-
汞(Hg)是一种生物非必需的重金属元素,由于其具有长距离迁移性、生物累积性、高毒性等特点,已经被联合国环境规划署(UNEP)列为全球性的污染物[1]。在自然环境中,汞元素以无机汞(如零价汞单质、二价汞盐等)和有机汞(如甲基汞、乙基汞等)形态存在,并且在环境条件下会发生相互转化。不同化学形态汞的物理化学性质和生物毒性差异显著,甲基汞(MeHg)是对人类和环境健康威胁最大的含汞化合物。甲基汞具有极强的神经毒性,在食物链和生物圈中易发生富集、放大效应[2-3],海产品和农作物中的甲基汞严重威胁食品安全和人类健康[4-5]。正确认识自然环境中甲基汞的生成和累积过程是汞污染研究领域的热点和难点,同时也是有效防治全球性汞污染的核心环节之一。
食物链中累积的甲基汞主要来自于环境中广泛分布的厌氧菌所驱动的无机汞甲基化过程[6]。生物膜(biofilm)是水生食物链的重要基础,代表着细菌和古菌在自然环境中的主要生存方式[7],驱动了众多元素的生物地球化学循环过程[8]。在环境汞循环过程中,生物膜参与汞的还原、氧化、甲基化和去甲基化等形态转化过程[9-10]。进入到生物膜中的二价汞可经由微生物的还原作用形成零价汞后扩散、挥发进入周围环境;在Desulfovibrio desulfuricans ND132等微生物的作用下,零价汞也会被氧化为二价汞[11];同时,生物膜是驱动零价、二价无机汞与甲基汞之间相互转化的重要环境介质。由于生物膜是食物链中甲基汞的重要来源,Branfireun等将生物膜添加到了最新总结的淡水生态系统汞的循环模型中[9],但是目前关于生物膜在汞的环境转化过程,特别是甲基化过程中的作用仍缺乏系统认识。
在甲基汞微生物合成机制的前期研究中,大多采用了浮游态细菌培养物进行实验,然而有研究表明,生物膜内部微生物细胞的生活习性、生理代谢途径等明显不同于浮游态细胞,生物膜中发生的生化过程无法通过研究浮游态细胞进行准确预测[12]。此外,研究发现,沉积物、周丛生物、水生植物等附着的生物膜中甲基汞占总汞的比例约为10%,明显高于外部水环境[10]。与厌氧区域的沉积物和含水层相比,生物膜中汞甲基化速率往往高出1—2个数量级[13-14]。这些表明生物膜中可能存在不同于浮游态微生物的汞甲基化作用机制。生物膜是甲基汞生成的重要环境介质和甲基汞在食物链中富集的起点,明确生物膜中汞甲基化过程的作用机制是有效保障食品安全,控制汞污染健康风险的重要前提,甲基汞在生物膜中的生成机制亟待进一步系统研究。
环境生物膜中的汞甲基化
Mercury methylation in environmental biofilms
-
摘要: 汞是严重危害食品安全及人体健康的全球性重金属污染物,揭示具有强生物毒性的甲基汞的生成和累积机制是汞污染研究领域的热点和难点。生物膜中无机汞的甲基化是环境中甲基汞污染的主要来源和甲基汞进入食物链的起点,但是目前学术界对汞甲基化机制的认知多基于浮游态纯菌实验,无法准确模拟生物膜中汞的甲基化过程。本文从生物膜中汞甲基化的生化分子路径、无机汞的化学形态和甲基化微生物的活性这三个决定汞甲基化过程的关键因素出发,详细阐述了目前生物膜中汞甲基化的研究现状、存在问题以及拟解决问题的技术手段,并对未来在该领域的研究工作进行了展望。生物膜中汞甲基化机制的研究可为深入理解甲基汞的环境累积过程,提高汞污染风险分析的准确性,开发有效的汞污染风险防控技术提供科学依据和数据支撑。Abstract: Mercury is a heavy metal contaminant that endangers food safety and human health globally. Understanding the mechanisms that control the production and accumulation of the potent toxin, methylmercury, has been the research focus of mercury pollution. Methylation of inorganic mercury in biofilms significantly contributes to methylmercury contamination in the natural environment, and serves as the entry point of methylmercury accumulation in the food web. However, current understanding of the mechanisms governing mercury methylation is mainly originated from experiments using planktonic cultures of pure strains, which do not properly simulate mercury methylation processes in biofilms. Here, we synthesized the current understanding and remaining challenges regarding the principal biochemical pathways responsible for mercury methylation, chemical speciation of inorganic mercury and the activity of microorganism in biofilms, the three key factors affecting microbial mercury methylation. Technical approaches for further solving the key questions of mercury methylation in environmental biofilms and future perspectives of this research area were also discussed. Research on mercury methylation in biofilms will help improve the mechanistic understanding of the methylmercury accumulation processes in the environment, and provide insights to accurate risk analysis and effective remediation strategies of mercury pollution.
