-
全氟烷基化合物(PFASs)是一类人工合成的、氢原子全部被氟原子取代的烷基化合物。全氟烷基化合物具有优良的热稳定性和化学稳定性,因此被广泛应用于纺织、造纸、皮革制造、农药、医药和消防等工业和民用领域[1-2]根据其末端官能团的不同,PFASs大致可以分为三类:全氟烷基羧酸及其盐(perfluoroalkyl carboxylic acids,PFCAs)、全氟烷基磺酸及其盐类(perfluoroalkane sulfonic acids,PFSAs)和氟调醇类(fluorotelomer alcohols,FTOHs)。自1950年投入全球生产和使用以来,PFASs 已在各种环境介质例如大气[3]、土壤、沉积物[4]、表层水[5]、饮用水[6]、野生动物和人体内[7]广泛检出。毒理学和流行病学研究表明PFASs尤其是长链PFASs(碳原子数≥7)具有多种毒性效应,包括高血脂、内分泌干扰效应、肝脏毒性、发育和免疫系统毒性等[8-9]。因此, PFASs 的环境污染对生态系统和人体健康带来极大的威胁。鉴于长链PFASs的危害性,人们对PFASs导致的潜在健康风险的认识不断提高,国内外监管机构及企业均采取一系列措施以减少典型长碳PFASs的环境释放量,基于PFASs的产品特别是PFOA和PFOS的生产和使用已在许多发达国家和发展中国家受到限制或淘汰。2000年美国3M公司开始逐渐淘汰全氟辛烷磺酸(PFOS)及相关化合物的生产;2006年美国环境保护署(United States Environmental Protection Agency,US EPA)颁布了对全氟辛烷羧酸(PFOA)的管理计划,旨在到2015年结束PFOA的生产和使用[10-11];2009年5月PFOS和全氟辛基磺酰氟(PFOSF)被列入《斯德哥尔摩公约》内的持久性有机污染物(POPs)名单[12];2014年10月,欧盟禁止生产、使用和销售PFOS和PFOA及其盐类化合物[13]。此外,2016年USEPA为饮用水中的PFOS和PFOA确定70 ng·L−1(单独或合并)的健康指南阈值[14]。由于对PFASs产品的强烈市场需要和欧美国家相关条例的颁布,近年短链PFASs生产量逐渐增加以取代传统长链PFASs,因为短链PFASs(碳原子数≤6)相比长链PFASs具有更低的生物累计潜力和更好的环境特性,短链PFASs在环境中的检出率与环境浓度有升高趋势[15-16]。由于PFASs较高的水溶性和难挥发性,水体是其在自然界中存在的主要场所[17]。据报道,食物与饮用水的摄入和灰尘接触是普通人群暴露于PFASs的主要途径[18-19],因此饮用水暴露PFASs是一个值得严肃关注的问题[20- 21]。
浙江省是我国工业化最发达和人口最集中的地区之一,2018年末常住人口5737万[22],其饮用水主要来源于地表水(据报道我国有超过90%的饮用水水源来源于地表水[23]),地表水污染与人群污染物暴露密切相关。PFASs相关产品的生产、使用和排放会造成地表水中PFASs污染[24],污水处理厂尾水排放[25]及挥发性前体物质经大气光降解产生PFASs也会造成地表水污染[26]。据《浙江省自然资源与环境年鉴》最新统计数据(2018年)表明,涉氟行业如纺织、造纸、皮革工业废水排放量分别占浙江省各行业工业废水排放总量的47%、15%和1.10%[27],所以浙江省内纺织、造纸、皮革产业发达地区地表水中可能呈现较高的PFASs污染水平。因此,本文搜集近10年相关研究数据,对浙江杭嘉湖地区地表水和饮用水中PFASs的污染水平和特征进行分析,进而评估PFASs污染对成人、青少年、儿童的饮用水健康风险评估,最后对短链PFASs毒性效应和健康风险评估的研究方向提出建议。文中出现的全氟烷基化合物的英文缩写及化学结构如图1所示。
浙江杭嘉湖地区水环境中全氟烷基化合物的污染特征及健康风险评估
Distribution characteristics and health risk assessment of perfluoroalkyl substances in aquatic environment of Hangzhou-Jiaxing-Huzhou region in Zhejiang Province
-
摘要: 为探究浙江杭嘉湖地区全氟烷基化合物(perfluoroalkyl substances,PFASs)的环境污染现状及其可能的居民饮用水暴露风险,通过文献调研方式整理分析了浙江省杭嘉湖地区水环境中PFASs的污染水平分布及特征,并基于美国环保署推荐的场景风险评估模式,用风险商值法对浙江省杭嘉湖地区各年龄组(儿童、青少年、成人)饮用水暴露PFASs的健康风险进行了评估。结果表明,浙江省杭嘉湖地区水环境(地表水和饮用水)中存在广泛的PFASs污染,组成种类表现为PFOA是水环境中的主导污染物,并且地表水中短链PFASs呈逐年增多的态势。地表水中的主要污染物为PFOA和PFHxA,其中城区地表水中∑PFASs浓度(富阳区:26.90—163.20 ng·L−1,杭州市区:36.30—179.30 ng·L−1,海宁:56.70—186.70 ng·L−1)低于该地区钱塘江江水∑PFASs浓度(富阳区:108.60—142.70 ng·L−1,杭州市区:178.90—221.90 ng·L−1,海宁:129.40—325.70 ng·L−1)。钱塘江江水PFASs浓度分布特征表现为自上而下(自桐庐至富阳至杭州至海宁萧山)总体呈现浓度上升趋势。大运河地表水PFASs组成种类与钱塘江相似,主要污染物为PFOA;杭州段∑PFASs浓度范围为103.50—153.50 ng·L−1,嘉兴段∑PFASs浓度范围为51—123.80 ng·L−1。