-
氟氯烃(chlorofluorocarbons,CFCs)、氢氟氯烃(hydrochlorofluorocarbons,HCFCs)、氯代烃和溴代烃作为消耗臭氧层物质(ozone depleting substances,ODS)可以破坏平流层臭氧层,氢氟烃(hydrofluorocarbons,HFCs)作为温室气体(greenhouse gases,GHG)能够促进全球气候变暖,上述痕量卤代烃也成为《蒙特利尔议定书》和《京都议定书》中受控物质[1-3]。
各缔约国政府和科研人员为评估履约减排成效,陆续开展受控卤代烃的背景观测研究。美国国家海洋与大气管理局(NOAA)和改进的全球大气实验网(AGAGE)是全球最早开展且持续时间最长的背景大气痕量卤代烃观测机构[4-5];在我国,背景大气痕量卤代烃的观测研究处于起步阶段,前期仅上甸子背景站长期开展受控卤代烃本底监测[6-8]。上述国内外研究机构和观测站点应用的大气痕量卤代烃检测方法主要是气相色谱-质谱检测器(GC-MSD)或气相色谱-电子捕获检测器(GC-ECD)[9-13]。MSD作为广谱检测器,虽然定性能力强,但检测背景地区的痕量CFCs、HCFCs、氯代烃和溴代烃可能检出限达不到要求[14];ECD虽然对含卤素的高电负性物质具有高灵敏度,但HFCs在ECD上无检出信号[15]。因此,单一检测器无法满足同时准确检测ODS和GHG两类受控卤代烃的需求。
本研究使用自主搭建的预浓缩-气相色谱-质谱检测器/电子捕获检测器系统(GC-MSD/ECD),经过参数优化建立了高效的痕量卤代烃检测方法。本方法仅需一次少量进样和单色谱柱分离,可有效降低样品用量和检测成本;采用MSD检测HFCs,ECD检测CFCs、HCFCs、氯代烃和溴代烃,实现同时测定CFCs、HCFCs、HFCs、氯代烃和溴代烃等17种受控痕量卤代烃。此外,通过开展性能表征实验评估了本方法的谱图峰形与分离效果、标准曲线、方法检出限、方法精密度和方法准确度,并且应用本方法检测了广州市区环境空气样品,验证了本方法的实用性。本研究建立的痕量卤代烃检测方法可为全国开展背景地区ODS和GHG监测提供参考。
预浓缩-GC-MSD/ECD测定环境空气中痕量卤代烃
Determination of controlled trace haloalkanes in ambient air with pre-concentration-GC-MSD/ECD
-
摘要: 作为消耗臭氧层物质的氟氯烃(CFCs)、氢氟氯烃(HCFCs)、氯代烃、溴代烃和作为温室气体的氢氟烃(HFCs)长期受到广泛关注,而同时准确测定多种受控痕量卤代烃是一项挑战性工作。本研究利用自主搭建的预浓缩-气相色谱-质谱检测器/电子捕获检测器系统(GC-MSD/ECD),建立了高效的痕量卤代烃检测方法,在单次少量进样后可同时测定环境空气中17种受控痕量卤代烃。实验结果表明,17种受控卤代烃分离效果好且峰型对称;标准曲线相关系数在0.996—1.000之间;方法检出限在2—21 pmol·mol−1之间,均低于全球背景值;精密度在0.7%—5.3%之间;加标回收率在90.8%—110%之间,表明本方法适用于准确检测背景地区的受控痕量卤代烃。通过实际样品检测,发现近年来广州市区环境空气中CFCs浓度呈下降趋势,但仍是该区域主要的受控卤代烃物种;HFCs与HCFCs浓度明显高于大气背景值,表明该区域HFCs和HCFCs的使用与排放量较高;实际样品检测结果与我国履约减排措施和前期研究结果相符,证明本检测方法准确可靠。
-
关键词:
- 消耗臭氧层物质 /
- 温室气体 /
- 卤代烃 /
- 气相色谱-质谱联用法 /
- 气相色谱-电子捕获检测法 /
- 环境空气
Abstract: Chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), chlorinated hydrocarbons and brominated hydrocarbons as ozone depleting substances and hydrofluorocarbons (HFCs) as greenhouse gases have attracted wide attention for a long time. However, it is a challenge to accurately determine a variety of controlled trace haloalkanes at the same time. In this study, a highly efficient method for the determination of trace haloalkanes in ambient air was developed by using a self-developed gas chromatography mass spectrometry detector/electron capture detector with pre-concentration system (GC-MSD/ECD). The results of experiment showed that 17 controlled haloalkanes all had clear separations and symmetrical peak shapes; the correlation coefficients of calibration curves were between 0.996 and 1.000; the method detection limits ranged from 2 pmol·mol−1 to 21 pmol·mol−1, which were lower than the global background levels; their precisions were 0.7%—5.3%; and their spike recoveries were 90.8%—110%. It was indicated that this detection method is applicable for the accurate detection of controlled trace haloalkanes in the background areas. Based on the detection results of actual samples, it was found that the CFCs concentrations in the ambient air of urban Guangzhou showed a descend trend in recent years, but they were still the main controlled haloalkanes in this area; the concentrations of HFCs and HCFCs were significantly higher than the atmospheric background values, which implied that there were high usage and emissions of HFCs and HCFCs in urban Guangzhou. The detection results were consistent with the emission reduction measures of China and the previous research results, which proved that the detection method is accurate and reliable. -