-
Key words:
- biofilm /
- mercury methylation /
- biochemical pathway /
- mercury speciation /
- microbial activity
-
表 1 文献报道的生物膜中汞甲基化速率常数和甲基化效率
Table 1. Mercury methylation rate constant and methylation efficiency in biofilms reported in literature
生物膜类型
Biofilm type生物膜载体
Biofilm carrier甲基化速率常数/d− 1
Methylation rate
constant (km)甲基化效率/%
Methylation efficiency
(MeHg/THg)文献
Reference混菌生物膜 凤眼莲、丁香蓼等 2.32 × 10− 4—3.45 × 10− 4 0.9—8.3 Achá et al., 2011 [23] 穿叶眼子菜、伊乐藻、芦苇等 1.50 × 10− 3—1.80 × 10− 2 0.3—3.5 Hamelin et al., 2011 [21] 狸藻、小莎草等 2.01 × 10− 4—4.15 × 10− 2 0.1—10.0 Cleckner et al., 1999 [18] 穿叶眼子菜、藨草、香蒲等 2.00 × 10− 3—0.14 0.4—23.9 Hamelin et al., 2015 [12] 槐叶萍、凤眼莲、金鱼藻等 1.91 × 10− 2—0.17 0.2—17.0 Mauro et al., 2002 [24] 凤眼莲 2.62 × 10− 2—0.17 5.1—29.2 Lázaro et al., 2013 [22] 芦苇 4.00 × 10− 2—0.18 3.9—23.7 Bouchet et al., 2018 [25] 凤眼莲、膜稃草、丁香蓼等 1.00 × 10− 3—0.18 0.2—36.1 Correia et al., 2012 [26] 凤眼莲 6.30 × 10− 2—0.28 6.1—24.6 Lázaro et al., 2019 [27] 凤眼莲 6.40 × 10− 2—0.29 6.2—25.6 Lázaro et al., 2016 [28] 狐尾藻、凤眼莲 1.61 × 10− 2—0.36 1.6—30.2 Guimarães et al., 2006 [29] 凤眼莲 0.16—0.47 15.3—37.3 Lázaro et al., 2018 [30] 多孔玻璃盘 1.48 × 10− 6—1.08 × 10− 4 < 0.1 Schwartz et al., 2019 [31] 聚丙烯网 2.33 × 10− 5—1.25 × 10− 4 < 0.2 Olsen et al., 2016 [32] 防水木板 5.00 × 10− 5—1.50 × 10− 3 0.3—1.4 Huguet et al., 2010 [33] 岩石 3.84 × 10− 4—1.42 × 10− 2 0.1—0.8 Desrosiers et al., 2006 [20] 岩石 3.50 × 10− 2—0.20 0.2—9.5 Buckman et al., 2015 [34] 纯菌生物膜 玻璃载玻片 3.33 × 10− 2—0.19 6.6—17.3 Lin and Jay, 2007 [14] 玻璃载玻片 6.29 × 10− 2—0.19 3.1—30.6 Lin et al., 2013 [35] -
[1] DRISCOLL C T, MASON R P, CHAN H M, et al. Mercury as a global pollutant: Sources, pathways, and effects [J]. Environmental Science & Technology, 2013, 47(10): 4967-4983. [2] TSUI T M, LIU S, BRASSO R L, et al. Controls of methylmercury bioaccumulation in forest floor food webs [J]. Environmental Science & Technology, 2019, 53(5): 2434-2440. [3] TANG W, LIU Y, GUAN W, et al. Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability [J]. Science of the Total Environment, 2020, 714: 136827. doi: 10.1016/j.scitotenv.2020.136827 [4] LIU M, ZHANG Q, CHENG M, et al. Rice life cycle-based global mercury biotransport and human methylmercury exposure [J]. Nature Communications, 2019, 10(1): 5164. doi: 10.1038/s41467-019-13221-2 [5] ZHANG H, FENG X, LARSSEN T, et al. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure [J]. Environmental Health Perspectives, 2010, 118(9): 1183-1188. doi: 10.1289/ehp.1001915 [6] KERIN E J, GILMOUR C C, RODEN E, et al. Mercury methylation by dissimilatory iron-reducing bacteria [J]. Applied and Environmental Microbiology, 2006, 72(12): 7919-7921. doi: 10.1128/AEM.01602-06 [7] FLEMMING H-C, WUERTZ S. Bacteria and archaea on Earth and their abundance in biofilms [J]. Nature Reviews Microbiology, 2019, 17(4): 247-260. doi: 10.1038/s41579-019-0158-9 [8] FLEMMING H C, WINGENDER J, SZEWZYK U, et al. Biofilms: An emergent form of bacterial life [J]. Nature Reviews Microbiology, 2016, 14(9): 563-575. doi: 10.1038/nrmicro.2016.94 [9] BRANFIREUN B A, COSIO C, POULAIN A J, et al. Mercury cycling in freshwater systems-an updated conceptual model [J]. Science of the Total Environment, 2020, 745: 140906. doi: 10.1016/j.scitotenv.2020.140906 [10] DRANGUET P, FAUCHEUR S L, SLAVEYKOVA V I. Mercury bioavailability, transformations, and effects on freshwater biofilms [J]. Environmental Toxicology and Chemistry, 2017, 36(12): 3194-3205. doi: 10.1002/etc.3934 [11] HU H, LIN H, ZHENG W, et al. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria [J]. Nature Geoscience, 2013, 6(9): 751-754. doi: 10.1038/ngeo1894 [12] KONOPKA A. What is microbial community ecology? [J]. The ISME Journal, 2009, 3(11): 1223-1230. doi: 10.1038/ismej.2009.88 [13] HAMELIN S, PLANAS D, AMYOT M. Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada) [J]. Science of the Total Environment, 2015, 512: 464-471. [14] LIN C, JAY J A. Mercury methylation by planktonic and biofilm cultures of Desulfovibrio desulfuricans [J]. Environmental Science & Technology, 2007, 41(19): 6691-6697. [15] VERT M,DOI Y,HELLWICH K,et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012) [J]. Pure and Applied Chemistry, 2012, 84(2): 377-410. doi: 10.1351/PAC-REC-10-12-04 [16] BRANDA S S, VIK Å, FRIEDMAN L, et al. Biofilms: The matrix revisited [J]. Trends in Microbiology, 2005, 13(1): 20-26. doi: 10.1016/j.tim.2004.11.006 [17] BUFFLE J, WILKINSON K J, VAN LEEUWEN H P. Chemodynamics and bioavailability in natural waters [J]. Environmental Science & Technology, 2009, 43(19): 7170-7174. [18] CLECKNER L B, GILMOUR C C, HURLEY J P, et al. Mercury methylation in periphyton of the Florida Everglades [J]. Limnology and Oceanography, 1999, 44(7): 1815-1825. doi: 10.4319/lo.1999.44.7.1815 [19] BELL A H, SCUDDER B C. Mercury accumulation in periphyton of eight river ecosystems [J]. Journal of the American Water Resources Association, 2007, 43(4): 957-968. doi: 10.1111/j.1752-1688.2007.00078.x [20] DESROSIERS M, PLANAS D, MUCCI A. Mercury methylation in the epilithon of boreal shield aquatic ecosystems [J]. Environmental Science & Technology, 2006, 40(5): 1540-1546. [21] HAMELIN S, AMYOT M, BARKAY T, et al. Methanogens: principal methylators of mercury in lake periphyton [J]. Environmental Science & Technology, 2011, 45(18): 7693-7700. [22] LÁZARO W L, GUIMARÃES J R D, IGNÁCIO A R A, et al. Cyanobacteria enhance methylmercury production: A hypothesis tested in the periphyton of two lakes in the Pantanal floodplain, Brazil [J]. Science of the Total Environment, 2013, 456: 231-238. [23] ACHÁ D, HINTELMANN H, YEE J. Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region [J]. Chemosphere, 2011, 82(6): 911-916. doi: 10.1016/j.chemosphere.2010.10.050 [24] MAURO J, GUIMARÃES J, HINTELMANN H, et al. Mercury methylation in macrophytes, periphyton, and water - comparative studies with stable and radio-mercury additions [J]. Analytical and Bioanalytical Chemistry, 2002, 374(6): 983-989. doi: 10.1007/s00216-002-1534-1 [25] BOUCHET S, GOÑI-URRIZA M, MONPERRUS M, et al. Linking microbial activities and low-molecular-weight thiols to Hg methylation in biofilms