-
大气中悬浮的颗粒物粒径分布范围广,可从3 nm以下到100 μm。其中,100 nm以下的颗粒物通常被称为大气超细颗粒物(UFP)。一方面,UFP粒径小、表面积大,可沉降在呼吸系统深处并对人体健康产生较大危害[1];另一方面,UFP数浓度高,对大气云凝结核数浓度影响显著进而影响着全球气候[2]。UFP数浓度通常主导了大气颗粒物的总数浓度。比如,在北京市城区站点[3-4],UFP质量浓度对大气颗粒物总质量浓度的贡献较小,其数浓度对大气颗粒物总数浓度贡献显著(如图1)。因此,虽然目前广泛研究的大气可悬浮颗粒物(TSP)、PM10、PM2.5中均包含UFP,但对于这些颗粒物的基于质量浓度的认识并不能反映UFP的变化特点。大气UFP包括人为源和天然源排放的一次颗粒物和大气中新粒子生成(new particle formation, NPF)产生的二次颗粒物[5-7]。我国大气污染控制措施不断加严,但对颗粒物的控制主要集中在PM2.5以及颗粒物质量浓度上,对UFP及颗粒物数浓度的关注还相对较少。近年来我国已经把颗粒物数浓度排放限值相继纳入到轻型汽车[8]和重型柴油车[9]等尾气排放标准,国际民航组织等也在推进将颗粒物数浓度纳入航空发动机尾气排放标准[10]。尽管这些排放标准有利于大气一次UFP的控制,由NPF产生的二次UFP的控制却有着较大挑战:例如研究表明尽管北京市大气污染防治取得了非常好的进展,2004到2018年以来NPF发生的频率并没有降低[3, 11]。因此,需要增强对大气UFP的研究和认识。
大气UFP对人体健康和气候的影响取决于其粒径分布、化学组分和形貌等特征,而大气UFP具有来源和组分复杂、时空变化剧烈、化学组分测量困难等特点。从气溶胶生成动力学来看,无论是在污染源烟气中还是大气中,UFP都是气态前体物通过成核和生长过程转化成大颗粒物时的必经之地。而在不同的污染源或大气条件下,气态前体物存在很大差别,导致生成的UFP组分也非常复杂。另一方面,UFP的扩散效应强、停留时间短,加上气态前体物的急剧变化,使得UFP的粒径分布和化学组分具有很强的时空变化特点。然而,由于UFP的质量浓度低、扩散效应强、难与大颗粒物分离等特点,其化学组分的测量,尤其是分子水平的在线测量还非常缺乏。
本文总结了污染源排放的一次UFP特征、大气NPF产生的二次UFP特征、以及实际大气中UFP化学组分及其来源解析的相关研究。分析归纳了目前尚存在的问题,并对未来的研究方向进行了展望。
大气超细颗粒物来源及其化学组分研究进展
Research progress on the sources and the chemical composition of ambient ultrafine particles
-
摘要: 大气超细颗粒物(ultrafine particle, UFP)为粒径小于100 nm的颗粒物,其数浓度主导了大气颗粒物的总数浓度,对人体健康和气候都有显著影响。大气UFP主要来源于污染源烟气和大气中气态前体物的成核和生长。其中,污染源烟气中成核和生长产生的颗粒物排放后构成大气UFP的一次来源,而直接在大气中成核和生长(又称新粒子生成)产生的颗粒物构成大气UFP的二次来源。由于不同来源气态前体物种类的显著差别,所生成UFP的化学组分及其健康和气候效应也会有显著不同。然而,目前对大气UFP的不同来源贡献及其化学组成的相关研究相对较少。本文简要介绍了几种主要污染源排放的一次UFP特征、大气新粒子生成产生的二次UFP特征、以及受多种来源影响的实际大气UFP的化学组分及其来源解析相关研究进展。基于上述分析,建议未来着重开展高时间分辨率和高物种分辨率的大气UFP化学组分观测,加强对大气UFP分子水平上组分及其变化规律的认识。Abstract: The ambient ultrafine particles (UFP) are particles with diameter smaller than 100 nm. Their number concentrations dominate the total ambient particle number concentrations, and have significant effect on human health and the global climate. Ambient UFP are originated from the nucleation and the subsequent growth from the gas precursors either in the plume of the emission sources or in the atmosphere. The UFP formed in the emission plume are referred to as primary UFP. The UFP formed in the atmosphere are referred to as secondary UFP and the whole nucleation and growth process in the atmosphere is called new particle formation (NPF). Due to the different precursors in different emission plumes and in the atmosphere, the chemical composition of the generated UFP and their health and climate effects are very different. However, the source contributions and chemical composition of the ambient UFP are poorly understood. This study briefly summarized the studies on the characteristics of the primary UFP emitted from pollution sources and the secondary UFP generated from NPF events. We also introduced the latest researches on the chemical composition and source apportionment of ambient UFP which involve both primary and secondary UFP. Based on these research progresses, we suggest that ambient UFP measurement with high species-resolution and high time-resolution should be conducted to further understand the molecular level chemical composition and the evolution of ambient UFP.
