and dermal contact [J]. Chemosphere, 2017, 184: 185-191. doi: 10.1016/j.chemosphere.2017.05.167 [39] NIU D, QIU Y L, DU X Y, et al. Novel brominated flame retardants in house dust from Shanghai, China: Levels, temporal variation, and human exposure [J]. Environmental Sciences Europe, 2019, 31(1): 1-12. doi: 10.1186/s12302-018-0176-7 [40] DE LA TORRE A, NAVARRO I, SANZ P, et al. Organophosphate compounds, polybrominated diphenyl ethers and novel brominated flame retardants in European indoor house dust: Use, evidence for replacements and assessment of human exposure [J]. Journal of Hazardous Materials, 2020, 382: 121009. doi: 10.1016/j.jhazmat.2019.121009 [41] LI W L, LIU L Y, ZHANG Z F, et al. Brominated flame retardants in the surrounding soil of two manufacturing plants in China: Occurrence, composition profiles and spatial distribution [J]. Environmental Pollution, 2016, 213: 1-7. doi: 10.1016/j.envpol.2016.01.092 [42] LIN Y, MA J, QIU X H, et al. Levels, spatial distribution, and exposure risks of decabromodiphenylethane in soils of North China [J]. Environmental Science and Pollution Research, 2015, 22(17): 13319-13327. doi: 10.1007/s11356-015-4572-x [43] ZHU Z C, CHEN S J, ZHENG J, et al. Occurrence of brominated flame retardants (BFRs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs) in agricultural soils in a BFR-manufacturing region of North China [J]. Science of the Total Environment, 2014, 481: 47-54. doi: 10.1016/j.scitotenv.2014.02.023 [44] LIU X, BING H J, CHEN Y Z, et al. Brominated flame retardants and dechlorane plus on a remote high mountain of the eastern Tibetan Plateau: Implications for regional sources and environmental behaviors [J]. Environmental Geochemistry and Health, 2018, 40(5): 1887-1897. doi: 10.1007/s10653-017-9938-1 [45] ZHENG Q, NIZZETTO L, LI J, et al. Spatial distribution of old and emerging flame retardants in Chinese forest soils: Sources, trends and processes [J]. Environmental Science & Technology, 2015, 49(5): 2904-2911. [46] VENIER M, DOVE A, ROMANAK K, et al. Flame retardants and legacy chemicals in Great Lakes’ water [J]. Environmental Science & Technology, 2014, 48(16): 9563-9572. [47] HE M J, LUO X J, CHEN M Y, et al. Bioaccumulation of polybrominated diphenyl ethers and decabromodiphenyl ethane in fish from a river system in a highly industrialized area, South China [J]. Science of the Total Environment, 2012, 419: 109-115. doi: 10.1016/j.scitotenv.2011.12.035 [48] LIU L, ZHEN X M, WANG X M, et al. Legacy and novel halogenated flame retardants in seawater and atmosphere of the Bohai Sea: Spatial trends, seasonal variations, and influencing factors [J]. Water Research, 2020, 184: 116117. doi: 10.1016/j.watres.2020.116117 [49] GOTTSCHALL N, TOPP E, EDWARDS M, et al. Brominated flame retardants and perfluoroalkyl acids in groundwater, tile drainage, soil, and crop grain following a high application of municipal biosolids to a field [J]. Science of the Total Environment, 2017, 574: 1345-1359. doi: 10.1016/j.scitotenv.2016.08.044 [50] CHOKWE T B, MAGUBANE M N, ABAFE O A, et al. Levels, distributions, and ecological risk assessments of polybrominated diphenyl ethers and alternative flame retardants in river sediments from Vaal River, South Africa [J]. Environmental Science and Pollution Research, 2019, 26(7): 7156-7163. doi: 10.1007/s11356-018-04063-4 [51] LI Y N, ZHEN X M, LIU L, et al. Halogenated flame retardants in the sediments of the Chinese Yellow Sea and East China Sea [J]. Chemosphere, 2019, 234: 365-372. doi: 10.1016/j.chemosphere.2019.06.115 [52] ZHU B Q, LAM J C W, LAM P K S. Halogenated flame retardants (HFRs) in surface sediment from the Pearl River Delta region and Mirs Bay, South China [J]. Marine Pollution Bulletin, 2018, 129(2): 899-904. doi: 10.1016/j.marpolbul.2017.10.046 [53] ZHEN X M, TANG J H, XIE Z Y, et al. Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) in sediments from four bays of the Yellow Sea, North China [J]. Environmental Pollution, 2016, 213: 386-394. doi: 10.1016/j.envpol.2016.02.042 [54] HU Y X, PEI N C, SUN Y X, et al. Halogenated flame retardants in mangrove sediments from the Pearl River Estuary, South China: Comparison with historical data and correlation with microbial community [J]. Chemosphere, 2019, 227: 315-322. doi: 10.1016/j.chemosphere.2019.04.075 [55] LI B, SUN S J, HUO C Y, et al. Occurrence and fate of PBDEs and novel brominated flame retardants in a wastewater treatment plant in Harbin, China [J]. Environmental Science and Pollution Research, 2016, 23(19): 19246-19256. doi: 10.1007/s11356-016-7142-y [56] LI B, WANG K, MA L X, et al. Deca-BDE and alternative halogenated flame retardants in a wastewater treatment plant in Harbin (2009—2016): Occurrence, temporal trends, seasonal variation, and fate [J]. Science of the Total Environment, 2018, 625: 1156-1163. doi: 10.1016/j.scitotenv.2017.12.346 [57] LEE S, SONG G J, KANNAN K, et al. Occurrence of PBDEs and other alternative brominated flame retardants in sludge from wastewater treatment plants in Korea [J]. Science of the Total Environment, 2014, 470/471: 1422-1429. doi: 10.1016/j.scitotenv.2013.07.118 [58] GORGA M, MARTÍNEZ E, GINEBREDA A, et al. Determination of PBDEs, HBB, PBEB, DBDPE, HBCD, TBBPA and related compounds in sewage sludge from Catalonia (Spain) [J]. Science of the Total Environment, 2013, 444: 51-59. doi: 10.1016/j.scitotenv.2012.11.066 [59] WU Q H, LI H Y, KUO D T F, et al. Occurrence of PBDEs and alternative halogenated flame retardants in sewage sludge from the industrial city of Guangzhou, China[J]. Environmental Pollution, 2017, 220(Part A): 63-71. [60] MCGRATH T J, MORRISON P D, BALL A S, et al. Concentrations of legacy and novel brominated flame retardants in indoor dust in Melbourne, Australia: An assessment of human exposure [J]. Environment International, 2018, 113: 191-201. doi: 10.1016/j.envint.2018.01.026 [61] TANG S Q, TAN H L, LIU X T, et al. Legacy and alternative flame retardants in house dust and hand wipes from South China [J]. Science of the Total Environment, 2019, 656: 1-8. doi: 10.1016/j.scitotenv.2018.11.369 [62] CRISTALE J, ARAGÃO BELÉ T G, LACORTE S, et al. Occurrence of flame retardants in landfills: A case study in Brazil [J]. Environmental Research, 2019, 168: 420-427. doi: 10.1016/j.envres.2018.10.010 [63] WANG S R, WANG Y, SONG M K, et al. Distributions and compositions of old and emerging flame retardants in the rhizosphere and non-rhizosphere soil in an e-waste contaminated area of South China [J]. Environmental Pollution, 2016, 208: 619-625. doi: 10.1016/j.envpol.2015.10.038 [64] AZNAR-ALEMANY Ò, AMINOT Y, VILÀ-CANO J, et al. Halogenated and organophosphorus flame retardants in European aquaculture samples [J]. Science of the Total Environment, 2018, 612: 492-500. doi: 10.1016/j.scitotenv.2017.08.199 [65] 张丽, 李雪花, 孙慧超, 等. 有机污染物正辛醇/空气分配系数研究进展 [J]. 环境科学研究, 2004, 17(4): 77-80. doi: 10.3321/j.issn:1001-6929.2004.04.021 ZHANG L, LI X H, SUN H C, et al. Progress on the study of the octanol-air partition coefficient [J]. Research of Environmental Sciences, 2004, 17(4): 77-80(in Chinese). doi: 10.3321/j.issn:1001-6929.2004.04.021