and periphyton from high-altitude tropical lakes in the Bolivian altiplano [J]. Environmental Science & Technology, 2018, 52(17): 9758-9767. [26] CORREIA R R S, MIRANDA M R, GUIMARÃES J R D. Mercury methylation and the microbial consortium in periphyton of tropical macrophytes: Effect of different inhibitors [J]. Environmental Research, 2012, 112: 86-91. doi: 10.1016/j.envres.2011.11.002 [27] LÁZARO W L, DÍEZ S, BRAVO A G, et al. Cyanobacteria as regulators of methylmercury production in periphyton [J]. Science of the Total Environment, 2019, 668: 723-729. doi: 10.1016/j.scitotenv.2019.02.233 [28] LÁZARO W L, DÍEZ S, SILVA C J D, et al. Waterscape determinants of net mercury methylation in a tropical wetland [J]. Environmental Research, 2016, 150: 438-445. doi: 10.1016/j.envres.2016.06.028 [29] GUIMARÃES J R D, MAURO J B N, MEILI M, et al. Simultaneous radioassays of bacterial production and mercury methylation in the periphyton of a tropical and a temperate wetland [J]. Journal of Environmental Management, 2006, 81(2): 95-100. doi: 10.1016/j.jenvman.2005.09.023 [30] LÁZARO W L, DÍEZ S, SILVA C J D, et al. Seasonal changes in peryphytic microbial metabolism determining mercury methylation in a tropical wetland [J]. Science of the Total Environment, 2018, 627: 1345-1352. doi: 10.1016/j.scitotenv.2018.01.186 [31] SCHWARTZ G E, OLSEN T A, MULLER K A, et al. Ecosystem controls on methylmercury production by periphyton biofilms in a contaminated stream: implications for predictive modeling [J]. Environmental Toxicology and Chemistry, 2019, 38(11): 2426-2435. doi: 10.1002/etc.4551 [32] OLSEN T A, BRANDT C C, BROOKS S C. Periphyton biofilms influence net methylmercury production in an industrially contaminated system [J]. Environmental Science & Technology, 2016, 50(20): 10843-10850. [33] HUGUET L, CASTELLE S, SCHÄFER J, et al. Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana [J]. Science of the Total Environment, 2010, 408(6): 1338-1348. doi: 10.1016/j.scitotenv.2009.10.058 [34] BUCKMAN K L, MARVIN-DIPASQUALE M, TAYLOR V F, et al. Influence of a chlor-alkali superfund site on mercury bioaccumulation in periphyton and low-trophic level fauna [J]. Environmental Toxicology and Chemistry, 2015, 34(7): 1649-1658. doi: 10.1002/etc.2964 [35] LIN T Y, KAMPALATH R A, LIN C, et al. Investigation of mercury methylation pathways in biofilm versus planktonic cultures of Desulfovibrio desulfuricans [J]. Environmental Science & Technology, 2013, 47(11): 5695-5702. [36] HAMELIN S, PLANAS D, AMYOT M. Spatio-temporal variations in biomass and mercury concentrations of epiphytic biofilms and their host in a large river wetland (Lake St. Pierre, Qc, Canada) [J]. Environmental Pollution, 2015, 197: 221-230. doi: 10.1016/j.envpol.2014.11.007 [37] BRAVO A G, COSIO C. Biotic formation of methylmercury: A bio-physico-chemical conundrum [J]. Limnology and Oceanography, 2020, 65(5): 1010-1027. doi: 10.1002/lno.11366 [38] JENSEN S, JERNELÖV A. Biological methylation of mercury in aquatic organisms [J]. Nature, 1969, 223(5207): 753-754. doi: 10.1038/223753a0 [39] WOOD J M. Biological cycles for toxic elements in the environment [J]. Science, 1974, 183(4129): 1049-1052. doi: 10.1126/science.183.4129.1049 [40] COMPEAU G C, BARTHA R. Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment [J]. Applied and Environmental Microbiology, 1985, 50(2): 498-502. doi: 10.1128/aem.50.2.498-502.1985 [41] FLEMING E J, MACK E E, GREEN P G, et al. Mercury methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron-reducing bacterium [J]. Applied and Environmental Microbiology, 2006, 72(1): 457-464. doi: 10.1128/AEM.72.1.457-464.2006 [42] CHOI S C, CHASE T, BARTHA R. Enzymatic catalysis of mercury methylation by Desulfovibrio desulfuricans LS [J]. Applied and Environmental Microbiology, 1994, 60(4): 1342-1346. doi: 10.1128/aem.60.4.1342-1346.1994 [43] CHOI S C, CHASE T, BARTHA R. Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS [J]. Applied and Environmental Microbiology, 1994, 60(11): 4072-4077. doi: 10.1128/aem.60.11.4072-4077.1994 [44] EKSTROM E B, MOREL F M M, BENOIT J M. Mercury methylation independent of the acetyl-coenzyme A pathway in sulfate-reducing bacteria [J]. Applied and Environmental Microbiology, 2003, 69(9): 5414-5422. doi: 10.1128/AEM.69.9.5414-5422.2003 [45] EKSTROM E B, MOREL F M M. Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria [J]. Environmental Science & Technology, 2008, 42(1): 93-99. [46] PARKS J M, JOHS A, PODAR M, et al. The genetic basis for bacterial mercury methylation [J]. Science, 2013, 339(6125): 1332-1335. doi: 10.1126/science.1230667 [47] GILMOUR C C, PODAR M, BULLOCK A L, et al. Mercury methylation by novel microorganisms from new environments [J]. Environmental Science & Technology, 2013, 47(20): 11810-11820. [48] LATTIF A A, CHANDRA J, CHANG J, et al. Proteomics and pathway mapping analyses reveal phase-dependent over-expression of proteins associated with carbohydrate metabolic pathways in Candida albicans biofilms [J]. The Open Proteomics Journal, 2008, 1: 5-26. doi: 10.2174/1875039700801010005 [49] RESCH A, ROSENSTEIN R, NERZ C, et al. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions [J]. Applied and Environmental Microbiology, 2005, 71(5): 2663-2676. doi: 10.1128/AEM.71.5.2663-2676.2005 [50] WHITELEY M, DIGGLE S P, GREENBERG E P. Progress in and promise of bacterial quorum sensing research [J]. Nature, 2017, 551(7680): 313-320. doi: 10.1038/nature24624 [51] YIN W, CAI X, MA H, et al. A decade of research on the second messenger c-di-AMP [J]. FEMS Microbiology Reviews, 2020, 44(6): 701-724. doi: 10.1093/femsre/fuaa019 [52] FLEMMING H C, WINGENDER J. The biofilm matrix [J]. Nature Reviews Microbiology, 2010, 8(9): 623-633. doi: 10.1038/nrmicro2415 [53] SHENG G, YU H, LI X. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review [J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001 [54] WEI L, LI Y, NOGUERA D R, et al. Adsorption of Cu2+ and Zn2+ by extracellular polymeric substances (EPS) in different sludges: Effect of EPS fractional polarity on binding mechanism [J]. Journal of Hazardous Materials, 2017, 321: 473-483. doi: 10.1016/j.jhazmat.2016.05.016 [55] ZHANG D, PAN X, MOSTOFA K M G, et al. Complexation between Hg(II) and biofilm extracellular polymeric substances: An application of fluorescence spectroscopy [J]. Journal of Hazardous Materials, 2010, 175(40546): 359-365. [56] ZHANG P, CHEN Y, PENG M, et al. Extracellular polymeric substances dependence of surface interactions of Bacillus subtilis with Cd2+ and Pb2+: An investigation combined with surface plasmon resonance and infrared spectra [J]. Colloids and Surfaces B: Biointerfaces, 2017, 154: 357-364. doi: 10.1016/j.colsurfb.2017.03.046 [57] BENOIT J M, GILMOUR C C, MASON R P, et al. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters [J]. Environmental Science & Technology, 1999, 33(6): 951-957. [58] BENOIT J M, MASON R P, GILMOUR C C. Estimation of mercury‐sulfide speciation in sediment pore waters using octanol—water partitioning and implications for availability to methylating bacteria [J]. Environmental Toxicology and Chemistry, 1999, 18(10): 2138-2141. [59] GRAHAM A M, AIKEN G R, GILMOUR C C. Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions [J]. Environmental Science & Technology, 2012, 46(5): 2715-2723. [60] ZHANG T, KIM B, LEVARD C, et al. Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides [J]. Environmental Science & Technology, 2012, 46(13): 6950-6958. [61] COLOMBO M J, HA J, REINFELDER J R, et al. Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricans ND132 [J]. Geochimica et Cosmochimica Acta, 2013, 112: 166-177. doi: 10.1016/j.gca.2013.03.001 [62] DASH H R, BASU S, DAS S. Evidence of mercury trapping in biofilm-EPS and mer operon-based volatilization of inorganic mercury in a marine bacterium Bacillus cereus BW-201B [J]. Archives of Microbiology, 2017, 199(3): 445-455. doi: 10.1007/s00203-016-1317-2 [63] DASH H R, DAS S. Interaction between mercuric chloride and extracellular polymers of biofilm-forming mercury resistant marine bacterium Bacillus thuringiensis PW-05 [J]. RSC Advances, 2016, 6(111): 109793-109802. doi: 10.1039/C6RA21069D [64] LECLERC M, PLANAS D, AMYOT M. Relationship between extracellular low-molecular-weight thiols and mercury species in natural lake periphytic biofilms [J]. Environmental Science & Technology, 2015, 49(13): 7709-7716. [65] SCHAEFER J K, MOREL F M. High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens [J]. Nature Geoscience, 2009, 2(2): 123-126. doi: 10.1038/ngeo412 [66] CHENG J, ZHAO W, LIU Y, et al. Adsorption properties and gaseous mercury transformation rate of natural biofilm [J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81(5): 516-520. doi: 10.1007/s00128-008-9526-2 [67] KANG F, ALVAREZ P J J, ZHU D. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity [J]. Environmental Science & Technology, 2014, 48(1): 316-322. [68] KANG F, QU X, ALVAREZ P J J, et al. Extracellular saccharide-mediated reduction of Au3+ to gold nanoparticles: New insights for heavy metals biomineralization on microbial surfaces [J]. Environmental Science & Technology, 2017, 51(5): 2776-2785. [69] LABRENZ M, DRUSCHEL G K, THOMSEN-EBERT T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria [J]. Science, 2000, 290(5497): 1744-1747. doi: 10.1126/science.290.5497.1744 [70] ZHANG Z, SI R, LV J, et al. Effects of extracellular polymeric substances on the formation and methylation of mercury sulfide nanoparticles [J]. Environmental Science & Technology, 2020, 54(13): 8061-8071. [71] WANG L, WANG L, REN X, et al. pH dependence of structure and surface properties of microbial EPS [J]. Environmental Science & Technology, 2012, 46(2): 737-744. [72] WANG L, WANG L, YE X, et al. Spatial configuration of extracellular polymeric substances of Bacillus megaterium TF10 in aqueous solution [J]. Water Research, 2012, 46(11): 3490-3496. doi: 10.1016/j.watres.2012.03.054 [73] IKUMA K, DECHO A W, LAU B L. When nanoparticles meet biofilms—interactions guiding the environmental fate and accumulation of nanoparticles [J]. Frontiers in Microbiology, 2015, 6: 591. [74] HALL-STOODLEY L, COSTERTON J W, STOODLEY P. Bacterial biofilms: From the natural environment to infectious diseases [J]. Nature Reviews Microbiology, 2004, 2(2): 95-108. doi: 10.1038/nrmicro821 [75] ITO T, NIELSEN J L, OKABE S, et al. Phylogenetic identification and substrate uptake patterns of sulfate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization [J]. Applied and Environmental Microbiology, 2002, 68(1): 356-364. doi: 10.1128/AEM.68.1.356-364.2002 [76] BRAVO A G, BOUCHET S, TOLU J, et al. Molecular composition of organic matter controls methylmercury formation in boreal lakes [J]. Nature Communications, 2017, 8: 14255. doi: 10.1038/ncomms14255 [77] GUILLEMETTE F, MCCALLISTER S L, GIORGIO P A D. Selective consumption and metabolic allocation of terrestrial and algal carbon determine allochthony in lake bacteria [J]. The ISME Journal, 2016, 10(6): 1373-1382. doi: 10.1038/ismej.2015.215 [78] YU R, FLANDERS J R, MACK E E, et al. Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments [J]. Environmental Science & Technology, 2012, 46(5): 2684-2691. [79] LIU Y, JOHS A, BI L, et al. Unraveling microbial communities associated with methylmercury production in paddy soils [J]. Environmental Science & Technology, 2018, 52(22): 13110-13118. [80] YU R, REINFELDER J R, HINES M E, et al. Syntrophic pathways for microbial mercury methylation [J]. The ISME Journal, 2018, 12(7): 1826-1835. doi: 10.1038/s41396-018-0106-0 [81] BORREL G, ADAM P S, GRIBALDO S. Methanogenesis and the wood-ljungdahl pathway: An ancient, versatile, and fragile association [J]. Genome Biology and Evolution, 2016, 8(6): 1706-1711. doi: 10.1093/gbe/evw114 [82] CHEAH Y E, YOUNG J D. Isotopically nonstationary metabolic flux analysis (INST-MFA): Putting theory into practice [J]. Current Opinion in Biotechnology, 2018, 54: 80-87. doi: 10.1016/j.copbio.2018.02.013 [83] LONG C P, ANTONIEWICZ M R. High-resolution 13C metabolic flux analysis [J]. Nature Protocols, 2019, 14(10): 2856-2877. doi: 10.1038/s41596-019-0204-0 [84] PAPENFORT K, BASSLER B L. Quorum sensing signal-response systems in Gram-negative