-
地下水演化主要研究地下水时空变化特征、发展规律和形成机理,通过对地下水水化学变化特征及演变规律进行研究,从而更好地揭示地下水与环境之间相互作用机制[1]。地下水在循环流动过程中,与含水层介质中化学物质和矿物组分发生一系列化学反应,决定其化学组分形成和演化过程,通过对研究区水文地球化学特征进行分析是研究其地下水演化规律的基础。国内外许多学者通过地球化学模拟及同位素示踪法等方法对地下水演化规律进行研究,建立地球化学模型反映地下水的演化过程。Radloff等[2]通过建立孟加拉盆地的地下水水量运输模型,得出地下水砷的存在显著阻碍了地下水运输,使得深层含水层受砷污染程度加大;Christofi等[3]利用水文地球化学模拟建立概念模型来研究断裂含水层辉长岩中地下水的水化学演化过程;Savage等[4]通过地球化学模型对加州主金脉区碱性坑湖高砷的化学演化规律进行分析;李义连等[5]在娘子关泉域水化学模拟中,考虑了CO2的分压对矿物饱和度的影响,得出区域地下水矿物溶解的合理条件;李长锁等[6]利用Piper三线图、相关性分析、离子比值法、矿物饱和指数法和反向地球化学模拟等方法对济北地热田地热水的水化学特征和地下水运移过程中所发生的水-岩作用及形成机理进行研究。
喀什地区是新疆主要的灌溉农业基地,但长期以来水资源分配不均、水质较差问题严重制约着喀什地区经济的发展。其中水质较差主要表现在地下水氯化物、硫酸盐和TDS普遍超标,地下水水质问题较为突出[7-8]。近几年来,许多专家学者在喀什地区西部开展了有关地下水的研究,主要是地下水水资源动态变化研究[9-10]、地下水污染[11-14]和地表水、地下水水化学特征[15-16]等方向,魏兴等[17]以喀什三角洲为研究区,运用水文地球化学与氢氧同位素分析水化学成因及演化过程。随着城镇化的进行,喀什地区西部经济发展迅速,工农业用水增加,随即产生的废水等污染物长期影响着地下水水质[18],而潜水含水层是农业活动的主要开采含水层。
本文在根据2014年和2016年潜水采样样品及岩土采集测试分析的基础上,通过Piper三线图、Gibbs图和离子比值法,借助PHREEQC软件模拟,通过两期数据进行对比分析,对喀什地区西部潜水水化学特征及演化规律进行研究,以期为其地下水利用提供科学依据。
新疆喀什地区西部潜水水化学特征及演化规律分析
Analysis of chemical characteristics and evolution of phreatic water in Western Kashgar Prefecture, Xinjiang
-
摘要: 以2014年和2016年的潜水样品采集测试数据(分别为21组和83组)为基础,运用Piper三线图、相关性分析、Gibbs图、离子比值法、矿物饱和指数法及反向地球化学模拟等手段对新疆喀什地区西部潜水水化学特征及演化规律进行研究。结果表明,2014年潜水水化学类型主要以SO4·Cl-Na·Ca·Mg型和SO4·Cl-Na·Mg型水为主;2016年潜水水化学类型主要以SO4·Cl-Na·Mg型和SO4·Cl-Na型水为主。潜水阳离子主要以Na++K+为主,阴离子主要以SO42−为主。2016年与2014年相比潜水TDS升高较多,研究区潜水劣质水增多。研究区潜水水化学组分主要受岩石溶滤作用和蒸发浓缩作用影响,2016年潜水较2014年蒸发浓缩控制影响增大,Na+、K+、Cl−和SO42−主要来源于岩盐、芒硝和钠长石的风化溶解,Ca2+和Mg2+主要来源石膏和碳酸岩的风化溶解。PHREEQC模拟表明,2014年和2016年石膏、方解石、白云石和岩盐饱和矿物指数在沿潜水路径流向逐渐增加,潜水水化学组分含量呈递增趋势,矿物溶解沉淀规律为石膏、岩盐和白云石共同溶解,方解石沉淀。Abstract: Basted on the data from testing phreatic water samples collected in 2014 and 2016 (21 groups and 83 groups, respectively), trilinear chart by Piper, correlation analysis, Gibbs plot, ion ratio method, mineral saturation index method and reverse geochemical simulation were used to study the hydrochemical characteristics and evolution pattern of phreatic water in western Kashgar Prefecture, Xinjiang. The results showed that the chemical types of phreatic water in 2014 were mainly SO4·Cl-Na·Ca·Mg and SO4·Cl-Na·Mg water. As in 2016, the chemical types of phreatic water were mainly SO4·Cl-Na·Mg and SO4·Cl-Na type water. The main cations in phreatic water are Na++K+, while the main anion is SO42−. Compared with 2014, the phreatic water TDS increased significantly were and the phreatic water quality decreased in 2016. The dissolution of