饮用水中∑PFASs浓度范围为12—175.30 ng·L−1,主要污染物为PFOA(9—115 ng·L−1)和PFHxA(1—41.20 ng·L−1),组成种类与地表水PFASs类似。健康风险评估结果显示,饮用水暴露PFASs对杭嘉湖地区(杭州、海宁、德清、绍兴)各年龄组的居民尚未构成健康威胁。Abstract: To investigate the contamination of perfluoroalkyl substances (PFASs) and the exposure risk via drinking water to the general population in Hangzhou-Jiaxing-Huzhou region of Zhejiang province, the distribution characteristics of PFASs in Hangzhou-Jiaxing-Huzhou region were evaluated through a systematic review and analysis of currently available literature. A hazard quotients (HQs) assessment method and the human exposure factors of Chinese general populations were then applied to evaluate the health risk to three age groups (children, teenagers and adults). Results showed that there was ubiquitous contamination of PFASs in the surface water and drinking water in Hangzhou-Jiaxing-Huzhou region. The composition of PFASs displayed a trend of increasing concentrations of short-chain PFASs (carbon chain number ≤ 6) though PFOA was still one of the predominant PFASs in the surface water and drinking water. In the surface water PFOA and PFHxA were the two predominant PFASs, but the levels varied with the sites and types of water samples. The concentration of ∑PFASs in the urban surface water (Fuyang District: 26.90—163.20 ng·L−1, Hangzhou urban district: 36.30—179.30 ng·L−1, Haining: 56.70—186.70 ng·L−1) was generally lower than the concentration inthe Qiantang River of the same region (Fuyang District: 108.60—142.70 ng·L−1, Hangzhou urban district: 178.90—221.90 ng·L−1, Haining: 129.40—325.70 ng·L−1). Along the Qiantang River, the concentration of ∑PFASs increased from the upstream to the estuary. In the surface water of the Grand Canal the composition of PFASs was similar to that of the Qiantang River, and the predominant contaminant was PFOA. The concentration of ∑PFASs was 103.50 — 153.50 ng·L−1 in the Hangzhou section of the Grand Canal, and 51—123.80 ng·L−1 in Jiaxing. The concentrations of ∑PFASs in the drinking water ranged from 12 ng·L−1 to 175.30 ng·L−1, where PFOA, PFHxA and PFBA dominated. The PFASs composition in the drinking water was similar to that in the surface water, both of which contained high concentrations of PFOA (9—115 ng·L−1) and PFHxA (1—41.20 ng·L−1), calling for great attention and more studies on these two PFASs. Risk assessment showed that PFASs exposure via drinking water currently posed no health risk to the three age group populations in Hangzhou, Haining, Deqing and Shaoxing areas.