-
图 5 美国加州[103]、美国匹兹堡[104]、中国北京[94]等站点基于MOUDI与离线滤膜结合测量的56—100 nm颗粒物在所识别的总组分中的占比
Figure 5. The chemical composition fractions of ultrafine particles among the identified species in different stations in California[103], Pittsburg[104], and Beijing[94]. The ultrafine particle samples were collected on filters at the last stage of MOUDI.
表 1 不同污染源产生颗粒物中主要化学组分及其示踪物
Table 1. The main chemical composition and tracers of particles from different emission sources
排放源
Emission sources主要化学组分
Main chemical composition示踪物/特征物质
Tracers机动车尾气[52-56] 黑炭、芳香烃、多环芳烃、烷烃、烯烃、甾烷、藿烷、硝基多环芳烃、含氧多环芳烃、硝酸盐、铵盐、有机胺盐、金属氧化物等 藿烷、甾烷、晕苯、异喹啉、苯并[ghi]吡、类异戊二烯、三环萜烷、Sb、Br、Zn、Ba、Pb、EC等 生物质燃烧[52, 54, 57] 黑炭、烷烃、烯烃、醛酮类、脂肪酸、脂肪醇、甲氧基苯酚、单糖类及其衍生物、固醇、双萜类、三萜类、蜡酯、多环芳烃、硫酸盐、硝酸盐、铵盐、有机铵盐、氯离子、钠离子、钾离子等 左旋葡聚糖、甲氧基苯酚、蜡酯、K、脱氢松香酸、脱氢枞酸、海松酸、惹烯等、二帖化合物、植物甾醇、愈创木酚等 煤炭燃烧[52] 黑炭、烷烃、醛酮类、有机酸、多环芳烃、硫酸盐、铵盐、有机胺盐、氯离子、金属氧化物等 Si, Se, As, Cr, Co, Cu, Al等 食物烹饪[48] 黑炭、饱和脂肪酸、不饱和脂肪酸、二元羧酸、醇酮类、内酯、芳香烃、有机胺、烷烃、固醇、单糖酐、多环芳烃、呋喃酰胺等 油酸、亚油酸、棕榈酸、C4-C8二羧酸、胆固醇等 -
[1] VALAVANIDIS A, FIOTAKIS K, VLACHOGIANNI T. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms [J]. Journal of Environmental Science and Health, Part C, 2008, 26(4): 339-362. doi: 10.1080/10590500802494538 [2] MERIKANTO J, SPRACKLEN D V, MANN G W, et al. Impact of nucleation on global CCN [J]. Atmospheric Chemistry and Physics, 2009, 9(21): 8601-8616. doi: 10.5194/acp-9-8601-2009 [3] DENG C J, FU Y Y, DADA L, et al. Seasonal characteristics of new particle formation and growth in urban Beijing [J]. Environmental Science & Technology, 2020, 54(14): 8547-8557. [4] LI X X, LI Y Y, LAWLER M J, et al. Composition of ultrafine particles in urban Beijing: Measurement using a thermal desorption chemical ionization mass spectrometer [J]. Environmental Science & Technology, 2021, 55(5): 2859-2868. [5] KUMAR P, MORAWSKA L, BIRMILI W, et al. Ultrafine particles in cities [J]. Environment International, 2014, 66: 1-10. doi: 10.1016/j.envint.2014.01.013 [6] ZHANG R Y, KHALIZOV A, WANG L, et al. Nucleation and growth of nanoparticles in the atmosphere [J]. Chemical Reviews, 2012, 112(3): 1957-2011. doi: 10.1021/cr2001756 [7] BIRMILI W, WIEDENSOHLER A. New particle formation in the continental boundary layer: Meteorological and gas phase parameter influence [J]. Geophysical Research Letters, 2000, 27(20): 3325-3328. doi: 10.1029/1999GL011221 [8] 中华人民共和国环境保护部, 轻型汽车污染物排放限值及测量方法(中国第五阶段). 2013. [9] 中华人民共和国环境保护部, 重型柴油车污染物排放限值及测量方法(中国第六阶段). 2019. [10] ZHANG X L, CHEN X, WANG J. A number-based inventory of size-resolved black carbon particle emissions by global civil aviation [J]. Nature Communications, 2019, 10: 534. doi: 10.1038/s41467-019-08491-9 [11] LI X X, ZHAO B, ZHOU W, et al. Responses of gaseous sulfuric acid and particulate sulfate to reduced SO2 concentration: A perspective from long-term measurements in Beijing [J]. Science of the Total Environment, 2020, 721: 137700. doi: 10.1016/j.scitotenv.2020.137700 [12] LI T Z, CHEN X D, YAN Z X. Comparison of fine particles emissions of light-duty gasoline vehicles from chassis dynamometer tests and on-road measurements [J]. Atmospheric Environment, 2013, 68: 82-91. doi: 10.1016/j.atmosenv.2012.11.031 [13] SHI J P, HARRISON R M. Investigation of ultrafine particle formation during diesel exhaust dilution [J]. Environmental Science & Technology, 1999, 33(21): 3730-3736. [14] CARPENTIERI M, KUMAR P. Ground-fixed and on-board measurements of nanoparticles in the wake of a moving vehicle [J]. Atmospheric Environment, 2011, 45(32): 5837-5852. doi: 10.1016/j.atmosenv.2011.06.079 [15] VOGT R, SCHEER V, CASATI R, et al. On-road measurement of particle emission in the exhaust plume of a diesel passenger car [J]. Environmental Science & Technology, 2003, 37(18): 4070-4076. [16] GIECHASKIEL B, NTZIACHRISTOS L, SAMARAS