-
藻类暴发作为世界范围内备受关注的水环境问题,关系到居民观感、水环境安全以及饮用水安全。近年来频发的水华和赤潮现象引发了对于藻类暴发现象析因和治理方法的研究热潮,同时,对于藻华所造成的生态及健康风险的研究也广泛开展。藻源有机质(algal organic matter, AOM)是藻类在其生命周期内代谢渗出或细胞自溶裂解而产生的一类有机物,在水华暴发期间大量存在于水体中,并在天然有机质(natural organic matter, NOM)中占有相当高的比重。对于美国的湖泊采样调查显示,有近40%的湖泊中浮游植物的生物量超过水体总碳库的10%[1],而通过13C标记追踪法发现在贫营养化的湖泊中藻类贡献的DOC可以占到水体总DOC的20%,在富营养化的湖泊中甚至占到40%[2]。AOM的特征与水体中普遍存在的陆生来源NOM之间具有一定差异,比如其亲水组分往往更多、氮含量较高、芳香族含量则较低,这使得其对于水处理工艺的影响相比于NOM中其他组分也有所差异[3-5]。此外,AOM中作为可溶性有机质(dissolved organic matter, DOM)的部分往往具有较NOM中陆源组分更强的亲水性,更难被自来水厂混凝沉淀措施除去[6],从而会在预氧化以及消毒工艺下与氧化剂或氧化生成的活性卤物质反应生成消毒副产物(disinfection by-products, DBPs)。
饮用水的氯化消毒作为公共卫生领域的重要突破,在世界范围内被广泛应用。然而水体中存在的有机质在氯化消毒条件下发生反应生成DBPs,并由于细胞和遗传毒性及致癌风险使得其自上世纪70年代以来受到广泛关注。以三卤甲烷(trihalomethanes, THMs)为例,其中氯仿、一溴二氯甲烷、二溴一氯甲烷和溴仿四种物质浓度总和在美国环保署(United States Environmental Protection Agency, US EPA)的限值为0.08 mg·L−1;而在中国,氯仿和一溴二氯甲烷的限值为0.06 mg·L−1,溴仿和二溴一氯甲烷的限值为0.1 mg·L−1[7]。当前,在水处理过程中又发现了碘代消毒副产物(iodinated disinfection by-products, I-DBPs)、溴代消毒副产物(brominated disinfection by-products, Br-DBPs)以及卤代乙酰胺乙腈为代表的氮质DBPs(nitrogenous disinfection by-products, N-DBPs),这些DBPs由于其更高的细胞和基因毒性应该得到重视[8-11]。
当前已有大量关于AOM的表征和DBPs生成潜能的研究,揭示了AOM与腐殖质和黄腐质类陆源NOM的区别[6, 12-13]。然而,由于AOM结构复杂并且系统的表征方法比较困难,当前对于其表征的研究仍不够全面,难以有效地在AOM的表征和其DBPs生成潜能间建立有效可预测的联系。
本文综述了当前对于AOM的表征及DBPs生成潜能的研究。介绍AOM的来源与表征,并在此基础上分析了以AOM为前体物质的DBPs生成潜能影响因素及机制,总结了基于AOM表征对DBPs生成潜能尝试进行预测的研究现状,最后探讨了当前研究中存在的不足与未来应着重发展的方向。
藻源有机质表征及消毒副产物生成潜能研究进展
Characterization and formation potential of disinfection by-products of algal organic matter: The critical review
-
摘要: 随着当前水华和赤潮现象在世界范围自然水体中的广泛发生,藻源有机质(algal organic matter, AOM)对饮用水安全的影响受到广泛关注。AOM作为有机前体物生成高毒性的消毒副产物(disinfection by-products, DBPs)直接影响饮用水健康。因此,阐明AOM结构特征与DBPs的生成潜能具有十分重要的意义。本文综述了AOM表征方法,并结合其DBPs生成潜能和影响因素,探讨了通过AOM结构表征来预测DBPs生成潜能的可行性;提出未来需结合多种AOM表征方法和多因素分析来尝试预测其DBPs生成潜能。本文对于AOM提取和表征方法的规范化以及水华时期饮用水安全的保障具有参考意义。Abstract: With the current occurrence of water blooms and red tides in natural water bodies around the world, the impact of algal organic matter (AOM) on drinking water safety has received widespread attention. As an organic precursor, AOM generates highly toxic disinfection by-products (DBPs), which directly affect the health risks of drinking water. Therefore, it is of great significance to clarify the structure characterization of AOM and the formation potential of DBPs. This study reviews the AOM characterization methods, combined with its DBPs formation potential and influencing factors, and explores the feasibility of predicting the formation potential of DBPs through AOM structure characterization. In the future, it is necessary to combine a variety of AOM characterization methods and multi-factor analysis to try to predict its DBPs formation potential. It is of reference significance for the standardization of AOM extraction and characterization methods and the guarantee of drinking water safety during the water bloom.