bacteria [J]. Nature Reviews Microbiology, 2016, 14(9): 576-588. doi: 10.1038/nrmicro.2016.89 [85] HAO Y, WINANS S C, GLICK B R, et al. Identification and characterization of new LuxR/LuxI-type quorum sensing systems from metagenomic libraries [J]. Environmental Microbiology, 2010, 12(1): 105-117. doi: 10.1111/j.1462-2920.2009.02049.x [86] REICHHARDT C, PARSEK M R. Confocal laser scanning microscopy for analysis of Pseudomonas aeruginosa biofilm architecture and matrix localization [J]. Frontiers in Microbiology, 2019, 10: 677. doi: 10.3389/fmicb.2019.00677 [87] CHADWICK G L, OTERO F J, GRALNICK J A, et al. NanoSIMS imaging reveals metabolic stratification within current-producing biofilms [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(41): 20716-20724. doi: 10.1073/pnas.1912498116 [88] NEU T R, MANZ B, VOLKE F, et al. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems [J]. FEMS Microbiology Ecology, 2010, 72(1): 1-21. doi: 10.1111/j.1574-6941.2010.00837.x [89] DOGSA I, KRIECHBAUM M, STOPAR D, et al. Structure of bacterial extracellular polymeric substances at different pH values as determined by SAXS [J]. Biophysical Journal, 2005, 89(4): 2711-2720. doi: 10.1529/biophysj.105.061648 [90] BENIGAR E, DOGSA I, STOPAR D, et al. Structure and dynamics of a polysaccharide matrix: Aqueous solutions of bacterial levan [J]. Langmuir, 2014, 30(14): 4172-4182. doi: 10.1021/la500830j [91] HINK M A. Fluorescence correlation spectroscopy [J]. Methods of Molecular Biology, 2015, 1251(1251): 135-150. [92] HUANG D, XUE W, ZENG G, et al. Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity [J]. Water Research, 2016, 106: 15-25. doi: 10.1016/j.watres.2016.09.050 [93] BLAZEWICZ S J, BARNARD R L, DALY R A, et al. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses [J]. The ISME Journal, 2013, 7(11): 2061-2068. doi: 10.1038/ismej.2013.102 [94] RAMOS C, MØLBAK L, MOLIN S. Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates [J]. Applied and Environmental Microbiology, 2000, 66(2): 801-809. doi: 10.1128/AEM.66.2.801-809.2000 [95] CHENG L, HOUSE M W, WEISS W J, et al. Monitoring sulfide-oxidizing biofilm activity on cement surfaces using non-invasive self-referencing microsensors [J]. Water Research, 2016, 89: 321-329. doi: 10.1016/j.watres.2015.11.066 [96] DHAR B R, SIM J, RYU H, et al. Microbial activity influences electrical conductivity of biofilm anode [J]. Water Research, 2017, 127: 230-238. doi: 10.1016/j.watres.2017.10.028 [97] WANG J, CHEN Y, DONG Y, et al. A new method to measure and model dynamic oxygen microdistributions in moving biofilms [J]. Environmental Pollution, 2017, 229: 199-209. doi: 10.1016/j.envpol.2017.05.062 [98] BAHRAM M, HILDEBRAND F, FORSLUND S K, et al. Structure and function of the global topsoil microbiome [J]. Nature, 2018, 560(7717): 233-237. doi: 10.1038/s41586-018-0386-6 [99] WAGNER M, HAIDER S. New trends in fluorescence in situ hybridization for identification and functional analyses of microbes [J]. Current Opinion in Biotechnology, 2012, 23(1): 96-102. doi: 10.1016/j.copbio.2011.10.010