rocks and evaporation effect were the main controlling factors of the phreatic water in the study areas Evaporation effect had bigger effect on phreatic water in 2016 than in 2014. The main sources of Na+, K+, Cl− and SO42− were weathering and dissolution of halite, thenardite and sodium. The main sources of Ca2+ and Mg2+ were weathering and dissolution of gypsum and carbonate. PHREEQC simulations showed that the gypsum, calcite, dolomite, and rock salt mineral saturation indexes were all gradually increased along the phreatic water path both in 2014 and 2016. The chemical component content of the phreatic water showed an increasing trend. The mineral dissolution and precipitation pattern was that gypsum, rock salt and dolomite dissolved together while calcite precipitates.
-
表 1 喀什地区西部潜水水化学含量统计表
Table 1. Chemical composition content statistics of phreatic water in western Kashgar Prefecture
年份Year 统计值Statistics pH TDS Na++K+ Ca2+ Mg2+ Cl− SO42− HCO3− 2014(n=21) 最小值Minimum 7.29 113.8 32.71 55.54 18.06 22.87 96.24 72.85 最大值Maximum 10.23 20032.84 29909.95 648.08 4520.45 41586.1 19860.69 652.7 平均值Mean 8.01 1424.08 1790.04 258.8 852.93 7176.08 4084.6 231.03 超标率/%
Standard rate14.3 9.5 47.6 — — 14.3 23.8 — 2016(n=83) 最小值Minimum 7.1 90.07 23.77 38.14 4.38 28.39 96.04 59.84 最大值Maximum 8.31 18686.62 38168.11 1707.15 4185.8 54072.06 25857.83 1294.92 平均值Mean 7.77 1908.55 2158.01 271.1 330.1 2780.19 2161.8 250.1 超标率/%
Standard rate0 30.1 48.2 — — 47 86.7 — 注:n为样品数,pH无量纲,其余指标为mg·L−1;标准值根据《生活饮用水卫生标准》;“—”代表该指标无标准限值;下同.
Note: n is the number of samples, the pH is dimensionless, and the remaining indicators are mg·L−1; The standard values are according to the 《Sanitary Standards for Drinking Water》; “—”There is no standard limit for this indicator; Same as below.表 2 研究区模拟路径控制点水化学组分统计表
Table 2. The water chemical composition statistics of the control points on the simulation path in the study area
路径
Path样品编号
Sample serial number时间
TimepH 指标/(mg·L−1)
Index水化学类型
Water chemistry typeNa++K+ Ca2+ Mg2+ Cl− SO42− HCO3− TDS 1 KS10 2014 7.62 1137.98 287.9 187.4 1506 1317 327.8 428.60 SO4·Cl-Na 2016 7.74 87.84 160.61 26.79 74.52 461.30 122.11 450.27 SO4-Na KS2 2014 10.23 42.88 81.42 29.8 45.75 156.9 206.4 663.90 HCO3·SO4-Ca·Mg 2016 8.21 143.93 220.84 73.55 107.88 890.45 146.54 780.93 SO4-Na·Ca·Mg KS21 2014 7.47 336.00 289.79 36.86 273.72 892.67 153.86 798.47 SO4·Cl-Na·Ca 2016 7.50 351.54 83.72 222.15 325.36 1089.94 339.47 953.86 