Z, et al. Formation potential of vehicle exhaust nucleation mode particles on-road and in the laboratory [J]. Atmospheric Environment, 2005, 39(18): 3191-3198. doi: 10.1016/j.atmosenv.2005.02.019 [17] BISWAS S, HU S H, VERMA V, et al. Physical properties of particulate matter (PM) from late model heavy-duty diesel vehicles operating with advanced PM and NOx emission control technologies [J]. Atmospheric Environment, 2008, 42(22): 5622-5634. doi: 10.1016/j.atmosenv.2008.03.007 [18] HOSSEINI S, LI Q, COCKER D, et al. Particle size distributions from laboratory-scale biomass fires using fast response instruments [J]. Atmospheric Chemistry and Physics, 2010, 10(16): 8065-8076. doi: 10.5194/acp-10-8065-2010 [19] TISSARI J, LYYRÄNEN J, HYTÖNEN K, et al. Fine particle and gaseous emissions from normal and smouldering wood combustion in a conventional masonry heater [J]. Atmospheric Environment, 2008, 42(34): 7862-7873. doi: 10.1016/j.atmosenv.2008.07.019 [20] WARDOYO A Y P, MORAWSKA L, RISTOVSKI Z D, et al. Quantification of particle number and mass emission factors from combustion of Queensland trees [J]. Environmental Science & Technology, 2006, 40(18): 5696-5703. [21] WIINIKKA H, GEBART R. Critical parameters for particle emissions in small-scale fixed-bed combustion of wood pellets [J]. Energy & Fuels, 2004, 18(4): 897-907. [22] TIWARI M, SAHU S K, BHANGARE R C, et al. Particle size distributions of ultrafine combustion aerosols generated from household fuels [J]. Atmospheric Pollution Research, 2014, 5(1): 145-150. doi: 10.5094/APR.2014.018 [23] ZHANG H F, WANG S X, HAO J M, et al. Chemical and size characterization of particles emitted from the burning of coal and wood in rural households in Guizhou, China [J]. Atmospheric Environment, 2012, 51: 94-99. doi: 10.1016/j.atmosenv.2012.01.042 [24] ZHANG H F, ZHU T, WANG S X, et al. Indoor emissions of carbonaceous aerosol and other air pollutants from household fuel burning in southwest China [J]. Aerosol and Air Quality Research, 2014, 14(6): 1779-1788. doi: 10.4209/aaqr.2013.10.0305 [25] ZHOU W, JIANG J K, DUAN L, et al. Evolution of submicrometer organic aerosols during a complete residential coal combustion process [J]. Environmental Science & Technology, 2016, 50(14): 7861-7869. [26] GAO Q, LI S Q, YANG M M, et al. Measurement and numerical simulation of ultrafine particle size distribution in the early stage of high-sodium lignite combustion [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2083-2090. doi: 10.1016/j.proci.2016.07.085 [27] MASEKAMENI D M, BROUWER D, MAKONESE T, et al. Size distribution of ultrafine particles generated from residential fixed-bed coal combustion in a typical brazier [J]. Aerosol and Air Quality Research, 2018, 18(10): 2618-2632. doi: 10.4209/aaqr.2018.03.0105 [28] BUONANNO G, MORAWSKA L, STABILE L. Particle emission factors during cooking activities [J]. Atmospheric Environment, 2009, 43(20): 3235-3242. doi: 10.1016/j.atmosenv.2009.03.044 [29] BUONANNO G, JOHNSON G, MORAWSKA L, et al. Volatility characterization of cooking-generated aerosol particles [J]. Aerosol Science and Technology, 2011, 45(9): 1069-1077. doi: 10.1080/02786826.2011.580797 [30] DENNEKAMP M. Ultrafine particles and nitrogen oxides generated by gas and electric cooking [J]. Occupational and Environmental Medicine, 2001, 58(8): 511-516. doi: 10.1136/oem.58.8.511 [31] LI C S, LIN W H, JENQ F T. Size distributions of submicrometer aerosols from cooking [J]. Environment International, 1993, 19(2): 147-154. doi: 10.1016/0160-4120(93)90365-O [32] YEUNG L L, TO W M. Size distributions of the aerosols emitted from commercial cooking processes [J]. Indoor and Built Environment, 2008, 17(3): 220-229. doi: 10.1177/1420326X08092043 [33] MATTI MARICQ M. Chemical characterization of particulate emissions from diesel engines: A review [J]. Journal of Aerosol Science, 2007, 38(11): 1079-1118. doi: 10.1016/j.jaerosci.2007.08.001 [34] RÖNKKÖ T, TIMONEN H. Overview of sources and characteristics of nanoparticles in urban traffic-influenced areas [J]. Journal of Alzheimer's Disease, 2019, 72(1): 15-28. doi: 10.3233/JAD-190170 [35] HALLQUIST M, WENGER J C, BALTENSPERGER U, et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues [J]. Atmospheric Chemistry and Physics, 2009, 9(14): 5155-5236. doi: 10.5194/acp-9-5155-2009 [36] 李庆, 段雷, 蒋靖坤, 等. 我国民用燃煤一次颗粒物的减排潜力研究 [J]. 中国电机工程学报, 2016, 36(16): 4408-4414, 4527. LI Q, DUAN L, JIANG J K, et al. Investigation of reducing potential for primary particulate emission from residential coal combustion in China [J]. Proceedings of the CSEE, 2016, 36(16): 4408-4414, 4527(in Chinese).
[37] LOBO P, DURDINA L, SMALLWOOD G J, et al. Measurement of aircraft engine non-volatile PM emissions: Results of the aviation-particle regulatory instrumentation demonstration experiment (A-PRIDE) 4 campaign [J]. Aerosol Science and Technology, 2015, 49(7): 472-484. doi: 10.1080/02786826.2015.1047012 [38] KUITTINEN N, JALKANEN J-P, ALANEN J, et al. Shipping remains a globally significant source of anthropogenic pn emissions even after 2020 sulfur regulation [J]. Environmental Science & Technology, 2021, 55(1): 129-138. [39] JONSSON Å M, WESTERLUND J, HALLQUIST M. Size-resolved particle emission factors for individual ships [J]. Geophysical Research Letters, 2011, 38(13): L13809. doi: 10.1029/2011gl047672 [40] WANG Z B, HU M, WU Z J, et al. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing [J]. Atmospheric Chemistry and Physics, 2013, 13(20): 10159-10170. doi: 10.5194/acp-13-10159-2013 [41] LIU Z R, HU B, ZHANG J K, et al. Characterization of fine particles during the 2014 Asia-Pacific economic cooperation summit: Number concentration, size distribution and sources [J]. Tellus B:Chemical and Physical Meteorology, 2017, 69(1): 1303228. doi: 10.1080/16000889.2017.1303228 [42] ZHU R C, HU J N, BAO X F, et al. Tailpipe emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles at both low and high ambient temperatures [J]. Environmental Pollution, 2016, 216: 223-234. doi: 10.1016/j.envpol.2016.05.066 [43] HARRIS S J, MARICQ M M. Signature size distributions for diesel and gasoline engine exhaust particulate matter [J]. Journal of Aerosol Science, 2001, 32(6): 749-764. doi: 10.1016/S0021-8502(00)00111-7 [44] JETTER J, ZHAO Y X, SMITH K R, et al. Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards [J]. Environmental Science & Technology, 2012, 46(19): 10827-10834. [45] LESKINEN J, TISSARI J, USKI O, et al. Fine particle emissions in three different combustion conditions of a wood chip-fired appliance - Particulate physico-chemical properties and induced cell death [J]. Atmospheric Environment, 2014, 86: 129-139. doi: 10.1016/j.atmosenv.2013.12.012 [46] ROSE EILENBERG S, BILSBACK K R, JOHNSON M, et al. Field measurements of solid-fuel cookstove emissions from uncontrolled cooking in China, Honduras, Uganda, and India [J]. Atmospheric Environment, 2018, 190: 116-125. doi: 10.1016/j.atmosenv.2018.06.041 [47] OBAIDULLAH M, BRAM S, RUYCK J D. An overview of PM formation mechanisms from residential biomass combustion and instruments using in PM measurements[J]. International Journal 0f Energy and Environment, 2018, 12: 326972696. [48] ABDULLAHI K L, DELGADO-SABORIT J M, HARRISON R M. Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review [J]. Atmospheric Environment, 2013, 71: 260-294. doi: 10.1016/j.atmosenv.2013.01.061 [49] KUMAR P, PIRJOLA L, KETZEL M, et al. Nanoparticle emissions from 11 non-vehicle exhaust sources - A review [J]. Atmospheric Environment, 2013, 67: 252-277. doi: 10.1016/j.atmosenv.2012.11.011 [50] 王东滨, 郝吉明, 蒋靖坤. 民用固体燃料燃烧超细颗粒物排放及其潜在健康影响 [J]. 科学通报, 2019, 64(33): 3429-3440. WANG D B, HAO J M, JIANG J K. Ultrafine particle emission and its potential health risk from residential solid fuel combustion [J]. Chinese Science Bulletin, 2019, 64(33): 3429-3440(in Chinese).