[66] ZHAO J, WANG P, WANG C, et al. Novel brominated flame retardants in West Antarctic atmosphere (2011—2018): Temporal trends, sources and chiral signature [J]. Science of the Total Environment, 2020, 720: 137557. doi: 10.1016/j.scitotenv.2020.137557 [67] HAO Y F, MENG W Y, LI Y M, et al. Concentrations and distribution of novel brominated flame retardants in the atmosphere and soil of Ny-Ålesund and London Island, Svalbard, Arctic [J]. Journal of Environmental Sciences, 2020, 97: 180-185. doi: 10.1016/j.jes.2020.04.031 [68] YADAV I C, DEVI N L, LI J, et al. Environmental concentration and atmospheric deposition of halogenated flame retardants in soil from Nepal: Source apportionment and soil-air partitioning [J]. Environmental Pollution, 2018, 233: 642-654. doi: 10.1016/j.envpol.2017.10.104 [69] ZHEN X M, TANG J H, LIU L, et al. From headwaters to estuary: Distribution and fate of halogenated flame retardants (HFRs) in a river basin near the largest HFR manufacturing base in China [J]. Science of the Total Environment, 2018, 621: 1370-1377. doi: 10.1016/j.scitotenv.2017.10.091 [70] SHI T, CHEN S J, LUO X J, et al. Occurrence of brominated flame retardants other than polybrominated diphenyl ethers in environmental and biota samples from southern China [J]. Chemosphere, 2009, 74(7): 910-916. doi: 10.1016/j.chemosphere.2008.10.047 [71] WANG Y W, LING S Y, LU C, et al. Exploring the environmental fate of novel brominated flame retardants in a sediment-water-mudsnail system: Enrichment, removal, metabolism and structural damage [J]. Environmental Pollution, 2020, 265: 114924. doi: 10.1016/j.envpol.2020.114924 [72] 郑晓波. 卤代有机污染物在鸡中的富集、子代传递和胚胎发育中的迁移转化及体外代谢[D]. 北京: 中国科学院大学, 2015. ZHENG X B. Organohalogenated pollutants in bioaccumulation, maternal transfer, and embryo development processes of chicken and in vitro metabolism[D]. Beijing: University of Chinese Academy of Sciences, 2015 (in Chinese).
[73] KELLY B C, IKONOMOU M G, BLAIR J D, et al. Food web-specific biomagnification of persistent organic pollutants [J]. Science, 2007, 317(5835): 236-239. doi: 10.1126/science.1138275 [74] LAW K, HALLDORSON T, DANELL R, et al. Bioaccumulation and trophic transfer of some brominated flame retardants in a Lake Winnipeg (Canada) food web [J]. Environmental Toxicology and Chemistry, 2006, 25(8): 2177-2186. doi: 10.1897/05-500R.1 [75] MO L, WU J P, LUO X J, et al. Bioaccumulation of polybrominated diphenyl ethers, decabromodiphenyl ethane, and 1, 2-bis (2, 4, 6-tribromophenoxy) ethane flame retardants in kingfishers (Alcedo atthis) from an electronic waste–recycling site in South China [J]. Environmental Toxicology and Chemistry, 2012, 31(9): 2153-2158. doi: 10.1002/etc.1929 [76] WU J P, WU S K, TAO L, et al. Bioaccumulation characteristics of PBDEs and alternative brominated flame retardants in a wild frog-eating snake [J]. Environmental Pollution, 2020, 258: 113661. doi: 10.1016/j.envpol.2019.113661 [77] TAO L, ZHANG Y, WU J P, et al. Biomagnification of PBDEs and alternative brominated flame retardants in a predatory fish: Using fatty acid signature as a primer [J]. Environment International, 2019, 127: 226-232. doi: 10.1016/j.envint.2019.03.036 [78] SUN Y X, ZHANG Z W, XU X R, et al. Bioaccumulation and biomagnification of halogenated organic pollutants in mangrove biota from the Pearl River Estuary, South China [J]. Marine Pollution Bulletin, 2015, 99(1-2): 150-156. doi: 10.1016/j.marpolbul.2015.07.041 [79] ZHENG G M, WAN Y, SHI S N, et al. Trophodynamics of emerging brominated flame retardants in the aquatic food web of Lake Taihu: Relationship with organism metabolism across trophic levels [J]. Environmental Science & Technology, 2018, 52(8): 4632-4640. [80] FAN Y, CHEN S J, LI Q Q, et al. Uptake of halogenated organic compounds (HOCs) into peanut and corn during the whole life cycle grown in an agricultural field [J]. Environmental Pollution, 2020, 263: 114400. doi: 10.1016/j.envpol.2020.114400 [81] DREYER A, NEUGEBAUER F, RÜDEL H, et al. Halogenated flame retardants in tree samples applied as bioindicators for atmospheric pollution [J]. Chemosphere, 2018, 208: 233-240. doi: 10.1016/j.chemosphere.2018.05.033 [82] TIAN M, CHEN S J, WANG J, et al. Plant uptake of atmospheric brominated flame retardants at an e-waste site in southern China [J]. Environmental Science & Technology, 2012, 46(5): 2708-2714. [83] ZHU H K, SUN H W, YAO