SO4-Na·Mg KS16 2014 7.65 29909.95 648.08 4520.45 41586.10 19860.69 390.61 20032.86 SO4·Cl-Na 2016 7.82 9831.86 658.20 1461.78 11705.52 10007.48 476.05 7423.39 SO4·Cl-Na 2 KS17 2014 7.72 35.42 75.67 18.06 55.17 181.24 136.77 194.91 HCO3·SO4-Na 2016 8.25 39.88 38.14 15.83 28.39 96.04 122.11 99.34 HCO3·SO4-Na·Ca·Mg KS7 2014 7.94 152.82 107 58.95 170.5 397.7 182.1 173.65 SO4·Cl-Na·Ca·Mg 2016 8.13 57.31 88.25 43.79 63.82 225.92 268.92 266.14 HCO3·SO4-Na·Mg KS19 2014 7.57 923.91 325.23 406.71 837.46 2744.76 354.13 2309.38 SO4·Cl-Na·Mg 2016 7.80 1133.72 281.07 621.02 1171.02 3484.12 402.97 3057.01 SO4·Cl-Na·Mg 3 KS5 2014 8.07 269.75 123.6 127.9 272.7 746.3 230.7 304.45 SO4·Cl-Na·Mg 2016 7.56 213.90 102.61 96.90 262.38 520.32 207.68 551.29 SO4·Cl-Na·Mg KS20 2014 8.18 126.38 83.03 63.74 164.59 354.74 207.80 365.90 SO4·Cl-Na·Ca·Mg 2016 7.26 5343.15 778.26 1218.17 7800.56 5991.37 476.43 6720.10 SO4·Cl-Na·Mg 表 3 研究区2014年潜水各化学组分相关系数统计表
Table 3. Statistical table of correlation coefficients of various chemical components of phreatic water in study area in 2014
指标Index pH TDS Na++K+ Ca2+ Mg2+ Cl− ${\rm{SO}}_4^{2-} $ ${\rm{HCO}}_3^{-} $ pH 1.00 TDS −0.10 1.00 Na++K+ −0.13 0.99** 1.00 Ca2+ −0.54** 0.91** 0.88** 1.00 Mg2+ −0.20 0.99** 0.99** 0.89** 1.00 Cl- −0.20 0.99** 0.99** 0.88** 0.99** 1.00 SO42− −0.25 0.99** 0.99** 0.91** 0.99** 0.99** 1.00 HCO3− −0.26 0.75** 0.71** 0.82** 0.75** 0.70** 0.77** 1.00 注:*表示在0.05水平下,相关性显著;**表示在0.01水平下,相关性极显著;下同.
Note: * Indicates that the correlation is significant at the 0.05 level; ** indicates that the correlation is extremely significant at the 0.01 level; Same as below.表 4 研究区2016年潜水各化学组分相关系数统计表
Table 4. Statistical table of correlation coefficients of various chemical components of phreatic water in study area in 2016
指标Index pH TDS Na++K+ Ca2+ Mg2+ Cl− SO42− HCO3− pH 1.00 TDS −0.52** 1.00 Na++K+ −0.49** 0.89** 1.00 Ca2+ −0.49** 0.80** 0.73** 1.00 Mg2+ −0.49** 0.99** 0.87** 0.68** 1.00 Cl- −0.49** 0.85** 0.99** 0.72** 0.83** 1.00 SO42− −0.48** 0.98** 0.84** 0.74** 0.98** 0.79** 1.00 HCO3− −0.29** 0.45** 0.38** 0.44** 0.44** 0.35** 0.46** 1.00 表 5 喀什地区西部2014年潜水中矿物饱和指数
Table 5. Mineral saturation index of phreatic water in western Kashgar Prefecture in 2014