表 1 标准系列进样量对应的浓度点
Table 1. The standard concentrations of different injection volumes
序号
Numbers进样量/mL
Injection volumes标准点浓度/(nmol·mol−1)
Standard concentrations1 20 0.10 2 50 0.25 3 100 0.50 4 200 1.00 5 400 2.00 表 2 17种受控卤代烃的标准曲线与方法检出限
Table 2. Standard curves and method detection limits of 17 kinds of controlled haloalkanes
序号
Numbers化合物
Compounds保留时间/min
Retention times标准曲线
Standard curves相关系数
Correlation coefficients方法检出限/
(pmol·mol−1)
Method detection
limits背景值/
(pmol·mol−1)
Background levels参考文献检出限[16]/
(pmol·mol−1)
Method detection limits
in references1 HFC-23 5.351 y=0.0625x 0.997 21 31 — 2 HFC-32 5.958 y=0.0392x 0.997 13 21 — 3 HFC-125 6.129 y=0.2283x 1.000 14 30 — 4 HFC-143a 6.149 y=0.3942x 1.000 13 24 — 5 CFC-115 6.250 y=1.541×108x 0.999 8 9 — 6 HFC-134a 7.369 y=0.1802x 0.996 13 113 — 7 HFC-152a 8.116 y=0.1615x 0.996 9 10 — 8 HCFC-22 9.223 y=1.277×106x 0.999 17 252 — 9 CFC-12 9.691 y=6.640×109x 0.999 5 501 30 10 HCFC-142b 11.106 y=6.118×106x 0.999 13 22 — 11 CFC-114 12.024 y=2.925×109x 0.998 7 16 10 12 CH3Br 13.860 y=3.661×108x 0.998 4 8 10 13 CFC-11 16.644 y=7.037×1010x 0.998 6 228 10 14 HCFC-141b 16.961 y=6.915×108x 0.999 14 25 — 15 CFC-113 18.957 y=1.433×1010x 0.999 6 70 10 16 CH3CCl3 24.440 y=2.127×1010x 1.000 2 3 10 17 CCl4 25.560 y=7.321×1010x 0.999 6 79 10 注:背景值数据为美国国家海洋与大气管理局(NOAA)负责的14个大气本底观测站点2019年平均浓度,下载地址:https://www.esrl.noaa.gov/gmd/dv/data.html.
Note:Background levels were average concentrations of 14 background stations managed by NOAA in 2019, download link: https://www.esrl.noaa.gov/gmd/dv/data.html.表 3 精密度与回收率实验结果
Table 3. Results of test for precision and accuracy
HFC-23 HFC-32 HFC-125 HFC-143a CFC-115 HFC-134a HFC-152a HCFC-22 CFC-12 0.10 nmol·mol−1 RSD/% 5.2 4.0 4.1 3.9 2.2 3.9 2.6 4.9 1.5 2.00 nmol·mol−1 RSD/% 4.5 5.3 3.6 3.3 2.3 4.8 5.1 3.9 2.5 加标回收率/% 99.7—107 93.0—101 95.3—104 94.4—102 108—110 92.4—101 92.1—100 93.2—105 94.2—95.8 HCFC-142b CFC-114 CH3Br CFC-11 HCFC-141b CFC-113 CH3CCl3 CCl4 0.10 nmol·mol−1 RSD/% 3.7 2.3 1.3 1.8 4.3 2.0 0.7 2.2 2.00 nmol·mol−1 RSD/% 4.0 3.0 3.7 2.9 3.5 4.1 2.4 3.2 加标回收率/% 92.1—108 92.2—95.3 90.8—96.5 91.4—96.0 93.3—107 92.8—99.5 95.0—97.7 91.5—96.4 -
[1] MOLINA M J, ROWLAND F S. Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone [J]. Nature, 1974, 249(5460): 810-812. doi: 10.1038/249810a0 [2] ROWLAND F S. Chlorocarbon compounds and stratospheric ozone [J]. Journal of Photochemistry, 1976, 5(3): 180. [3] RAMANATHAN V. Greenhouse effect due to chlorofluorocarbons: Climatic implications [J]. Science, 1975, 190(4209): 50-52. doi: 10.1126/science.190.4209.50 [4] NOAA. NOAA data base[EB/OL]. [2020-12-30]. https://www.esrl.noaa.gov/gmd/dv/data.html. [5] AGAGE. AGAGE data base[EB/OL]. [2020-12-30]. https://agage2.eas.gatech.edu/data_archive/. [6] 郭立峰, 姚波, 周凌晞, 等. GC-MS和GC-ECD同时在线观测本底大气中的HCFC-142b [J]. 环境科学, 2013, 34(5): 2025-2030. GUO L F, YAO B, ZHOU L X, et al. In-situ measurement of background atmospheric HCFC-142b using GC-MS and GC-ECD method [J]. Environmental Science, 2013, 34(5): 2025-2030(in Chinese).