Y M, et al. Legacy and alternative brominated flame retardants in outdoor dust and pine needles in mainland China: Spatial trends, dust-plant partitioning and human exposure [J]. Environmental Pollution, 2018, 243: 758-765. doi: 10.1016/j.envpol.2018.08.097 [84] QIU X H, HITES R A. Dechlorane plus and other flame retardants in tree bark from the northeastern United States [J]. Environmental Science & Technology, 2008, 42(1): 31-36. [85] SALAMOVA A, HITES R A. Brominated and chlorinated flame retardants in tree bark from around the globe [J]. Environmental Science & Technology, 2013, 47(1): 349-354. [86] LI P, WU H, LI Q X, et al. Brominated flame retardants in food and environmental samples from a production area in China: Concentrations and human exposure assessment [J]. Environmental Monitoring and Assessment, 2015, 187(11): 1-11. [87] WANG S R, WANG Y, LUO C L, et al. Plant selective uptake of halogenated flame retardants at an e-waste recycling site in southern China [J]. Environmental Pollution, 2016, 214: 705-712. doi: 10.1016/j.envpol.2016.04.071 [88] ZHANG Y, LUO X J, MO L, et al. Bioaccumulation and translocation of polyhalogenated compounds in rice (Oryza sativa L. ) planted in paddy soil collected from an electronic waste recycling site, South China [J]. Chemosphere, 2015, 137: 25-32. doi: 10.1016/j.chemosphere.2015.04.029 [89] HU Y X, SUN Y X, PEI N C, et al. Polybrominated diphenyl ethers and alternative halogenated flame retardants in mangrove plants from Futian National Nature Reserve of Shenzhen city, South China [J]. Environmental Pollution, 2020, 260: 114087. doi: 10.1016/j.envpol.2020.114087 [90] ZHANG A P, LUO W X, SUN J Q, et al. Distribution and uptake pathways of organochlorine pesticides in greenhouse and conventional vegetables [J]. Science of the Total Environment, 2015, 505: 1142-1147. doi: 10.1016/j.scitotenv.2014.11.023 [91] 李浩楠, 黄红林, 吕丽丽, 等. 土壤中十溴二苯乙烷(DBDPE)的植物吸收传输特征及微观机制研究 [J]. 环境科学学报, 2020, 40(5): 1848-1857. LI H N, HUANG H L, LYU L L, et al. Plant uptake and translocation of DBDPE in soil and the micro-mechanisms [J]. Acta Scientiae Circumstantiae, 2020, 40(5): 1848-1857(in Chinese).
[92] KAJIWARA N, NOMA Y, TAKIGAMI H. Photolysis studies of technical decabromodiphenyl ether (DecaBDE) and ethane (DeBDethane) in plastics under natural sunlight [J]. Environmental Science & Technology, 2008, 42(12): 4404-4409. [93] ZHOU D M, ZHENG X S, LIU X T, et al. Photodegradation of 1, 3, 5-Tris-(2, 3-dibromopropyl)-1, 3, 5-triazine-2, 4, 6-trione and decabromodiphenyl ethane flame retardants: Kinetics, main products, and environmental implications [J]. Journal of Hazardous Materials, 2020, 398: 122983. doi: 10.1016/j.jhazmat.2020.122983 [94] LING S Y, HUANG K, TARIQ M, et al. Photodegradation of novel brominated flame retardants (NBFRs) in a liquid system: Kinetics and photoproducts [J]. Chemical Engineering Journal, 2019, 362(1): 938-946. [95] NADJIA L, ABDELKADER E, ULRICH M, et al. Spectroscopic behavior of saytex 8010 under UV-visible light and comparative thermal study with some flame bromine retardant [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2014, 275: 96-102. doi: 10.1016/j.jphotochem.2013.11.008 [96] LI C G, ZUO J L, LIANG S J, et al. Photodegradation of decabromodiphenyl ethane (DBDPE) adsorbed on silica gel in aqueous solution: Kinetics, products, and theoretical calculations [J]. Chemical Engineering Journal, 2019, 375: 121918. doi: 10.1016/j.cej.2019.121918 [97] KLIMM A, BRENNER D, LOK B, et al. Photolytic transformation products of decabromodiphenyl ethane (DBDPE) [J]. Environmental Science & Technology, 2019, 53(11): 6302-6309. [98] 陈静. 高锰酸钾和高铁酸钾氧化降解四种卤代有机物的反应机理研究[D]. 南京: 南京大学, 2018. CHEN J. Study on mechanisms of four halogenated organic compounds during KMnO4/K2FeO4 oxidation process[D]. Nanjing: Nanjing University, 2018 (in Chinese).