路径Path 硬石膏Anhydrite 方解石Calcite CO2 白云石Dolomite 石膏Gypsum 岩盐Halite CaSO4 CaCO3 CaMg(CO3)2 CaSO4·2H2O NaCl 1 KS10 −0.74 0.79 −2.12 1.74 −0.52 −4.48 KS2 −1.77 2.07 −5.64 4.09 −1.55 −7.3 KS21 −6.8 0.44 −2.26 0.32 −0.46 −5.69 KS16 −0.06 0.83 −2.33 2.91 0.11 −1.68 2 KS17 −1.59 0.28 −2.52 0.28 −1.37 −7.3 KS7 −1.29 0.66 −2.65 1.4 −1.07 −6.21 KS19 −0.5 0.73 −2.05 1.89 −0.28 −4.84 3 KS5 −1.11 0.85 −2.7 2.05 −0.89 −5.78 KS20 −1.43 0.85 −2.84 1.92 −1.21 −6.30 表 6 喀什地区西部2016年潜水中矿物饱和指数
Table 6. Mineral saturation index of phreatic water in western Kashgar Prefecture in 2016
路径Path 硬石膏Anhydrite 方解石Calcite CO2 白云石Dolomite 石膏Gypsum 岩盐Halite CaSO4 CaCO3 CaMg(CO3)2 CaSO4·2H2O NaCl 1 KS10 −1.03 0.47 −2.61 0.49 −0.81 −6.80 KS2 −0.77 1.03 −3.04 1.91 −0.55 −6.45 KS21 −1.21 0.23 −1.96 1.23 −0.99 −5.61 KS16 −0.15 1.12 −2.3 2.95 0.06 −2.78 2 KS17 −2.08 0.5 −3.1 0.97 −1.86 −7.52 KS7 −1.53 0.98 −2.66 2.01 −1.31 −7.04 KS19 −0.55 0.9 −2.25 2.47 −0.33 −4.62 3 KS5 −1.26 0.28 −2.21 0.88 −1.05 −5.89 KS20 −0.18 0.74 −1.7 2.02 0.04 −3.20 表 7 潜水路径反向模拟结果(2014)
Table 7. Reverse simulation results of phreatic water path in 2014
矿物相
Mineral facies化学式
Chemical formula摩尔转移量Molar transfer/(mmol·L−1) 路径1 Path1 路径2 Path2 路径3 Path3 KS10−KS2 KS2−KS21 KS21−KS16 KS17−KS7 KS7−KS19 KS5−KS20 石膏Gypsum CaSO4·2H2O 1.077×10−2 6.028×10−3 2.123×10−1 2.014×10−3 1.440×10−2 3.431×10−3 方解石Calcite CaCO3 −1.269×10−2 −1.109×10−3 −4.06×10−1 −2.914×10−3 −2.706×10−2 −5.062×10−1 白云石Dolomite CaMg(CO3)2 6.96×10−3 2.929×10−4 2.044×10−1 1.684×10−3 1.815×10−2 2.646×10−3 岩盐Halite NaCl 4.291×10−2 1.248×10−2 1.326 3.852×10−3 2.375×10−2 6.253×10−3 CO2 CO2 3.23×10−3 1.482×10−3 −1.077×10−2 3.894×10−4 1.927×10−3 2.42×10−4 注:正值表示溶解;负值表示沉淀;下同.
Note: Positive values indicate dissolution; Negative values indicate precipitation; Same as below.表 8 潜水路径反向模拟结果(2016)
Table 8. Reverse simulation results of phreatic water path in 2016
矿物相
Mineral facies化学式
Chemical formula摩尔转移量Molar transfer/(mmol·L−1) 路径1 Path1 路径2 Path2 路径3 Path3 KS10−KS2 KS2−KS21 KS21−KS16 KS17−KS7 KS7−KS19 KS5−KS20 石膏Gypsum CaSO4·2H2O 3.318×10−3 1.229×10−3 6.649×10−2 1.218×10−3 2.742×10−2 6.173×10−2 方解石Calcite CaCO3 −3.609×10−3 −1.124×10−3 −1.047×10−1 −1.061×10−3 −4.648×10−2 −9.167×10−2 白云石Dolomite CaMg(CO3)2 1.927×10−3 6.587×10−3 5.311×10−2 1.265×10−3 2.393×10−2 4.723×10−2 岩盐Halite NaCl 1.437×10−3 6.898×10−3 3.766×10−1 1.0×10−3 3.147×10−2 2.175×10−1 CO2 CO2 1.09×10−4 2.337×10−3 9.689×10−4 1.441×10−3 1.419×10−3 3.132×10−3 -
[1] 滕彦国, 左锐, 王金生, 等. 区域地下水演化的地球化学研究进展 [J]. 水科学进展, 2010, 21(1): 127-136. TENG Y G, ZUO R, WANG J S, et al. Progress in geochemistry of regional groundwater evolution [J]. Advances in Water Science, 2010, 21(1): 127-136(in Chinese).
