-
抗生素是指天然、半合成或人工合成的一类对细胞生长产生干扰或抑制的化合物,被广泛地应用于疾病防治、农业生产、畜牧及水产养殖等领域[1]。据统计,全世界每年抗生素的消费量可达10—20万吨[2]。我国是抗生素的生产消费大国,医用和畜牧业抗生素滥用情况严重,年均使用量约为2.5万吨,占到全球总使用量的20%左右[3]。水体是环境中抗生素重要归宿地之一,研究表明,水环境中抗生素污染来源包括市政(医院和城市污水)污水、农业(水产养殖、畜牧业)和制造业等,抗生素会在环境中沿食物链、食物网进行富集,生态影响会随着积累程度愈发明显[4-5]。王作铭等[6]研究表明磺胺甲恶唑、土霉素和氟苯尼考对蛋白核小球藻、费氏弧菌,大型蚤和斑马鱼胚胎均表现出较高的风险性。抗生素也容易导致水体中耐药菌的出现,对环境和人类造成危害。例如磺胺类抗生素可抑制核酸的合成,并且可以抑制细菌细胞壁对叶酸合成中的必要组分谷氨酸的渗透性,进而影响蛋白质的合成[7]。因此,近年来水体中抗生素污染受到广泛关注。
研究表明,水环境中存在的抗生素主要有四环素类(TCs)、大环内酯类(MLs)、磺胺类(SAs)和喹诺酮类(FQs)等[1]。而我国水环境中存在的抗生素主要包括五大类二十种,除上述四大类之外,还有氯霉素类(CPs)[8]。Kolpin等[9]对美国30多个州139条河流的水质监测表明水体中检测出的95种有机物中抗生素有21种。Phan等[10]研究发现磺胺甲恶唑是越南北部地区城市运河中的主要污染物,浓度达到612—4330 ng·L−1,同时大环内酯类抗生素在城市运河中检出频率很高。周志洪等[11]对珠江广州段水体中41种抗生素进行分析研究,发现在丰水期有9种抗生素在地表水中的检出率为100%,其中氧氟沙星浓度最高,达到703 ng·L−1。总体而言,我国黄浦江中污染最严重的为磺胺类和四环素类,长江口含量较高的为磺胺类和氯霉素类,地表水污染以氟喹诺酮类和磺胺类抗生素最为严重[1]。但是,我国关于抗生素污染的研究主要集中于医疗费水、生活污水、养殖废水等方面,且多集中于沿海城市。近几年中西部城市发展程度不断提高,人们对抗生素等新型有机污染物的关注程度也在提高,但相应研究不足。
本研究选取沱江干流流域作为研究区域,以七类典型抗生素:磺胺类、大环内酯类、β-内酰胺类、喹诺酮类、酰胺醇类、硝基咪唑类、四环素类共35种化合物为主要研究对象,研究目标抗生素在沱江干流的空间分布和季节变化情况。同时对其生态风险进行评估,为今后沱江流域抗生素污染的管理奠定一定的理论基础。
沱江干流抗生素污染的时空变化和生态风险评估
Spatial and seasonal variation of antibiotics and their associated ecological risk in Tuojiang River
-
摘要: 研究了35种7大类抗生素在沱江干流31个采样点河水中浓度的季节和空间变化。研究表明,抗生素广泛存在于沱江干流河水中,其冬季浓度为低于检出限至75.23 ng·L−1,夏季浓度为低于检出限至22.42 ng·L−1,除了四环素类和β-内酰胺类外,其余抗生素污染浓度有显著季节差异,但大部分抗生素没有呈现出空间差异。在冬季,β-内酰胺类和酰胺醇类抗生素是沱江干流中主要的污染物;而在夏季,四环素类、磺胺类和喹诺酮类抗生素是主要污染物。生态风险评估表明,无论冬夏,磺胺嘧啶、磺胺甲恶唑、左氧氟沙星、氧氟沙星、盐酸金霉素、盐酸四环素对沱江干流生态系统风险最高,为中等至高风险,其余抗生素为低风险,因此,这6种抗生素污染值得重视。Abstract: Spatial and seasonal variation of 35 antibiotics belonging to 7 classes were investigated, as well as their associated ecological risk in Tuojiang river. The selected antibiotics were widely detected in the Tuojiang river, with concentrations ranging from below detection limits to 75.23 ng·L−1, and from below detection limits to 22.42 ng·L−1, respectively in winter and summer. The antibiotics levels in winter were significantly higher than those in summer, with the exception of tetracycline and β-lactam antibiotics. However, no significant difference in most of antibiotics concentrations were found among upper, middle, and downstream of the Tuojiang river. β-lactam and amphenicol antibiotics were the main pollutants in winter, while sulfonamide, tetracycline, and fluoroquinolone antibiotics were the primary contaminants in summer. According to ecological risk evaluation, sulfadiazine, sulfamethoxazole, levofloxacin, ofloxacin, chlortetracycline hydrochloride, tetracycline hydrochloride displayed middle to high risk to ecosystem, and the rest exhibited low risk. Therefore, further studies should pay attention to these antibiotics.