[51] LIGHTY J S, VERANTH J M, SAROFIM A F. Combustion aerosols: Factors governing their size and composition and implications to human health [J]. Journal of the Air & Waste Management Association, 2000, 50(9): 1565-1618. [52] MORAWSKA L, ZHANG J. Combustion sources of particles. 1. Health relevance and source signatures [J]. Chemosphere, 2002, 49(9): 1045-1058. doi: 10.1016/S0045-6535(02)00241-2 [53] SCHAUER J J, KLEEMAN M J, CASS G R, et al. Measurement of emissions from air pollution sources. 5. C1–C32 organic compounds from gasoline-powered motor vehicles [J]. Environmental Science & Technology, 2002, 36(6): 1169-1180. [54] SCHAUER J J, ROGGE W F, HILDEMANN L M, et al. Source apportionment of airborne particulate matter using organic compounds as tracers [J]. Atmospheric Environment, 1996, 30(22): 3837-3855. doi: 10.1016/1352-2310(96)00085-4 [55] KLEEMAN M J, SCHAUER J J, CASS G R. Size and composition distribution of fine particulate matter emitted from motor vehicles [J]. Environmental Science & Technology, 2000, 34(7): 1132-1142. [56] HUANG X D, OLMEZ I, ARAS N K, et al. Emissions of trace elements from motor vehicles: Potential marker elements and source composition profile [J]. Atmospheric Environment, 1994, 28(8): 1385-1391. doi: 10.1016/1352-2310(94)90201-1 [57] SIMONEIT B R T. Biomass burning—a review of organic tracers for smoke from incomplete combustion [J]. Applied Geochemistry, 2002, 17(3): 129-162. doi: 10.1016/S0883-2927(01)00061-0 [58] MORAWSKA L, RISTOVSKI Z, JAYARATNE E R, et al. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure [J]. Atmospheric Environment, 2008, 42(35): 8113-8138. doi: 10.1016/j.atmosenv.2008.07.050 [59] ZHU Y F, HINDS W C, KIM S, et al. Study of ultrafine particles near a major highway with heavy-duty diesel traffic [J]. Atmospheric Environment, 2002, 36(27): 4323-4335. doi: 10.1016/S1352-2310(02)00354-0 [60] BARONE T L, ZHU Y F. The morphology of ultrafine particles on and near major freeways [J]. Atmospheric Environment, 2008, 42(28): 6749-6758. doi: 10.1016/j.atmosenv.2008.05.019 [61] ZHAO J, KHALIZOV A, ZHANG R Y, et al. Hydrogen-bonding interaction in molecular complexes and clusters of aerosol nucleation precursors [J]. The Journal of Physical Chemistry A, 2009, 113(4): 680-689. doi: 10.1021/jp806693r [62] SCHOBESBERGER S, JUNNINEN H, BIANCHI F, et al. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules [J]. PNAS, 2013, 110(43): 17223-17228. doi: 10.1073/pnas.1306973110 [63] CHEN M D, TITCOMBE M, JIANG J K, et al. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer [J]. PNAS, 2012, 109(46): 18713-18718. doi: 10.1073/pnas.1210285109 [64] BIANCHI F, PRAPLAN A P, SARNELA N, et al. Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters [J]. Environmental Science & Technology, 2014, 48(23): 13675-13684. [65] YAO L, GARMASH O, BIANCHI F, et al. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity [J]. Science, 2018, 361(6399): 278-281. doi: 10.1126/science.aao4839 [66] CAI R L, YAN C, YANG D S, et al. Sulfuric acid–amine nucleation in urban Beijing [J]. Atmospheric Chemistry and Physics, 2021, 21(4): 2457-2468. doi: 10.5194/acp-21-2457-2021 [67] DAWSON M L, VARNER M E, PERRAUD V, et al. Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations [J]. PNAS, 2012, 109(46): 18719-18724. doi: 10.1073/pnas.1211878109 [68] WANG M Y, KONG W M, MARTEN R, et al. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation [J]. Nature, 2020, 581(7807): 184-189. doi: 10.1038/s41586-020-2270-4 [69] DONAHUE N M, KROLL J H, PANDIS S N, et al. A two-dimensional volatility basis set – Part 2: Diagnostics of organic-aerosol evolution [J]. Atmospheric Chemistry and Physics, 2012, 12(2): 615-634. doi: 10.5194/acp-12-615-2012 [70] DONAHUE N M, ROBINSON A L, PANDIS S N. Atmospheric organic particulate matter: From smoke to secondary organic aerosol [J]. Atmospheric Environment, 2009, 43(1): 94-106. doi: 10.1016/j.atmosenv.2008.09.055 [71] LI Q, JIANG J K, HAO J M. A review of aerosol nanoparticle formation from ions [J]. KONA Powder and Particle Journal, 2015, 32: 57-74. doi: 10.14356/kona.2015013 [72] HIRSIKKO A, NIEMINEN T, GAGNÉ S, et al. Atmospheric ions and nucleation: A review of observations [J]. Atmospheric Chemistry and Physics, 2011, 11(2): 767-798. doi: 10.5194/acp-11-767-2011 [73] MANNINEN H E, NIEMINEN T, ASMI E, et al. EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events [J]. Atmospheric Chemistry and Physics, 2010, 10(16): 7907-7927. doi: 10.5194/acp-10-7907-2010 [74] ARNOLD F. Atmospheric ions and aerosol formation [J]. Space Science Reviews, 2008, 137(1/2/3/4): 225-239. [75] KULMALA M, VEHKAMÄKI H, PETÄJÄ T, et al. Formation and growth rates of ultrafine atmospheric particles: A review of observations [J]. Journal of Aerosol Science, 2004, 35(2): 143-176. doi: 10.1016/j.jaerosci.2003.10.003 [76] CAI R L, JIANG J K. A new balance formula to estimate new particle formation rate: Reevaluating the effect of coagulation scavenging [J]. Atmospheric Chemistry and Physics, 2017, 17(20): 12659-12675. doi: 10.5194/acp-17-12659-2017 [77] DENG C J, CAI R L, YAN C, et al. Formation and growth of sub-3 nm particles in megacities: Impact of background aerosols [J]. Faraday Discussions, 2021, 226: 348-363. doi: 10.1039/D0FD00083C [78] CAI R L, YANG D S, FU Y Y, et al. Aerosol surface area concentration: A governing factor in new particle formation in Beijing [J]. Atmospheric Chemistry and Physics, 2017, 17(20): 12327-12340. doi: 10.5194/acp-17-12327-2017 [79] WINKLER P M, ORTEGA J, KARL T, et al. Identification of the biogenic compounds responsible for size-dependent nanoparticle growth [J]. Geophysical Research Letters, 2012, 39(20): 2012GL053253. doi: 10.1029/2012GL053253 [80] EHN M, THORNTON J A, KLEIST E, et al. A large source of low-volatility secondary organic aerosol [J]. Nature, 2014, 506(7489): 476-479. doi: 10.1038/nature13032 [81] MARPLE V A, RUBOW K L, BEHM S M. A microorifice uniform deposit impactor (MOUDI): Description, calibration, and use [J]. Aerosol Science and Technology, 1991, 14(4): 434-446. doi: 10.1080/02786829108959504 [82] MISRA C, KIM S, SHEN S, et al. A high flow rate, very low pressure drop impactor for inertial separation of ultrafine from accumulation mode particles [J]. Journal of Aerosol Science, 2002, 33(5): 735-752. doi: 10.1016/S0021-8502(01)00210-5 [83] SMITH J N, DRAPER D C, CHEE S, et al. Atmospheric clusters to nanoparticles: Recent progress and challenges in closing the gap in chemical composition [J]. Journal of Aerosol Science, 2021, 153: 105733. doi: 10.1016/j.jaerosci.2020.105733 [84] WAGNER A C, BERGEN A, BRILKE S, et al. Size-resolved online chemical analysis of nanoaerosol particles: A thermal desorption differential mobility analyzer coupled to a chemical ionization time-of-flight mass spectrometer [J]. Atmospheric Measurement Techniques, 2018, 11(10): 5489-5506. doi: 10.5194/amt-11-5489-2018 [85] 陈岩, 王炜罡, 刘明元, 等. 纳米颗粒物化学成分测量技术及其应用 [J]. 大气与环境光学学报, 2020, 15(6): 402-412. CHEN Y, WANG W G, LIU M Y, et al. Measurement technologies of nanoparticle chemical composition and their application [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 402-412(in Chinese).