[2] RADLOFF K A, ZHENG Y, MICHAEL H A, et al. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand [J]. Nature Geoscience, 2011, 4(11): 793-798. doi: 10.1038/ngeo1283 [3] CHRISTOFI C, BRUGGEMAN A, KUELL C, et al. Hydrochemical evolution of groundwater in gabbro of the Troodos Fractured Aquifer. A comprehensive approach [J]. Applied Geochemistry, 2020, 114: 104524-104543. [4] SAVAGE K S, ASHLEY R P, BIRD D K. Geochemical Evolution of a High Arsenic, Alkaline Pit-Lake in the Mother Lode Gold District, California [J]. Economic Geology, 2009, 104(8): 1171-1211. doi: 10.2113/gsecongeo.104.8.1171 [5] 李义连, 王焰新, 周来茹, 等. 地下水矿物饱和度的水文地球化学模拟分析-以娘子关泉域岩溶水为例 [J]. 地质科技情报, 2002, 21(1): 32-36. doi: 10.3969/j.issn.1000-7849.2002.01.008 LI Y L, WANG Y X, ZHOU R L, et al. Hydrogeochemical modeling on saturation of minerals in groundwater: a case study at Niangziguan, Northern China [J]. Geological Science and Technology Information, 2002, 21(1): 32-36(in Chinese). doi: 10.3969/j.issn.1000-7849.2002.01.008
[6] 李常锁, 武显仓, 孙斌, 等. 济南北部地热水水化学特征及其形成机理 [J]. 地球科学, 2018, 43(S1): 313-325. LI C S, WU X C, SUN B, et al. Hydrochemical characteristics and formation mechanism of geothermal water in northern Ji’nan [J]. Earth Science, 2018, 43(S1): 313-325(in Chinese).
[7] 纪媛媛, 李巧, 周金龙. 新疆喀什地区地下水质量与污染评价 [J]. 节水灌溉, 2014(1): 50-53, 56. doi: 10.3969/j.issn.1007-4929.2014.01.014 JI Y Y, LI Q, ZHOU J L. Assessment of groundwater quality and pollution in Kashgar region of Xinjiang [J]. Water Saving Irrigation, 2014(1): 50-53, 56(in Chinese). doi: 10.3969/j.issn.1007-4929.2014.01.014
[8] 魏兴, 周金龙, 贾瑞亮, 等. 喀什地区不同TDS浅层地下水分布及资源量估算 [J]. 节水灌溉, 2017(9): 51-54. doi: 10.3969/j.issn.1007-4929.2017.09.012 WEI X, ZHOU J L, JIA R L, et al. Distribution and resource estimation of shallow groundwater with different TDS in Kashgar region of Xinjiang [J]. Water Saving Irrigation, 2017(9): 51-54(in Chinese). doi: 10.3969/j.issn.1007-4929.2017.09.012
[9] 郎新文. 喀什地区2012-2015年地下水变化动态分析 [J]. 地下水, 2019, 44(4): 46-48. doi: 10.3969/j.issn.1004-1184.2019.04.017 LANG X W. Dynamic analysis of groundwater changes in Kashi area from 2012 to 2015 [J]. Groundwater, 2019, 44(4): 46-48(in Chinese). doi: 10.3969/j.issn.1004-1184.2019.04.017
[10] 热汗古丽·吾买尔, 满苏尔·沙比提, 陆吐布拉·依明. 喀什地区近10年地下水资源时空动态变化分析 [J]. 干旱区资源与环境, 2011, 25(7): 63-68. REYANGUL U, MANSUR S, LOTPULLA E. Spatial dynamic changes of ground water resources in Kashghar prefecture during recent 10 years [J]. Journal of Arid Land Resources and Environment, 2011, 25(7): 63-68(in Chinese).
[11] 孙英. 新疆喀什地区西部地下水“三氮”空间分布特征及影响因素[C]. 北京: 中国环境科学学会, 2019. SUN Y. Spatial distribution and influencing factors of “Three-Nitrogen” in groundwater of the western area of Kashgar, Xinjiang[C]. Beijing: Chinese Society for Environmental Sciences, 2019(in Chinese).