-
Key words:
- antibiotics /
- Tuojiang River /
- spatial and seasonal variation /
- ecological risk
-
表 1 抗生素分析的条件参数
Table 1. Parameters for analysis of antibiotics
条件参数Parameters 设定值Values 气帘气/psi 35 电离电压/V 5500 离子源温度/℃ 250 喷雾气/psi 60 辅助加热气/psi 60 流速/(mL·min−1) 0.3 进样体积/μL 3 柱温箱温度/℃ 35 表 2 抗生素毒性数据和评估因子
Table 2. Antibiotic toxicity data and evaluation factors
化合物
Compounds英文简写
Abbreviation参数
Parameters参数数值/(μg·L−1)
Values评价因子
AF预测无效应浓度/(μg·L−1)
PNEC磺胺噻唑 STHIA EC50 13100 1000 13.1 磺胺氯哒嗪 SCHLO EC50 32250 1000 32.25 磺胺间二甲氧嘧啶 SDIME EC50 9850 1000 9.85 磺胺甲恶唑 SMETO EC50 27 1000 0.027 磺胺二甲嘧啶 SMETA EC50 19500 1000 19.5 磺胺嘧啶 SDIAZ NOEC 0.01 50 0.0002 磺胺甲基嘧啶 SMERA EC50 11900 1000 11.9 磺胺吡啶 SPYRI EC50 460 1000 0.46 甲氧苄啶 TRIME EC50 32 1000 0.032 罗红霉素 ROXIT NOEC 10 100 0.1 利福平 RIFAM EC50 20 1000 0.02 红霉素 ERYTH NOEC 3.1 100 0.031 阿奇霉素二水合物 AZIDI EC50 500 1000 0.5 酒石酸泰乐菌素 TYLTA NOEC 0.064 50 0.00128 青霉素G钾盐 PENGO NOEC 200 100 2 阿莫西林三水合物 AMOTR EC50 56300 1000 56.3 氨苄西林三水合物 AMPTR EC50 2200 1000 2.2 恩诺沙星 ENROF EC50 49 1000 0.049 依诺沙星 ENOXA NOEC 2.88 100 0.0288 诺氟沙星 NORFL NOEC 10.38 100 0.1038 左氧氟沙星 LEVOF EC50 7.9 1000 0.0079 盐酸环丙沙星 CIPHY EC50 2970 1000 2.97 甲磺酸达氟沙星 DANME NOEC 610000 100 6100 盐酸洛美沙星 LOMHY EC50 186 1000 0.186 氧氟沙星 OFLOX EC50 4.74 1000 0.00474 氟苯尼考 FLORF EC50 2290 1000 2.29 甲砜霉素 THIAM EC50 1300 1000 1.3 氯霉素 CHLOR IC50 100 1000 0.1 罗硝唑 RONID EC50 12500 1000 12.5 甲硝唑 METRO EC50 12500 1000 12.5 二甲硝唑 DIMET NOEC 150 100 1.5 盐酸金霉素 CHLHY NOEC 0.5 100 0.005 盐酸地美环素 DEMHY NOEC 1800 100 18 盐酸四环素 TETHY NOEC 0.5 100 0.005 盐酸土霉素 OXYHY NOEC 3.1 100 0.031 表 3 沱江干流中抗生素浓度统计描述(ng·L−1)
Table 3. Statistical description of antibiotics levels in Tuojiang river (ng·L−1)
冬季 夏季 平均值
Mean最小值
Minimum25th
分位数
25th
percentile中位数
Median75th
分位数
75th
percentile最大值
Maximum检出率/%
Detection rate平均值
Mean最小值
Minimum25th
分位数
25th
percentile中位数
Median75th
分位数
75th
percentile最大值
Maximum检出率/%