-
Key words:
- perfluoroalkyl substances /
- Qiantang River /
- Great Canal /
- distribution characteristics /
- drinking water /
- health risk
-
表 1 浙江杭嘉湖地区和部分长江三角洲其他地区、国外地表水中PFASs的浓度水平
Table 1. Concentrations of PFASs in the surface water in Hangzhou-Jiaxing-Huzhou region of Zhejiang Province, other areas in the Yangtze River Delta region and other countries
采样点
Sampling site采样时间
Sampling time浓度范围(平均值)/(ng·L-1)
Range of concentration(mean)参考
Ref城区地表水Urban surface water 杭州城区
Hangzhou downtown2013.11 & 2014.5 & 2014.8 PFOA:34.66—77.49(57.60) [28] 2014.2 PFOA:34.98—197.80(133.60) [28] 2014.6 & 2015.4 ∑PFASs:94.30—179.30(122.30) [29] 2015.4 & 2015.6 ∑PFASs:76.30—179.30(121.90);PFHxA:7—62.50;
PFOA:47.80—108.60;PFOS:0.70—3.90[30] 杭州富阳区
Fuyang District,Hangzhou2015.4 & 2015.6 ∑PFASs:26.90—163.20(91);PFHxA:4.30—31.30;
PFOA:15.30—82.10;PFOS:<0.50—5[30] 杭州萧山区
Xiaoshan District,Hangzhou2014.6 & 2015.4 ∑PFASs:87.60—202.70(167.30)PFHxS:<0.50—27; [29] 2015.4 & 2015.6 ∑PFASs:87.50—245.90(178.60);PFHxA:13.20—17.90;
PFOA:55.30—159.80;PFOS:<0.50—2.70[30] 海宁
Hai’ning City2014.6 & 2015.4 ∑PFASs:57.60—186.70(95.90) [29] 2015.4 & 2015.6 ∑PFASs:56.70—186.70(98.11);
PFHxA:9.40—57.40;PFBA:3.80—12.50;
PFOA:29.40—108.40;PFOS:<0.50—5.60[30] 嘉兴
Jiaxing City2015.4 PFOA:28.40—33.90;PFPeA:7.58—115 [31] 苏州
Suzhou City2015.4 & 2015.6 ∑PFASs:85—221.50(133.01) [30] 上海
Shanghai City2015.4 & 2015.6 ∑PFASs:96.80—159.70(129.60) [30] 钱塘江地表水Qiantang River surface water 杭州西溪湿地
West Brook Wetland,Hangzhou2014.7(wet season) ∑PFASs:0.98—122(44.97);PFOA:0.59—112(38.80) [32] 2015.1(dry season) ∑PFASs:1.46—699(305.77);PFOA:1.05—538(275) [32] 杭州城区
Hangzhou downtown2015.4 & 2015.6 ∑PFASs:178.90—221.90(201.30);PFHxA:103.90—123.30;
PFOA:45.20—80.90;PFOS:10.80—18.90[30] 杭州市桐庐县
Tonglu county,Hangzhou2015.4 & 2015.6 ∑PFASs:108.30—128.70(116.20);PFHxA:48.40—82.60;
PFOA:28.70—56.10;PFOS:<0.50—13.80[30] 杭州市富阳区
Fuyang District,Hangzhou2015.4 & 2015.6 ∑PFASs:108.60—142.70(121);PFHxA:66.60—75.90;
PFOA:33.30—38.80;PFOS:<0.50—20.60[30] 杭州市萧山区
Xiaoshan District,Hangzhou2014.6 & 2015.4 ∑PFASs:246.30 [29] 海宁
Hai’ning City2014.6 & 2015.4 ∑PFASs:129.40—325.70(200.10); [29] 2015. 4 & 2015.6 ∑PFASs:167.40—322.90(204.50);
PFHxA:40.40—119.80;PFBA:4.10—13.60
PFOA:69.50—166.60;PFOS:<0.50—3.40[30] 湖泊地表水Surface water of Lakes 杭州西湖
West Lake,Hangzhou2015.6 ∑PFASs:94.30—179.30(122.40) [33] 太湖(南)
Tai Lake(South)2015.6 ∑PFASs:59.40—102.80(87.80) [33] 太湖(北)
Tai Lake(North)2015.6 ∑PFASs:84.40—121.10(99.60) [33] 大运河The Grand Canal 杭州段
Grand–Canal Hangzhou2014.6 ∑PFASs:103.20—153.50(126.40) [34] 嘉兴段
Grand–Canal Jiaxing2014.6 ∑PFASs:51—123.80(79.10) [34] 国外天然地表水Natural surface water Abroad 西班牙
Spain(Tagus River)2013.2–2018.8 ∑PFASs: <0.37—47(15±13);PFOA:<0.01—11(3.60±12);
PFOS:<0.01—34[35] 荷兰
Netherlands2016.10 ∑PFASs:36—65;PFHxA:4—6.40;
PFOA:2.80—12;PFOS:2.70—7.10[36] 德国
Germany(Elbe)— ∑PFASs:4.10—249;PFHxA:0.50—5.20;
PFOA:0.78—5.10;PFOS:0.26—3[37] 德国-荷兰
Germany-Netherlands(Rhine)2013.8 ∑PFASs:15.90—111.70; [38] 法国
France2012.4–12 ∑PFASs:<LOD—725;PFHxA:<0.10—86;
PFHxS:<0.02—217;PFOA:<0.08—36;
Br–PFOS:<0.01—197;L-PFOS:<0.06—173[39] PFOS:9.90—39.70 [40] 日本
Japan2014.8 ∑PFASs:MDL—53.40; PFHxA:37;
PFOA:6.20[41] 表 2 浙江杭嘉湖地区及长江三角洲部分地区饮用水中PFASs的浓度
Table 2. Concentrations of PFASs in the drinking water in Hangzhou-Jiaxing-Huzhou region of Zhejiang Province and other areas in the Yangtze River Delta region
采样点Sampling site 采样时间Sampling time 浓度范围(平均值)/ (ng·L−1) Range of concentration(mean) 参考文献Ref 杭州Hangzhou 2015.6 ∑PFASs:12.50—175.30(82.90) [33] 2015.4 & 2015.6 ∑PFASs:12.50—175.30(82.90);PFOA:9—115.40;PFHxA:1—41.20 [30] 2017.7 & 2017.8 PFBA:18.86;PFOA:3.87;PFNA:0.33;PFHxA:0.92 [56] 海宁Hai’ning 2015.4 & 2015.6 ∑PFASs:44.30—65.10(51.40);PFOA:23.40—41.80;PFHxA:7.10—14.30 [30] 2015.6 ∑PFASs:37.50—65.10(47.90) [33] 绍兴Shaoxing 2017.7 & 2017.8 PFBA:81.82;PFOA:0.53;PFNA:0.22;PFHxA:nd [56] 德清Deqing 2017.7 & 2017.8 PFBA:11.30;PFOA:2.00;PFNA:0.28;PFHxA:0.05 [56] 苏州Suzhou 2015.4 & 2015.6 ∑PFASs:11.20—109.90(55.73);PFOA:5.60—18.70(10.78) [30] 上海Shanghai 2015.4 & 2015.6 ∑PFASs:9.50—45.40(22);PFOA:9.50—33.20(18.50) [30] 表 3 中国居民饮水暴露PFASs的风险评估参数
Table 3. Parameters of daily PFASs intake via drinking water in China
分组
Group日均饮水摄入量IR/(L·d−1) 体重BW/ kg P5 P50 P95 儿童Children 0.25 0.75 1.7 16.7 青少年Teenager 0.57 1.2 2.6 42.1 成人Adult 0.64 1.9 5.2 60.6 表 4 杭州、海宁、德清、绍兴地区居民PFASs日均饮水暴露量
Table 4. ADD of children,teenagers and adults in Hangzhou,Haining,Deqing and Shaoxing via drinking water in the intermediate- and high-exposure scenarios
化合物Compounds PFAS日均暴露量/(ng·kg−1·d−1)ADD IES HES 儿童Children 青少年Teenagers 成人Adults 儿童Children 青少年Teenagers 成人Adults PFOA 1.05 0.67 0.73 11.75 7.13 9.90 PFOS 0.07 0.05 0.05 0.35 0.21 0.29 PFBA 0.17 0.11 0.12 8.33 5.05 7.02 PFNA 0.03 0.02 0.02 0.12 0.07 0.10 PFHxA 0.32 0.20 0.22 4.19 2.54 3.54 PFHpA 0.05 0.03 0.04 0.53 0.32 0.45 ∑PFASsa 2.01 1.27 1.40 17.79 10.79 14.99 a. the sum of all PFAS in the samples. -
[1] GIESY J P, KANNAN K. Perfluorochemical surfactants in the environment [J]. Environmental Science & Technology, 2002, 36(7): 146A-152A. [2] KISSA E. Fluorinated surfactants and repellents[EB/OL]. [2001-12-30]. https://www.semanticscholar.org/ [3] WANG Z Y, SCHERINGER M, MACLEOD M, et al. Atmospheric fate of poly- and perfluorinated alkyl substances (PFASs): II. Emission source strength in summer in Zurich, Switzerland [J]. Environmental Pollution, 2012, 169: 204-209. doi: 10.1016/j.envpol.2012.03.037 [4] ZAREITALABAD P, SIEMENS J, HAMER M, et al. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater - A review on concentrations and distribution coefficients [J]. Chemosphere, 2013, 91(6): 725-732. doi: 10.1016/j.chemosphere.2013.02.024 [5] BANZHAF S, FILIPOVIC M, LEWIS J, et al. A review of contamination of surface-, ground-, and drinking water in Sweden by perfluoroalkyl and polyfluoroalkyl substances (PFASs) [J]. Ambio, 2017, 46(3): 335-346. doi: 10.1007/s13280-016-0848-8 [6] RAHMAN M F, PELDSZUS S, ANDERSON W B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review [J]. Water Research, 2014, 50: 318-340. [7] WINKENS K, VESTERGREN R, BERGER U, et al. Early life exposure to per- and polyfluoroalkyl substances (PFASs): A critical review [J]. Emerging Contaminants, 2017, 3(2): 55-68. doi: 10.1016/j.emcon.2017.05.001 [8] LAU C, ANITOLE K, HODES C, et al. Perfluoroalkyl acids: A review of monitoring and toxicological findings [J]. Toxicological Sciences, 2007, 99(2): 366-394. doi: 10.1093/toxsci/kfm128 [9] OLSEN G W, BUTENHOFF J L, ZOBEL L R. Perfluoroalkyl chemicals and human fetal development: An epidemiologic review with clinical and toxicological perspectives [J]. Reproductive Toxicology, 2009, 27(3/4): 212-230. [10] USEPA. 2010/2015 PFOA Stewardship Program[EB/OL]. [2006-12-30]. https://www.regulations.gov/docket/EPA-HQ-OPPT-2006-0621. [11] RAC. Background document to the opinion on the Annex XV dossier proposing restrictions on perfluorooctanoic acid (PFOA), PFOA salts and PFOA-related substances[EB/OL]. [2015-12-30]. HTTPS://ECHA.EUROPA.EU/DOCUMENTS/10162/636BC688-82A2-BF43-2119-B01F72264EA7. [12] UNEP. Governments unite to step-up reduction on global DDT reliance and add nine new chemicals under international treaty, UNEP[EB/OL]. 2009. http://chm.pops.int/Convention/PressreleaseCOP4Geneva8May2009/tabid/542/language/en-US/Default.aspx. [13] ECHA. ANNEX XV PROPOSAL FOR A RESTRICTION-PERFLUOROOCTANOIC ACID (PFOA)[EB/OL]. [2017-02-06]. https://cirs-ck.com/Uploads/file/20170323/1490247226_25025.pdf. [14] USEPA. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)[EB/OL]. [201612-30]. https://www.epa.gov/sites/default/files/2016-05/documents/pfoa_health_advisory_final_508.pdf. [15] RITTER S K. Fluorochemicals go short [J]. Chemical & Engineering News Archive, 2010, 88(5): 12-17. [16] USEPA .Regulatory Actions and Risk Management Activities on Perfluorinated Chemicals[EB/OL]. [2009-12-30]. https://www.oecd.org/env/ehs/risk-management/47722119.pdf. [17] SHARMA B M, BHARAT G K, TAYAL S, et al. Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure [J]. Environmental Pollution, 2016, 208: 704-713. doi: 10.1016/j.envpol.2015.10.050 [18] MAK Y L, TANIYASU S, YEUNG L W Y, et al. Perfluorinated compounds in tap water from China and several other countries [J]. Environmental Science & Technology, 2009, 43(13): 4824-4829. [19] ZHANG T, SUN H W, LIN Y, et al. Perfluorinated compounds in human blood, water, edible freshwater fish, and seafood in China: Daily intake and regional differences in human exposures [J]. Journal of Agricultural and Food Chemistry, 2011, 59(20): 11168-11176. doi: 10.1021/jf2007216 [20] BARTELL S M. Online serum PFOA calculator for adults [J]. Environmental Health Perspectives, 2017, 125(10): 104502. doi: 10.1289/EHP2820 [21] HOFFMAN