[99] GRAUSE G, FONSECA J D, TANAKA H, et al. A novel process for the removal of bromine from styrene polymers containing brominated flame retardant [J]. Polymer Degradation and Stability, 2015, 112: 86-93. doi: 10.1016/j.polymdegradstab.2014.12.017 [100] MCKINNEY M A, DIETZ R, SONNE C, et al. Comparative hepatic microsomal biotransformation of selected PBDEs, including decabromodiphenyl ether, and decabromodiphenyl ethane flame retardants in Arctic marine-feeding mammals [J]. Environmental Toxicology and Chemistry, 2011, 30(7): 1506-1514. doi: 10.1002/etc.535 [101] WANG F X, WANG J, DAI J Y, et al. Comparative tissue distribution, biotransformation and associated biological effects by decabromodiphenyl ethane and decabrominated diphenyl ether in male rats after a 90-day oral exposure study [J]. Environmental Science & Technology, 2010, 44(14): 5655-5660. [102] 张晓娇, 柏杨巍, 张远, 等. 辽河流域地表水中典型抗生素污染特征及生态风险评估 [J]. 环境科学, 2017, 38(11): 4553-4561. ZHANG X J, BAI Y W, ZHANG Y, et al. Occurrence, distribution, and ecological risk of antibiotics in surface water in the Liaohe River basin, China [J]. Environmental Science, 2017, 38(11): 4553-4561(in Chinese).
[103] HERNANDO M D, MEZCUA M, FERNÁNDEZ-ALBA A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments [J]. Talanta, 2006, 69(2): 334-342. doi: 10.1016/j.talanta.2005.09.037 [104] ENVIRONMENT CANADA. Canadian Environmental Protection Act, 1999. Federal environmental quality guidelines: Polybrominated diphenyl ethers (PBDEs)[R]. Environment Canada, Gatineau, 2013. [105] WU Q H, LIU X C, LIANG C Z, et al. Historical trends and ecological risks of polybrominated diphenyl ethers (PBDEs) and alternative halogenated flame retardants (AHFRs) in a mangrove in South China [J]. Science of the Total Environment, 2017, 599-600: 181-187. doi: 10.1016/j.scitotenv.2017.05.002 [106] 李文龙. 亚洲五国土壤和大气中溴代阻燃剂的时空分布和健康风险[D]. 哈尔滨: 哈尔滨工业大学, 2016. LI W L. Spatiotemporal variations and human health risks of brominated flame retardants in soils and air of five Asian countries[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese).
[107] 管玉峰, 涂秀云, 吴宏海, 等. 广东家庭室内飞尘十溴二苯乙烷和十溴联苯醚的含量及其人体暴露评估 [J]. 华南师范大学学报(自然科学版), 2012, 44(3): 86-90. GUAN Y F, TU X Y, WU H H, et al. Ocurrence and human exposure of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (BDE209) in domestic indoor dust from Guangdong Province, China [J]. Journal of South China Normal University (Natural Science Edition), 2012, 44(3): 86-90(in Chinese).
[108] 苏冠勇. 多溴联苯醚及其衍生物的环境调查、致毒机制及其基于芳烃受体活性的健康风险评估研究[D]. 南京: 南京大学, 2013. SU G Y. Environmental occurrence, toxicity mechanism and AhR-induced risk assessment of polybrominated diphcnyl ethers (PBDEs) and their analogues[D]. Nanjing: Nanjing University, 2013 (in Chinese).
[109] ALI N, DIRTU A C, VAN DEN EEDE N, et al. Occurrence of alternative flame retardants in indoor dust from New Zealand: Indoor sources and human exposure assessment [J]. Chemosphere, 2012, 88(11): 1276-1282. doi: 10.1016/j.chemosphere.2012.03.100 [110] 茹淑玲, 贾慧凝, 李鑫, 等. 室内环境中通过灰尘摄入和手-口接触带来的阻燃剂人体暴露风险 [J]. 环境化学, 2019, 38(10): 2247-2255. doi: 10.7524/j.issn.0254-6108.2018113002 RU S L, JIA H N, LI X, et al. Human exposure to flame retardants via dust ingestion and hand-to-mouth contact in indoor environment [J]. Environmental Chemistry, 2019, 38(10): 2247-2255(in Chinese). doi: 10.7524/j.issn.0254-6108.2018113002
[111] ZHAO Y F, MA J, QIU X H, et al. Gridded field observations of polybrominated diphenyl ethers and decabromodiphenyl ethane in the atmosphere of North China [J]. Environmental Science & Technology, 2013, 47(15): 8123-8129. [112] LIU X T, YU G, CAO Z G, et al. Estimation of human exposure to halogenated flame retardants through dermal adsorption by skin wipe [J]. Chemosphere, 2017, 168: 272-278. doi: 10.1016/j.chemosphere.2016.10.015 -