-
表 1 先前研究中AOM各组分不同氧化条件下生成DBPs潜能
Table 1. The potential of AOM components to generate disinfection by-products under different oxidation conditions in previous studies
藻种类
Algae species氧化条件
Oxidation conditions附注
NoteDBPs生成潜能/(μg·mg−1 C)
Disinfection by-product formation potential参考文献
References实际水体 太湖 [NaClO]0=Cl2∶DOC=5∶1; pH=7.0±0.2; 反应时间=7 d; 反应温度=(22±1) ℃ AOM: 59.32 (THM+HAA) [12] Microcystis aeruginosa [DOC]=5 mg·L−1; [NaClO]0=25 mg·L−1; pH=7.0; 反应时间=3 d; 反应温度=(22±1) ℃ EOM: 16 (TCM); 11 (DCAA) [13] Microcystis aeruginosa [DOC]=5 mg·L−1; [NaClO]0=15 mg·L−1; pH=7.0; 反应时间=3 d; 反应温度=(22±1) ℃ IOM: 28 (TCM); 15 (DCAA) [13] Microcystic aeruginosa [NaClO]0=Cl2∶DOC=5∶1; 反应时间=7 d; 反应温度=20 ℃ EOM: 32.44 (THM); 54.58 (HAA)
IOM: 21.46 (THM); 68.29 (HAA)[15] Chlorella vulgaris [NaClO]0=Cl2∶DOC=1.8∶1; pH=8.0±0.2; 反应时间=24 h; 反应温度=(20±1) ℃ EOM: 12.66 (THM); 14.83 (HAA)
IOM: 17.68 (THM); 22.20 (HAA)[18] Scenedesmus quadricauda [NaClO]0=Cl2∶DOC=1.8∶1; pH=8.0±0.2; 反应时间=24 h; 反应温度=(20±1) ℃ EOM: 14.17 (THM); 23.36 (HAA)
IOM: 22.67 (THM); 25.77 (HAA)[18] Phaeodactylum tricornutum [NaClO]0=Cl2∶DOC=1.8∶1; pH=8.0±0.2; 反应时间=24 h; 反应温度=(20±1) ℃ EOM: 124.01 (THM); 146.26 (HAA)
IOM: 75.91 (THM); 91.80 (HAA)[18] Aulacoseira granulata f. curvata. [NaClO]0=Cl2∶DOC=1.8∶1; pH=8.0±0.2; 反应时间=24 h; 反应温度=(20±1) ℃ EOM: 72.91 (THM); 56.80 (HAA)
IOM: 56.92 (THM); 66.30 (HAA)[18] Microcystis aeruginosa [NaClO]0=Cl2∶DOC=1.8∶1; pH=8.0±0.2; 反应时间=24 h; 反应温度=(20±1) ℃ EOM: 21.34 (THM); 28.46 (HAA)
IOM: 24.44 (THM); 30.52 (HAA)[18] Merismopedia sp. [NaClO]0=Cl2∶DOC=1.8∶1; pH=8.0±0.2; 反应时间=24 h; 反应温度=(20±1) ℃ EOM: 54.66 (THM); 62.98 (HAA)
IOM: 62.61 (THM); 65.30 (HAA)[18] Microcystis aeruginosa [DOC]=1.8 mg·L−1; [NaClO]0=12.8 mg·L−1; pH=7; 反应时间=3 d; 反应温度=24 ℃ AOM为藻悬浮液COM为细胞碎片 AOM: 30.5a (TCM); 1.2a (TCNM)
EOM: 14.0a (TCM); 1.5a (TCNM)
IOM: 30.9a (TCM); 1.0a (TCNM)
COM: 8.3a (TCM); 0.5a (TCNM)[19] Cyclotella meneghiniana [DOC]=1.2 mg·L−1; [NaClO]0=12.8 mg·L−1; pH=7; 反应时间=3 d; 反应温度=24 ℃ AOM为藻悬浮液COM为细胞碎片 AOM: 31.8a (TCM); 1.0a (TCNM)
EOM: 11.0a (TCM); 0.4a (TCNM)
IOM: 12.8a (TCM); 0.5a (TCNM)
COM: 13.1a (TCM); 0.5a (TCNM)[19] Chlorella sp. [DOC]=5 mg·L−1; [NaClO]0= Cl2∶DOC=5∶1; pH=(7±0.1); 反应时间=7 d; 反应温度=(25±1) ℃ 指数生长后期 EOM: 5.8 (THM); 15.9 (HAA)
IOM: 9.0 (THM); 40.9 (HAA)