K, WEBSTER T F, BARTELL S M, et al. Private drinking water wells as a source of exposure to perfluorooctanoic acid (PFOA) in communities surrounding a fluoropolymer production facility [J]. Environmental Health Perspectives, 2011, 119(1): 92-97. doi: 10.1289/ehp.1002503 [22] JIN H B, ZHANG Y F, ZHU L Y, et al. Isomer profiles of perfluoroalkyl substances in water and soil surrounding a Chinese fluorochemical manufacturing park [J]. Environmental Science & Technology, 2015, 49(8): 4946-4954. [23] QIU J. China pledges to get wealthier with less water [J]. Nature, 2009, 511: 527-528. doi: 10.1038/news.2009.111 [24] PREVEDOUROS K, COUSINS I T, BUCK R C, et al. Sources, fate and transport of perfluorocarboxylates [J]. Environmental Science & Technology, 2006, 40(1): 32-44. [25] SINCLAIR E, KANNAN K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants [J]. Environmental Science & Technology, 2006, 40(5): 1408-1414. [26] STOCK N L, FURDUI V I, MUIR D C G, et al. Perfluoroalkyl contaminants in the Canadian arctic: evidence of atmospheric transport and local contamination [J]. Environmental Science & Technology, 2007, 41(10): 3529-3536. [27] 浙江自然资源与环境统计年鉴委员会. 2019浙江自然资源与环境统计年鉴: 2-10各行业工业废水排放及处理情况[EB/OL]. [2020-12-20]. https://www.yearbookchina.com/NAVIPAGE-N3020052005000107.HTML. Zhejiang Natural Resources and Environment Statistical Yearbook Committee. Zhejiang Statistical Yearbook of Natural Resources and Environment in 2019: 2-10 Discharge and treatment of industrial wastewater in various industries[EB/OL]. [2020-12-20]. https://www.yearbookchina.com/NAVIPAGE-N3020052005000107.HTML.
[28] XU H Y, ZHU J Q, LEI C, et al. The investigation of perfluorinated compounds in surface waters of the Xixi wetland, Hangzhou, China [J]. Bulletin of Environmental Contamination and Toxicology, 2016, 97(6): 770-775. doi: 10.1007/s00128-016-1954-9 [29] 陈舒. 中国东部地区典型全氟化合物污染地理分布特征及来源辨析[D]. 北京: 中国地质科学院, 2016. CHEN S. Distribution and source analysis of typical perfluorinated compounds in the Eastern China and the grand canal[D]. Beijing: Chinese Academy of Geological Sciences, 2016(in Chinese).
[30] LU G H, GAI N, ZHANG P, et al. Perfluoroalkyl acids in surface waters and tapwater in the Qiantang River watershed—Influences from paper, textile, and leather industries [J]. Chemosphere, 2017, 185: 610-617. doi: 10.1016/j.chemosphere.2017.06.139 [31] ZHENG B H, LIU X L, GUO R, et al. Distribution characteristics of poly- and perfluoroalkyl substances in the Yangtze River Delta [J]. Journal of Environmental Sciences, 2017, 61: 97-109. doi: 10.1016/j.jes.2017.09.015 [32] 张明, 唐访良, 俞雅雲, 等. 钱塘江(杭州段)表层水中全氟化合物的残留水平及分布特征 [J]. 环境科学, 2015, 36(12): 4471-4478. ZHANG M, TANG F L, YU Y Y, et al. Residue concentration and distribution characteristics of perfluorinated compounds in surface water from Qiantang River in Hangzhou section [J]. Environmental Science, 2015, 36(12): 4471-4478(in Chinese).