[86] VOISIN D, SMITH J N, SAKURAI H, et al. Thermal desorption chemical ionization mass spectrometer for ultrafine particle chemical composition [J]. Aerosol Science and Technology, 2003, 37(6): 471-475. doi: 10.1080/02786820300959 [87] SMITH J N, MOORE K F, MCMURRY P H, et al. Atmospheric measurements of sub-20 nm diameter particle chemical composition by thermal desorption chemical ionization mass spectrometry [J]. Aerosol Science and Technology, 2004, 38(2): 100-110. doi: 10.1080/02786820490249036 [88] ZHANG R Y, WANG L, KHALIZOV A F, et al. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution [J]. PNAS, 2009, 106(42): 17650-17654. doi: 10.1073/pnas.0910125106 [89] GONSER S G, HELD A. A chemical analyzer for charged ultrafine particles [J]. Atmospheric Measurement Techniques, 2013, 6(9): 2339-2348. doi: 10.5194/amt-6-2339-2013 [90] WANG S Y, JOHNSTON M V. Airborne nanoparticle characterization with a digital ion trap-reflectron time of flight mass spectrometer [J]. International Journal of Mass Spectrometry, 2006, 258(1/2/3): 50-57. [91] LOPEZ-HILFIKER F D, MOHR C, EHN M, et al. A novel method for online analysis of gas and particle composition: Description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO) [J]. Atmospheric Measurement Techniques, 2014, 7(4): 983-1001. doi: 10.5194/amt-7-983-2014 [92] LOPEZ-HILFIKER F D, POSPISILOVA V, HUANG W, et al. An extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) for online measurement of atmospheric aerosol particles [J]. Atmospheric Measurement Techniques, 2019, 12(9): 4867-4886. doi: 10.5194/amt-12-4867-2019 [93] LEE C P, RIVA M, WANG D Y, et al. Online aerosol chemical characterization by extractive electrospray ionization-ultrahigh-resolution mass spectrometry (EESI-orbitrap) [J]. Environmental Science & Technology, 2020, 54(7): 3871-3880. [94] MASSLING A, STOCK M, WEHNER B, et al. Size segregated water uptake of the urban submicrometer aerosol in Beijing [J]. Atmospheric Environment, 2009, 43(8): 1578-1589. doi: 10.1016/j.atmosenv.2008.06.003 [95] MEIER J, WEHNER B, MASSLING A, et al. Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: A comparison of three experimental methods [J]. Atmospheric Chemistry and Physics, 2009, 9(18): 6865-6880. doi: 10.5194/acp-9-6865-2009 [96] ZHAO P S, CHEN Y N, SU J. Size-resolved carbonaceous components and water-soluble ions measurements of ambient aerosol in Beijing [J]. Journal of Environmental Sciences, 2017, 54: 298-313. doi: 10.1016/j.jes.2016.08.027 [97] ZHAO P S, DU X, SU J, et al. Aerosol hygroscopicity based on size-resolved chemical compositions in Beijing [J]. Science of the Total Environment, 2020, 716: 137074. doi: 10.1016/j.scitotenv.2020.137074 [98] SUN K, QU Y, WU Q, et al. Chemical characteristics of size-resolved aerosols in winter in Beijing [J]. Journal of Environmental Sciences, 2014, 26(8): 1641-1650. doi: 10.1016/j.jes.2014.06.004 [99] HERNER J D, AW, GAO, et al. Copyright 2005 air & waste management association size and composition distribution of airborne particulate matter in northern California: I—particulate mass, carbon, and water-soluble ions [J]. Journal of the Air & Waste Management Association, 2005, 55(1): 30-51. [100] CHOW J C, WATSON J G, LOWENTHAL D H, et al. Size-resolved aerosol chemical concentrations at rural and urban sites in Central California, USA [J]. Atmospheric Research, 2008, 90(2/3/4): 243-252. [101] DING X X, KONG L D, DU C T, et al. Long-range and regional transported size-resolved atmospheric aerosols during summertime in urban Shanghai [J]. Science of the Total Environment, 2017, 583: 334-343. doi: 