COM: 5.9 (THM); 15.4 (HAA)[20] Chlorella sp. [DOC]=5 mg·L−1; [NaClO]0= Cl2∶DOC=5∶1; pH=(7±0.1); 反应时间=7 d; 反应温度=(25±1) ℃ 衰亡期 EOM: 6.7 (THM); 17.9 (HAA)
IOM: 5.1 (THM); 33.3 (HAA)
COM: 5.7 (THM); 11.4 (HAA)[20] Chlorella sp. [DOC]=5 mg·L−1; [NaClO]0= Cl2∶DOC=5∶1; pH=(7±0.1); 反应时间=7 d; 反应温度=(25±1) ℃ 指数生长后期&
低硝酸盐培养基EOM: 7.0 (THM); 16.8 (HAA)
IOM: 29.4 (THM); 45.1 (HAA)
COM: 12.7 (THM); 13.4 (HAA)[20] Chlorella sp. [DOC]=5 mg·L−1; [NaClO]0= Cl2∶DOC=5∶1; pH=(7±0.1); 反应时间=7 d; 反应温度=(25±1) ℃ 衰亡期&
低硝酸盐培养基EOM: 1.7 (THM); 11.3 (HAA)
IOM: 10.8 (THM); 49.7 (HAA)
COM: 11.9 (THM); 22.9 (HAA)[20] Chaetoceros muelleri [NaClO]0=Cl2∶DOC=5∶1; pH=7; 反应时间=7 d; 反应温度=20 ℃ EOM: 29 (TCM) [25] Oscillatoria prolifera [NaClO]0=Cl2∶DOC=5∶1; pH=7; 反应时间=7 d; 反应温度=20 ℃ EOM: 30 (TCM) [25] Scenedesmus quadricauda [NaClO]0=Cl2∶DOC=5∶1; pH=7; 反应时间=7 d; 反应温度=20 ℃ EOM: 48 (TCM) [25] Chlorella sp. [DOC]=5 mg·L−1; [NaClO]0= Cl2∶DOC=5∶1; pH=7±0.1; 反应时间=7 d; 反应温度=(25±1) ℃ EOM: 6.4 (THM); 17.7 (HAA)
IOM: 7.5 (THM); 31.7 (HAA)[36] Chlorella sp. [DOC]=5 mg·L−1; [NaClO]0=Cl2∶DOC=5∶1; pH=7.0±0.1; 反应时间=7 d; 反应温度=(25±1) ℃ EOM: 10.0 (THM); 20.5 (HAA)
IOM: 12.1 (THM); 25.7 (HAA)[51] Microcystis aeruginosa [游离氯]0=Cl2∶DOC=5∶1; pH=7; 反应时间=7 d; 反应温度=20 ℃ AOM: 42.6 (TCM); 28.7 (HAA); 1.32 (DCAN) [53] Aphanizomenon flos-aquae [游离氯]0=Cl2∶DOC=5∶1; pH=7; 反应时间=7 d; 反应温度=20 ℃ AOM: 56.6 (TCM); 24 (HAA); 0.12 (DCAN) [53] Scenedesmus subspicatus [游离氯]0=Cl2∶DOC=5∶1; pH=7; 反应时间=7 d; 反应温度=20 ℃ AOM: 19.9 (TCM); 35.8 (HAA); 1.10 (DCAN) [53] Asterionella formosa [游离氯]0=Cl2∶DOC=5∶1; pH=7; 反应时间=7 d; 反应温度=20 ℃ AOM: 18.7 (TCM); 25 (HAA); 0.53 (DCAN) [53] Microcystis aeruginosa [DOC]=45.7 mg·L−1; [NaClO]0=20 mg·L−1; 残留氯浓度=3—4 mg·L−1; pH=7; 反应时间=24 h; 反应温度=(25±1) ℃ 指数生长期 AOM: 25.5 (THM); 38.8 (HAA); 7.1 (HAN) [54] Microcystis aeruginosa [DOC]=44.7 mg·L−1; [NaClO]0=20 mg·L−1; 残留氯浓度=3—4 mg·L−1; pH=7; 反应时间=24 h; 反应温度=(25±1) ℃ 衰亡期 AOM: 55.5 (THM); 97.2 (HAA); 25.5 (HAN) [54] Oscillatoria sp. [NaClO]0=Cl2:DOC=10:1; 反应时间=4 d; 反应温度=20 ℃ 藻细胞(AOM)=
藻悬浮液-EOMAOM: 26.1 (TCM); 33.5 (DCAA); 38.5 (TCAA) [55] Chlamydomonas sp. [NaClO]0=Cl2:DOC=10:1; 反应时间=4 d; 反应温度=20 ℃ 藻细胞(AOM)=
藻悬浮液-EOMAOM: 33.9 (TCM); 28.9 (DCAA); 32.9 (TCAA) [55] Nitzschia sp. [NaClO]0=Cl2:DOC=10:1; 反应时间=4 d; 反应温度=20 ℃ 藻细胞(AOM)=