[33] TAN K Y, LU G H, PIAO H T, et al. Current contamination status of perfluoroalkyl substances in tapwater from 17 cities in the Eastern China and their correlations with surface waters [J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(2): 224-231. doi: 10.1007/s00128-017-2109-3 [34] 朴海涛, 陈舒, 焦杏春, 等. 大运河丰水期水体中全氟化合物的分布 [J]. 中国环境科学, 2016, 36(10): 3040-3047. doi: 10.3969/j.issn.1000-6923.2016.10.029 PIAO H T, CHEN S, JIAO X C, et al. Geographical distribution of perfluorinated compounds in waters along the Grand Canal during wet season [J]. China Environmental Science, 2016, 36(10): 3040-3047(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.10.029
[35] NAVARRO I, de la TORRE A, SANZ P, et al. Perfluoroalkyl acids (PFAAs): Distribution, trends and aquatic ecological risk assessment in surface water from Tagus River basin (Spain) [J]. Environmental Pollution, 2020, 256: 113511. doi: 10.1016/j.envpol.2019.113511 [36] GEBBINK W A, van ASSELDONK L, van LEEUWEN S P J. Presence of emerging per- and polyfluoroalkyl substances (PFASs) in river and drinking water near a fluorochemical production plant in the Netherlands [J]. Environmental Science & Technology, 2017, 51(19): 11057-11065. [37] ZHAO Z, XIE Z Y, TANG J H, et al. Seasonal variations and spatial distributions of perfluoroalkyl substances in the rivers Elbe and lower Weser and the North Sea [J]. Chemosphere, 2015, 129: 118-125. doi: 10.1016/j.chemosphere.2014.03.050 [38] HEYDEBRECK F, TANG J H, XIE Z Y, et al. Alternative and legacy perfluoroalkyl substances: Differences between European and Chinese river/estuary systems [J]. Environmental Science & Technology, 2015, 49(14): 8386-8395. [39] MUNOZ G, GIRAUDEL J L, BOTTA F, et al. Spatial distribution and partitioning behavior of selected poly- and perfluoroalkyl substances in freshwater ecosystems: A French nationwide survey [J]. Science of the Total Environment, 2015, 517: 48-56. doi: 10.1016/j.scitotenv.2015.02.043 [40] LABADIE P, CHEVREUIL M. Biogeochemical dynamics of perfluorinated alkyl acids and sulfonates in the River Seine (Paris, France) under contrasting hydrological conditions [J]. Environmental Pollution, 2011, 159(12): 3634-3639. doi: 10.1016/j.envpol.2011.07.028 [41] BEŠKOSKI V P, YAMAMOTO K, YAMAMOTO A, et al. Distribution of perfluoroalkyl compounds in Osaka Bay and coastal waters of Western Japan [J]. Chemosphere, 2017, 170: 260-265. doi: 10.1016/j.chemosphere.2016.12.028 [42] WANG T, VESTERGREN R, HERZKE D, et al. Levels, isomer profiles, and estimated riverine mass discharges of perfluoroalkyl acids and fluorinated alternatives at the mouths of Chinese rivers [J]. Environmental Science & Technology, 2016, 50(21): 11584-11592. [43] BRIGDEN K , LABUNSKA I , JOHNSTON P . Organic chemical and heavy metal contaminants from communal wastewater treatment plants with links to textile manufacturing, and in river water impacted by wastewater from a textile dye manufacturing facility, in China[R] . Exeter UK:Greenpeace Research Laboratories, 2012. https://greenpeace.to/greenpeace/wp-content/uploads/2012/12/TechnicalReport-07-2012.pdf. [44] CHOI J , COBBING M , CRAWFOR T. Dirty Laundry: Unravelling the corporate connections to toxic water pollution in China[R]. Greenpeace International, 2011. http://www.greenpeace.org/international/en/campaigns/toxics/water/Dirty-Laundry-report/. [45] CASPER K, CHOI J, CRAWFORD T. Dirty Laundry 2: Hung Out to Dry-Unravelling the Toxic Trail from Pipes to Product[R]. Greenpeace International, 2011. http://storage.googleapis.com/planet4-netherlands-stateless/2018/06/Dirty-Laundry-Hung-Out-to-Dry.pdf. [46] LU Z B, SONG L N, ZHAO Z, et al. Occurrence and trends in concentrations of perfluoroalkyl substances (PFASs) in surface waters of Eastern China [J]. Chemosphere, 2015, 119: 820-827. doi: 10.1016/j.chemosphere.2014.08.045 [47] LOI E I H, YEUNG L W Y, MABURY S A, et al. Detections of commercial fluorosurfactants in Hong Kong marine environment and human blood: A pilot study [J]. Environmental Science & Technology, 2013, 47(9): 4677-4685. [48] SUN H W, LI F S, ZHANG T, et al. Perfluorinated compounds in surface waters and WWTPs in Shenyang, China: Mass flows and