[12] 魏兴, 周金龙, 曾妍妍, 等. 喀什地区西部地下水重金属空间分布特征及成因分析 [J]. 环境化学, 2017, 36(8): 1802-1811. doi: 10.7524/j.issn.0254-6108.2016120802 WEI X, ZHOU J L, ZENG Y Y, et al. Spatial distribution and orign of heavy metals in groundwater in the western Kashgar Prefecture [J]. Environmental Chemistry, 2017, 36(8): 1802-1811(in Chinese). doi: 10.7524/j.issn.0254-6108.2016120802
[13] 栾凤娇, 周金龙, 曾妍妍, 等. 新疆南部典型地区地下水中氟的分布特征及其富集因素分析 [J]. 环境化学, 2016, 35(6): 1203-1211. doi: 10.7524/j.issn.0254-6108.2016.06.2015102703 LUAN F J, ZHOU J L, ZENG Y Y, et al. Distribution characteristics and enrichment factors of fluorine in groundwater in typical areas of southern Xinjiang [J]. Environmental Chemistry, 2016, 35(6): 1203-1211(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.06.2015102703
[14] 曾妍妍, 周殷竹, 周金龙, 等. 新疆喀什地区西部地下水质量现状评价 [J]. 新疆农业大学学报, 2016, 39(2): 167-172. doi: 10.3969/j.issn.1007-8614.2016.02.015 ZENG Y Y, ZHOU Y Z, ZHOU J L, et al. Assessment of groundwater quality statusin western Kashgar, Xinjiang [J]. Journal of Xinjiang Agricultural University, 2016, 39(2): 167-172(in Chinese). doi: 10.3969/j.issn.1007-8614.2016.02.015
[15] 孙英, 周金龙, 乃尉华, 等. 新疆喀什噶尔河流域地表水水化学季节变化特征及成因分析 [J]. 干旱区资源与环境, 2019, 33(8): 128-134. SUN Y, ZHOU J L, NAI W H, et al. Seasonal variation characteristics and causes of surface water chemistry in Kashgar River Basin, Xinjiang [J]. Journal of Arid Land Resources and Environment, 2019, 33(8): 128-134(in Chinese).
[16] 陈小兵, 周宏飞, 张学仁, 等. 新疆喀什噶尔冲积平原区地下水水化学特征[J]. 干旱区地理, 2004(1): 75-79. ZHU H, ZHOU H F, CHEN X B, et al. Analysis on the characteristics of groundwater resources in Kashgar Prefecture, Xinjiang[J]. Arid Zone Research, 2005, 22(2): 152-156(in Chinese).
[17] 魏兴, 周金龙, 乃尉华, 等. 新疆喀什三角洲地下水化学特征及演化规律 [J]. 环境科学, 2019, 40(9): 4042-4051. WEI X, ZHOU J L, NAI W H, et al. Hydrochemical characteristics and evolution of groundwater in the Kashgar Delta Area in Xinjiang [J]. Environmental Science, 2019, 40(9): 4042-4051(in Chinese).
[18] 国家环境保护总局. HJ/T164—2004, 地下水环境监测技术规范[S]. 北京: 中国环境科学出版社, 2004. State Environmental Protection Administration. HJ/T164—2004, Groundwater environmental monitoring technical specifications[S]. Beijing: China Environmental Science Press, 2004(in Chinese).
[19] 乃尉华, 常志勇, 陆成新, 等. 新疆喀什经济开发区水文地质环境地质调查评价[M]. 北京: 地质出版社, 2017. NAI W H, CHANG Z Y, LU C X, et al. Investigation and evaluation of hydrogeological environment and geology in economic development zone of Xinjiang Kashgar[M]. Beijing: Geological Publishing House, 2017(in Chinese).
[20] 乃尉华, 常志勇, 李斌, 等. 新疆喀什三角洲1: 10万水文地质环境地质调查报告[R]. 新疆维吾尔自治区地质矿产勘查开发局第二水文工程地 质大队, 2018. NAI W H, CHANG Z Y, LI B, et al. 1: 100, 000 hydrogeological environment geological survey report in Kashi Delta of Xinjiang[R]. Xinjiang Uygur Autonomous Region Geological and Mineral Exploration and Development Bureau Second Hydrological Engineering Geology Brigade, 2018(in Chinese).