10.1016/j.scitotenv.2017.01.073 [102] CHEN S C, TSAI C J, HUANG C Y, et al. Chemical mass closure and chemical characteristics of ambient ultrafine particles and other PM fractions [J]. Aerosol Science and Technology, 2010, 44(9): 713-723. doi: 10.1080/02786826.2010.486385 [103] CASS G R, HUGHES L A, BHAVE P, et al. The chemical composition of atmospheric ultrafine particles [J]. Philosophical Transactions of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 2000, 358(1775): 2581-2592. doi: 10.1098/rsta.2000.0670 [104] CABADA J C, REES S, TAKAHAMA S, et al. Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite [J]. Atmospheric Environment, 2004, 38(20): 3127-3141. doi: 10.1016/j.atmosenv.2004.03.004 [105] SMITH J N, MOORE K F, EISELE F L, et al. Chemical composition of atmospheric nanoparticles during nucleation events in Atlanta [J]. Journal of Geophysical Research Atmospheres, 2005, 110(D22): D22S03. [106] SMITH J N, DUNN M J, VANREKEN T M, et al. Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growth [J]. Geophysical Research Letters, 2008, 35(4): L04808. [107] LAWLER M J, RISSANEN M P, EHN M, et al. Evidence for diverse biogeochemical drivers of boreal forest new particle formation [J]. Geophysical Research Letters, 2018, 45(4): 2038-2046. doi: 10.1002/2017GL076394 [108] LAWLER M J, WHITEHEAD J, O'DOWD C, et al. Composition of 15–85 nm particles in marine air [J]. Atmospheric Chemistry and Physics, 2014, 14(21): 11557-11569. doi: 10.5194/acp-14-11557-2014 [109] BZDEK B R, LAWLER M J, HORAN A J, et al. Molecular constraints on particle growth during new particle formation [J]. Geophysical Research Letters, 2014, 41(16): 6045-6054. doi: 10.1002/2014GL060160 [110] SMITH J N, BARSANTI K C, FRIEDLI H R, et al. Observations of aminium salts in atmospheric nanoparticles and possible climatic implications [J]. PNAS, 2010, 107(15): 6634-6639. doi: 10.1073/pnas.0912127107 [111] HODSHIRE A L, LAWLER M J, ZHAO J, et al. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site [J]. Atmospheric Chemistry and Physics, 2016, 16(14): 9321-9348. doi: 10.5194/acp-16-9321-2016 [112] HAM W A, KLEEMAN M J. Size-resolved source apportionment of carbonaceous particulate matter in urban and rural sites in central California [J]. Atmospheric Environment, 2011, 45(24): 3988-3995. doi: 10.1016/j.atmosenv.2011.04.063 [113] KLEEMAN M J, RIDDLE S G, ROBERT M A, et al. Source apportionment of fine (PM1. 8) and ultrafine (PM0.1) airborne particulate matter during a severe winter pollution episode [J]. Environmental Science & Technology, 2009, 43(2): 272-279. [114] XUE J, XUE W, SOWLAT M H, et al. Seasonal and annual source appointment of carbonaceous ultrafine particulate matter (PM0.1) in polluted California cities [J]. Environmental Science & Technology, 2019, 53(1): 39-49. [115] GLICKER H S, LAWLER M J, ORTEGA J, et al. Chemical composition of ultrafine aerosol particles in central Amazonia during the wet season [J]. Atmospheric Chemistry and Physics, 2019, 19(20): 13053-13066. doi: 10.5194/acp-19-13053-2019 [116] LAWLER M J, DRAPER D C, SMITH J N. Atmospheric fungal nanoparticle bursts [J]. Science Advances, 2020, 6(3): eaax9051. doi: 10.1126/sciadv.aax9051 [117] BRINES M, DALL'OSTO M, BEDDOWS D C S, et al. Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities [J]. Atmospheric Chemistry and Physics, 2015, 15(10): 5929-5945. doi: 10.5194/acp-15-5929-2015 [118] KONTKANEN J, DENG C J, FU Y Y, et al. Size-resolved particle number emissions in Beijing determined from measured particle size distributions [J]. Atmospheric Chemistry and Physics, 2020, 20(19): 11329-11348. doi: 10.5194/acp-20-11329-2020