Detection rateAMOTR 15.89 n.d. n.d. 10.03 24.38 75.23 58 n.d. n.d. n.d. n.d. n.d. n.d. 0 ENOXA 0.87 n.d. 0.29 0.64 1.15 3.38 87 0.65 n.d. n.d. 0.71 0.98 1.42 74 ENROF 1.57 n.d. 0.40 0.75 1.88 7.59 97 0.54 n.d. 0.64 0.67 0.73 0.76 77 LEVOF 4.96 0.79 1.87 2.72 6.17 25.55 100 0.71 n.d. 0.67 0.73 0.79 1.23 94 NORFL 2.25 n.d. 0.83 1.74 2.52 10.78 87 0.56 n.d. n.d. 0.73 0.84 1.60 65 PENGO 3.77 n.d. n.d. 0.54 4.13 49.14 52 2.29 0.26 0.79 1.50 1.99 19.91 100 RIFAM 0.14 n.d. n.d. n.d. n.d. 2.57 10 0.02 n.d. n.d. n.d. n.d. 0.77 3 ROXIT 5.11 1.66 2.75 4.06 5.04 29.85 100 1.26 n.d. 0.61 0.87 1.38 9.04 90 SCHLO 1.30 n.d. 0.63 1.27 2.13 4.35 81 0.33 n.d. n.d. n.d. 0.65 1.86 35 SDIAZ 1.02 n.d. 0.45 0.91 1.47 2.96 90 0.15 n.d. n.d. n.d. n.d. 3.14 23 SDIME 0.11 n.d. n.d. 0.05 0.17 0.51 74 0.42 n.d. n.d. 0.38 0.56 1.59 71 SMERA 0.09 n.d. n.d. n.d. 0.14 0.55 26 0.07 n.d. n.d. n.d. n.d. 0.53 23 SMETA 1.08 n.d. 0.41 0.89 1.51 4.16 87 0.21 n.d. n.d. n.d. 0.47 1.42 29 SMETO 8.40 n.d. 3.18 7.68 11.58 26.82 90 0.83 n.d. 0.00 0.26 1.14 10.64 58 SPYRI 0.50 n.d. 0.20 0.45 0.69 2.03 81 0.06 n.d. n.d. n.d. n.d. 0.47 19 STHIA 0.16 n.d. n.d. n.d. 0.39 0.75 48 0.20 n.d. n.d. n.d. 0.40 1.71 42 TRIME 2.88 0.00 1.71 2.28 4.38 8.27 90 3.07 n.d. n.d. 2.82 4.15 12.41 71 AMPTR 7.05 n.d. n.d. n.d. 11.17 42.07 48 2.22 n.d. 1.05 1.79 2.58 8.50 87 AZIDI 1.01 n.d. n.d. n.d. n.d. 12.77 23 n.d. n.d. n.d. n.d. n.d. n.d. 0 CHLHY 2.54 n.d. 0.67 2.01 3.61 10.35 77 6.93 n.d. 0.29 1.99 4.69 121.74 81 CIPHY 1.25 n.d. n.d. 0.75 1.98 5.74 71 0.58 n.d. n.d. 0.78 0.88 1.29 65 DANME 3.62 n.d. n.d. 2.85 5.70 11.20 71 1.33 n.d. n.d. 1.48 2.11 3.91 68 DEMHY 2.94 n.d. 0.24 2.18 4.99 10.98 77 3.13 n.d. n.d. n.d. 4.97 22.42 48 DIMET 9.78 2.75 6.16 8.03 11.89 34.81 100 0.74 0.71 0.73 0.74 0.75 0.87 100 LOMHY 0.38 n.d. n.d. 0.23 0.56 2.03 61 0.50 n.d. n.d. 0.65 0.68 0.87 74 METRO 3.60 1.14 1.82 2.76 3.93 16.28 100 0.70 n.d. 0.71 0.71 0.72 0.78 97 OXYHY 1.40 n.d. n.d. 1.23 2.86 3.75 61 1.37 n.d. n.d. 1.18 2.20 4.12 61 OFLOX 4.86 0.68 1.65 2.69 5.62 24.05 100 0.69 n.d. 0.67 0.74 0.79 1.04 90 RONID 0.33 n.d. n.d. n.d. 0.35 2.41 26 0.05 n.d. n.d. n.d. n.d. 0.71 6 TETHY 1.94 0.00 0.65 1.68 2.51 5.49 84 1.32 n.d. n.d. 0.86 2.01 6.56 58 ERYTH 0.71 n.d. 0.27 0.70 1.10 1.65 94 0.04 n.d. n.d. n.d. n.d. 1.26 3 TYLTA n.d. n.d. n.d. n.d. n.d. n.d. 0 n.d. n.d. n.d. n.d. n.d. n.d. 0 CHLOR 1.03 n.d. 0.55 0.90 1.22 3.21 97 0.86 n.d. n.d. n.d. n.d. 17.15 13 FLORF 23.23 7.43 16.73 20.09 28.02 77.81 100 4.27 n.d. n.d. n.d. 10.59 21.49 32 THIAM 0.74 n.d. n.d. n.d. n.d. 8.95 16 n.d. n.d. n.d. n.d. n.d. n.d. 0 n.d.:低于检出限. -