藻悬浮液-EOMAOM: 47.8 (TCM); 24.5 (DCAA); 18.5 (TCAA) [55] Cyclotella sp. 细胞浓度=20000 cells·mL−1; [NaClO]0=Cl2:DOC=14:1=15 mg·L−1; pH=7.0; 反应时间=7 d; 反应温度=20 ℃ AOM由藻细胞
反应AOM: 43a (THM); 85a (HAA)
EOM: 16a (THM); 29a (HAA)[86] Cyclotella sp. 细胞浓度=20000 cells·mL−1; [NaClO]0=Cl2:DOC=14:1=15 mg·L−1; pH=7.0; 反应时间=7 d; 反应温度=20 ℃ 藻细胞经过
1 mg/L预臭氧化处理AOM由藻细胞反应AOM: 51a (TCM); 104a (HAA)
EOM: 24a (TCM); 29a (HAA)[86] Microcystis aeruginosa [DOC]=1.30 mg·L−1; [游离氯]0=5.5 mg·L−1; pH=8; 反应时间:24 h AOM由藻细胞
反应AOM: 12.87 (THM) [87] Microcystis aeruginosa 残留[游离氯]=4.1—13.4 mg·L−1; pH=7.5; 反应时间=7 d; 反应温度=22—24 ℃ IOM: 64 (TCM); 117 (HAA); 64 (TCNM); 1.2 (DCAN) [100] Oscillatoria sp. 残留[游离氯] = 4.1—13.4 mg·L−1; pH=7.5; 反应时间=7 d; 反应温度=22—24 ℃ IOM: 47 (TCM); 121 (HAA); 41 (TCNM); 0.7 (DCAN) [100] Lyngbya sp. 残留[游离氯] = 4.1—13.4 mg·L−1; pH=7.5; 反应时间=7 d; 反应温度=22—24 ℃ IOM: 38 (TCM); 101 (HAA); 40 (TCNM); 1.0 (DCAN) [100] Microcystis aeruginosa [DOC]=5 mg·L−1; [NH2Cl]0=200 μmol·L−1; pH=7; 反应时间=72 h; [I−]0=10 μmol·L−1; 反应温度=(25±1) ℃ AOM: 19.9 (I-THM) [101] Microcystis aeruginosa [DOC]=5 mg·L−1; [NH2Cl]0=200 μmol·L−1; pH=7; 反应时间=72 h; [碘帕醇]0=
10 μmol·L−1; 反应温度=(25±1) ℃AOM: 36.4 (I-THM) [101] Microcystis aeruginosa [DOC]=5 mg·L−1; [NH2Cl]0=200 μmol·L−1; pH=7; 反应时间=72 h; [I−]0=10 μmol/L; [Br−]=5 μmol·L−1; 反应温度=(25±1) ℃ AOM: 33.4 (I-THM) [101] Microcystis aeruginosa [DOC]=5 mg·L−1; [NH2Cl]0=200 μmol·L−1; pH=7; 反应时间=72 h; [碘帕醇]0=
10 μmol·L−1; [Br−]0=5 μmol/L; 反应温度=(25±1) ℃AOM: 107.6 (I-THM) [101] Microcystis aeruginosa [DOC]=5 mg·L−1; [NH2Cl]0=200 μmol·L−1; pH=6; 反应时间=72 h; [碘帕醇]0=
10 μmol·L−1; [Br−]0=5 μmol/L; 反应温度=(25±1) ℃AOM: 125.9 (I-THM) [101] Microcystis aeruginosa [DOC]=5 mg·L−1; [NH2Cl]0=200 μmol·L−1; 反应时间=72 h; [碘帕醇]0=10 μmol·L−1; [Br−]0=5 μmol·L−1; 反应温度=(25±1) ℃ AOM: 8.7 (I-THM) [101] Anabaena flos-aquae 残留[游离氯]>0.5 mg·L−1; pH=7; 反应时间=7 d; 反应温度=21 ℃ AOM由藻细胞
反应AOM: 50 (THM); 78 (HAA)
EOM: 26 (THM); 48 (HAA)[102] Microcystis aeruginosa 残留[游离氯]>0.5 mg·L−1; pH=7; 反应时间=7 d; 反应温度=21 ℃ AOM由藻细胞
反应AOM: 61 (THM); 164 (HAA)
EOM: 28 (THM); 66 (HAA)[102] a:单位为μg·L−1 -