[21] 乃尉华, 史杰, 王文科, 等. 喀什平原区地下水同位素年龄特征及更新速率分析 [J]. 新疆地质, 2018, 36(3): 406-409. doi: 10.3969/j.issn.1000-8845.2018.03.021 NAI W H, SHI J, WANG W K, et al. Isotopic age characteristics and renewal rate of groundwater in Kashgar Plain [J]. Xinjiang Geology, 2018, 36(3): 406-409(in Chinese). doi: 10.3969/j.issn.1000-8845.2018.03.021
[22] LIPSON D S, MCCRAY J E, THYNE G D. Using PHREEQC to simulate solute transport in fractured bedrock [J]. Groundwater, 2007, 45(4): 468-472. doi: 10.1111/j.1745-6584.2007.00318.x [23] 周嘉欣, 丁永建, 曾国雄, 等. 疏勒河上游地表水水化学主离子特征及其控制因素 [J]. 环境科学, 2014, 35(9): 3315-3324. ZHOU J X, DING Y J, ZENG G X, et al. Major Ion chemistry of surface water in the upper reach of Shule River Basin and the possible controls [J]. Environmental Science, 2014, 35(9): 3315-3324(in Chinese).
[24] 张涛, 何锦, 李敬杰, 等. 蛤蟆通河流域地下水化学特征及控制因素 [J]. 环境科学, 2018, 39(11): 4981-4990. ZHANG T, HE J, LI J J, et al. Major ionic features and possible controls in the groundwater in the Hamatong River Basin [J]. Environmental Science, 2018, 39(11): 4981-4990(in Chinese).
[25] HE J H, MA J Z, ZHANG P, et al. Groundwater recharge environments and hydrogeochemical evolution in the Jiuquan Basin, Northwest China [J]. Applied Geochemistry, 2012, 27(4): 866-878. doi: 10.1016/j.apgeochem.2012.01.014 [26] 魏兴, 周金龙, 乃尉华, 等. 新疆喀什三角洲地下水SO42-化学特征及来源 [J]. 环境科学, 2019, 40(8): 3550-3558. WEI X, ZHOU J L, NAI W H, et al. Chemical characteristics and sources of groundwater sulfate in the Kashgar Delta, Xinjiang [J]. Environmental Science, 2019, 40(8): 3550-3558(in Chinese).
[27] MARANDI A, SHAND P. Groundwater chemistry and the Gibbs Diagram [J]. Applied Geochemistry, 2018, 97: 209-212. doi: 10.1016/j.apgeochem.2018.07.009 [28] XIAO J, JIN Z D, ZHANG F, et al. Solute geochemistry and its sources of the groundwaters in the Qinghai Lake catchment, NW China [J]. Journal of Asian Earth Sciences, 2012, 52: 21-30. doi: 10.1016/j.jseaes.2012.02.006 [29] 赵辉. 三江平原蛤蟆通河流域地下水补、径、排特征及水化学演化规律[D]. 长春: 吉林大学, 2017. ZHAO H. Groundwater recharge, discharge, runoff characteristics and hydrochemical evolution of hamatong river basin in Sanjiang Plain[D]. Changchun: Jilin University, 2017(in Chinese).
[30] 张涛, 蔡五田, 李颖智, 等. 尼洋河流域水化学特征及其控制因素 [J]. 环境科学, 2017, 38(11): 4537-4545. ZHANG T, CAI W T, LI Y Z, et al. Major ionic features and their possible controls in the water of the Niyang River Basin [J]. Environmental Science, 2017, 38(11): 4537-4545(in Chinese).
[31] XIAO J, JIN Z D, ZHANG F. Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau [J]. Quaternary International, 2015, 380-381(5): 237-246. [32] REDWAN M, ABDEL M. Factors controlling groundwater hydrogeochemistry in the area west of Tahta, Sohag, Upper Egypt [J]. Journal of African Earth Sciences, 2016, 118: 328-338. doi: 10.1016/j.jafrearsci.2015.10.002 [33] 李霄, 林学钰, 都基众, 等. 齐齐哈尔市潜水水化学演化规律分析 [J]. 水利学报, 2014, 45(7): 815-827. LI X, LIN X Y, DU J Z, et al. Analysis of hydrochemical evolution of phreatic water in Qiqihar City [J]. Journal of Hydraulic Engineering, 2014, 45(7): 815-827(in Chinese).