[1] 章强, 辛琦, 朱静敏, 等. 中国主要水域抗生素污染现状及其生态环境效应研究进展 [J]. 环境化学, 2014, 33(7): 1075-1083. doi: 10.7524/j.issn.0254-6108.2014.07.001 ZHANG Q, XIN Q, ZHU J M, et al. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts [J]. Environmental Chemistry, 2014, 33(7): 1075-1083(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.07.001
[2] KÜMMERER K. Antibiotics in the aquatic environment: A review: Part II [J]. Chemosphere, 2009, 75(4): 435-441. doi: 10.1016/j.chemosphere.2008.12.006 [3] WISE R. Antimicrobial resistance: Priorities for action [J]. Journal of Antimicrobial Chemotherapy, 2002, 49(4): 585-586. doi: 10.1093/jac/49.4.585 [4] 李秀文, 何益得, 张巍, 等. 磺胺类抗生素对水环境的污染及生态毒理效应 [J]. 环境科学与技术, 2018(S1): 62-67. LI X W, HE Y D, ZHANG W, et al. Pollution status of sulfonamides in aquatic environment and its ecotoxicological effects on aquatic organisms [J]. Environmental Science & Technology, 2018(S1): 62-67(in Chinese).
[5] 罗迪君. 国内抗生素的主要来源和污染特征 [J]. 绿色科技, 2019(14): 159-161. doi: 10.3969/j.issn.1674-9944.2019.14.056 LUO D J. Primary sources and pollution characteristics of antibiotics in China [J]. Journal of Green Science and Technology, 2019(14): 159-161(in Chinese). doi: 10.3969/j.issn.1674-9944.2019.14.056
[6] 王作铭, 陈军, 陈静, 等. 地表水中抗生素复合残留对水生生物的毒性及其生态风险评价 [J]. 生态毒理学报, 2018, 13(4): 149-160. doi: 10.7524/AJE.1673-5897.20170831001 WANG Z M, CHEN J, CHEN J, et al. Toxicity to aquatic organisms and ecological risk assessment of antibi-otic compound residues in the surface water [J]. Asian Journal of Ecotoxicology, 2018, 13(4): 149-160(in Chinese). doi: 10.7524/AJE.1673-5897.20170831001
[7] VALDERAS M W, ANDI B, BARROW W W, et al. Examination of intrinsic sulfonamide resistance in Bacillus anthracis: A novel assay for dihydropteroate synthase [J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2008, 1780(5): 848-853. doi: 10.1016/j.bbagen.2008.02.003 [8] 刘昔, 王智, 王学雷, 等. 我国典型区域地表水环境中抗生素污染现状及其生态风险评价 [J]. 环境科学, 2019, 40(5): 2094-2100. LIU X, WANG Z, WANG X L, et al. Status of antibiotic contamination and ecological risks assessment of several typical Chinese surface-water environments [J]. Environmental Science, 2019, 40(5): 2094-2100(in Chinese).