source analysis [J]. Water Research, 2011, 45(15): 4483-4490. doi: 10.1016/j.watres.2011.05.036 [49] de SOLLA S R, de SILVA A O, LETCHER R J. Highly elevated levels of perfluorooctane sulfonate and other perfluorinated acids found in biota and surface water downstream of an international airport, Hamilton, Ontario, Canada [J]. Environment International, 2012, 39(1): 19-26. doi: 10.1016/j.envint.2011.09.011 [50] LABADIE P, CHEVREUIL M. Partitioning behaviour of perfluorinated alkyl contaminants between water, sediment and fish in the Orge River (nearby Paris, France) [J]. Environmental Pollution, 2011, 159(2): 391-397. doi: 10.1016/j.envpol.2010.10.039 [51] MEYER T, de SILVA A O, SPENCER C, et al. Fate of perfluorinated carboxylates and sulfonates during snowmelt within an urban watershed [J]. Environmental Science & Technology, 2011, 45(19): 8113-8119. [52] YU N Y, SHI W, ZHANG B B, et al. Occurrence of perfluoroalkyl acids including perfluorooctane sulfonate isomers in Huai river basin and Taihu lake in Jiangsu Province, China [J]. Environmental Science & Technology, 2013, 47(2): 710-717. [53] Fluoroplastics of China. Hazards and Solutions of Fluorinated Industry in China[EB/OL]. [2011-12-31]. http://WWW.MYPTFE.COM/TEFLFLON/ INFORMATION/201108/1226.HTML. [54] OFF. J. EUR. Union. DIRECTIVE 2013/39/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy (Text with EEA relevance)[EB/OL]. [2013-08-24]. https://op.europa.eu/en/publication-detail/-/publication/296e91b8-4610-11e3-ae03-01aa75ed71a1/language-en. [55] Decreto legislative 13 ottobre 2015, n. 172. Attuazione della direttiva 2013/39/UE, che modififi ca le direttive 2000/60/CE per quanto riguarda le sostanze prioritarie nel settore della politica delle acque[EB/OL]. [2015-11-11]. https://www.ambientesicurezzaweb.it/wp-content/uploads/sites/5/2015/10/Acque.pdf. [56] LI Y N, LI J F, ZHANG L F, et al. Perfluoroalkyl acids in drinking water of China in 2017: Distribution characteristics, influencing factors and potential risks [J]. Environment International, 2019, 123: 87-95. doi: 10.1016/j.envint.2018.11.036 [57] WANG Z Y, COUSINS I T, SCHERINGER M, et al. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors [J]. Environment International, 2013, 60: 242-248. doi: 10.1016/j.envint.2013.08.021 [58] JIN Y H, LIU W, SATO I, et al. PFOS and PFOA in environmental and tap water in China [J]. Chemosphere, 2009, 77(5): 605-611. doi: 10.1016/j.chemosphere.2009.08.058 [59] 王宗爽, 段小丽, 刘平, 等. 环境健康风险评价中我国居民暴露参数探讨 [J]. 环境科学研究, 2009, 22(10): 1164-1170. WANG Z S, DUAN X L, LIU P, et al. Human exposure factors of Chinese people in environmental health risk assessment [J]. Research of Environmental Sciences, 2009, 22(10): 1164-1170(in Chinese).
[60] GEBBINK W A, BERGER U, COUSINS I T. Estimating human exposure to PFOS isomers and PFCA homologues: The relative importance of direct and indirect (precursor) exposure [J]. Environment International, 2015, 74: 160-169. doi: 10.1016/j.envint.2014.10.013 [61] Helsel D R. Reporting limits[M]//Statistics for Censored Environmental DataUsing Minitab® and R. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011: 22-36. [62] 赵秀阁, 段小丽. 中国人群暴露参数手册(成人卷): 概要[M]. 北京: 中国环境出版社, 2014. ZHAO L G, DUAN X L. Highlights of the chinese exposure factors handbook(adults)[M]. Beijing: China Environmental Press, 2014(in Chinese).
[63] 环境保护部. 中国人群暴露参数手册(儿童卷: 0 ~ 5 岁)[M]. 北京: 中国环境科学出版社, 2016. WANG B B, DUAN X L. Exposure factors handbook of Chinese population (children 0-5 years)[M]. Beijing: China Environmental Press, 2016(in Chinese).
[64] 环境保护部. 中国人群暴露参数手册(儿童卷: 6 ~ 17 岁)[M]. 北京: 中国环境科学出版社, 2016. ZHAO X G, DUAN X L. Exposure factors handbook of Chinese population (Children 6-17 years)[M]. Beijing: China Environmental Press, 2016(in Chinese).
[65] THAYER K, Houlihan J. Perflfluorinated chemicals: Justifification for inclusion of this chemical class in the national report on human exposure to environmental chemicals[R]. Washington, DC: Environmental Working Group, 2002. https://www.researchgate.net/publication/237442337_Perfluorinated_chemicals_Justification_for_Inclusion_of_this_Chemical_Class_in_the_National_Report_on_Human_Exposure_to_Environmental_Chemicals.