[7] 姚波, 周凌晞, 刘钊, 等. 北京上甸子区域大气本底站甲基氯仿在线观测研究 [J]. 环境科学, 2014, 35(7): 2449-2453. YAO B, ZHOU L X, LIU Z, et al. In-situ measurement of atmospheric methyl chloroform at the shangdianzi GAW regional background station [J]. Environmental Science, 2014, 35(7): 2449-2453(in Chinese).
[8] 姚波, 周凌晞, 张芳, 等. 气相色谱-电子捕获检测法在线观测12种卤代温室气体 [J]. 环境化学, 2010, 29(6): 1158-1162. YAO B, ZHOU L X, ZHANG F, et al. On-site measurement of atmospheric halogenated greenhouse gases using gc-ecd method [J]. Environmental Chemistry, 2010, 29(6): 1158-1162(in Chinese).
[9] MILLER B R, WEISS R F, SALAMEH P K, et al. Medusa: A sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds [J]. Analytical Chemistry, 2008, 80(5): 1536-1545. doi: 10.1021/ac702084k [10] COLMAN J J, SWANSON A L, MEINARDI S, et al. Description of the analysis of a wide range of volatile organic compounds in whole air samples collected during PEM-tropics A and B [J]. Analytical Chemistry, 2001, 73(15): 3723-3731. doi: 10.1021/ac010027g [11] SCHOENENBERGER F, VOLLMER M K, RIGBY M, et al. First observations, trends, and emissions of HCFC-31 (CH 2 ClF) in the global atmosphere [J]. Geophysical Research Letters, 2015, 42(18): 7817-7824. doi: 10.1002/2015GL064709 [12] VOLLMER M K, YOUNG D, TRUDINGER C M, et al. Atmospheric histories and emissions of chlorofluorocarbons CFC-13 (CClF3), £CFC-114 (C2Cl2F4), and CFC-115 (C2ClF5) [J]. Atmospheric Chemistry and Physics, 2018, 18(2): 979-1002. doi: 10.5194/acp-18-979-2018 [13] 陈立民, 段杨, 乐致威, 等. 大气中氯氟烃类物质浓度变化的研究 [J]. 环境科学, 1999, 20(1): 27-29. doi: 10.3321/j.issn:0250-3301.1999.01.007 CHEN L M, DUAN Y, LE Z W, et al. Study on the trends of atmospheric CFCs [J]. Chinese Journal of Enviromental Science, 1999, 20(1): 27-29(in Chinese). doi: 10.3321/j.issn:0250-3301.1999.01.007
[14] 许百环. 苏玛罐-冷阱富集-GC-MS同时测定环境空气中108种VOCs [J]. 广东化工, 2017, 44(18): 227-231. doi: 10.3969/j.issn.1007-1865.2017.18.110 XU B H. Determination of 108 volatile organic compounds in ambient air by SUMMA canisters sampling and pre-concentrated system combined GC/MS [J]. Guangdong Chemical Industry, 2017, 44(18): 227-231(in Chinese). doi: 10.3969/j.issn.1007-1865.2017.18.110
[15] PELLIZZARI E D. Electron capture detection in gas chromatography [J]. Journal of Chromatography A, 1974, 98(2): 323-361. doi: 10.1016/S0021-9673(00)92077-6 [16] 吴晓妍, 谭丽. 利用苏玛罐-预冷冻浓缩-气相色谱/质谱法同时测定空气中的108种挥发性有机物 [J]. 分析科学学报, 2020, 36(6): 844-850. WU X Y, TAN L. Simultaneous determination of 108 volatile organic compounds in ambient air by gas chromatography/mass spectrometry with SUMMA canister sampling and pre -concentrated system [J]. Journal of Analytical Science, 2020, 36(6): 844-850(in Chinese).
[17] 张芳, 王新明, 李龙凤, 等. 近年来珠三角地区大气中痕量氟氯烃(CFCs)的浓度水平与变化特征 [J]. 地球与环境, 2006, 34(4): 19-24. ZHANG F, WANG X M, LI L F, et al. Recent levels and trends of trace chlorofluorocarbons(CFCs) in the Pearl River Delta region [J]. Earth and Environment, 2006, 34(4): 19-24(in Chinese).
[18] FANG X K, RAVISHANKARA A R, VELDERS G J M, et al. Changes in emissions of ozone-depleting substances from China due to implementation of the Montreal protocol [J]. Environmental Science & Technology, 2018, 52(19): 11359-11366.