[9] KOLPIN D W, FURLONG E T, MEYER M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999−2000: A national reconnaissance [J]. Environmental Science & Technology, 2002, 36(6): 1202-1211. [10] HOA P T P, MANAGAKI S, NAKADA N, et al. Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam [J]. The Science of the Total Environment, 2011, 409(15): 2894-2901. doi: 10.1016/j.scitotenv.2011.04.030 [11] 周志洪, 赵建亮, 魏晓东, 等. 珠江广州段水体抗生素的复合污染特征及其生态风险 [J]. 生态环境学报, 2017, 26(6): 1034-1041. ZHOU Z H, ZHAO J L, WEI X D, et al. Co-occurrence and ecological risk of antibiotics in surface water of Guangzhou section of Pearl River [J]. Ecology and Environment Sciences, 2017, 26(6): 1034-1041(in Chinese).
[12] SONG Z, ZHANG X B, NGO H H, et al. Occurrence, fate and health risk assessment of 10 common antibiotics in two drinking water plants with different treatment processes [J]. The Science of the Total Environment, 2019, 674: 316-326. doi: 10.1016/j.scitotenv.2019.04.093 [13] TRAN N H, HOANG L, NGHIEM L D, et al. Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi, Vietnam [J]. The Science of the Total Environment, 2019, 692: 157-174. doi: 10.1016/j.scitotenv.2019.07.092 [14] BIAŁK-BIELIŃSKA A, STOLTE S, ARNING J, et al. Ecotoxicity evaluation of selected sulfonamides [J]. Chemosphere, 2011, 85(6): 928-933. doi: 10.1016/j.chemosphere.2011.06.058 [15] XU M J, HUANG H T, LI N, et al. Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China [J]. Ecotoxicology and Environmental Safety, 2019, 175: 289-298. doi: 10.1016/j.ecoenv.2019.01.131 [16] 钟珊, 王小庆, 马保华, 等. 磺胺二甲嘧啶及其加入方式对猪粪厌氧消化的影响 [J]. 家畜生态学报, 2020, 41(1): 68-74. doi: 10.3969/j.issn.1673-1182.2020.01.014 ZHONG S, WANG X Q, MA B H, et al. Effect of sulfamethazine and the addition methods on anaerobic digestion of swine manure [J]. Acta Ecologae Animalis Domastici, 2020, 41(1): 68-74(in Chinese). doi: 10.3969/j.issn.1673-1182.2020.01.014
[17] 刘仁彬, 姜锦林, 张宇峰, 等. 磺胺甲恶唑对斑马鱼胚胎/仔鱼的毒性效应 [J]. 环境污染与防治, 2020, 42(3): 310-316. LIU R B, JIANG J L, ZHANG Y F, et al. Toxic effects of sulfamethoxazole on zebrafish(Danio rerio)embryo/larva [J]. Environmental Pollution and Control, 2020, 42(3): 310-316(in Chinese).
[18] 张旭, 王雅静, 赵志强, 等. 华北地区部分河流中典型抗生素的分布特征及来源分析 [J]. 环境监测管理与技术, 2020, 32(5): 14-17. doi: 10.3969/j.issn.1006-2009.2020.05.004 ZHANG X, WANG Y J, ZHAO Z Q, et al. Distribution characteristics and source analysis of typical antibiotics in some rivers in North China [J]. The Administration and Technique of Environmental Monitoring, 2020, 32(5): 14-17(in Chinese). doi: 10.3969/j.issn.1006-2009.2020.05.004
[19] 封丽, 程艳茹, 封雷, 等. 三峡库区主要水域典型抗生素分布及生态风险评估 [J]. 环境科学研究, 2017, 30(7): 1031-1040. FENG L, CHENG Y R, FENG L, et al. Distribution of typical antibiotics and ecological risk assessment in main waters of Three Gorges reservoir area [J]. Research of Environmental Sciences, 2017, 30(7): 1031-1040(in Chinese).
[20] 叶计朋, 邹世春, 张干, 等. 典型抗生素类药物在珠江三角洲水体中的污染特征 [J]. 生态环境, 2007, 16(2): 384-388. YE J P, ZOU S C, ZHANG G, et al. Characteristics of selected antibiotics in the aquatic environment of the Pearl River Delta, South China [J]. Ecology and Environment, 2007, 16(2): 384-388(in Chinese).
[21] DANNER M C, ROBERTSON A, BEHRENDS V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects [J]. The Science of the Total Environment, 2019, 664: 793-804. doi: 10.1016/j.scitotenv.2019.01.406