[1] TOMLINSON A, DRIKAS M, BROOKES J D. The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination [J]. Water Research, 2016, 102: 229-240. doi: 10.1016/j.watres.2016.06.024 [2] BADE D L, CARPENTER S R, COLE J J, et al. Sources and fates of dissolved organic carbon in lakes as determined by whole-lake carbon isotope additions [J]. Biogeochemistry, 2007, 84(2): 115-129. doi: 10.1007/s10533-006-9013-y [3] FANG J, MA J, YANG X, et al. Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa [J]. Water Research, 2010, 44(6): 1934-1940. doi: 10.1016/j.watres.2009.11.046 [4] ZHOU S, SHAO Y, GAO N, et al. Removal of microcystis aeruginosa by potassium ferrate (Ⅵ): Impacts on cells integrity, intracellular organic matter release and disinfection by-products formation [J]. Chemical Engineering Journal, 2014, 251: 304-309. doi: 10.1016/j.cej.2014.04.081 [5] HUA L C, CHAO S J, HUANG C. Fluorescent and molecular weight dependence of THM and HAA formation from intracellular algogenic organic matter (IOM) [J]. Water Research, 2019, 148: 231-238. doi: 10.1016/j.watres.2018.10.051 [6] HENDERSON R K, BAKER A, PARSONS S A, et al. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms [J]. Water Research, 2008, 42(13): 3435-3445. doi: 10.1016/j.watres.2007.10.032 [7] MAZHAR M A, KHAN N A, AHMED S, et al. Chlorination disinfection by-products in municipal drinking water - A review [J]. Journal of Cleaner Production, 2020, 273: 123159. [8] PLEWA M J, WAGNER E D, MUELLNER M G, et al. Comparative mammalian cell toxicity of N-DBPs and C-DBPs [J]. ACS Symposium Series, 2008, 995: 36-50. [9] RICHARDSON S D, FASANO F, ELLINGTON J J, et al. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water [J]. Environmental Science & Technology, 2008, 42(22): 8330-8338. [10] PLEWA M J, SIMMONS J E, RICHARDSON S D, et al. Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by-products [J]. Environmental and Molecular Mutagenesis, 2010, 51(8‐9): 871-878. [11] DONG H Y, QIANG Z M, RICHARDSON S D. Formation of iodinated disinfection byproducts (I-DBPs) in drinking water: Emerging concerns and current issues [J]. Accounts of Chemical Research, 2019, 52(4): 896-905. doi: 10.1021/acs.accounts.8b00641 [12] WANG X X, LIU B M, LU M F, et al. Characterization of algal organic matter as precursors for carbonaceous and nitrogenous disinfection byproducts formation: Comparison with natural organic matter [J]. Journal of Environmental Management, 2021, 282: 111951. doi: 10.1016/j.jenvman.2021.111951 [13] FANG J, YANG X, MA J, et al. Characterization of algal organic matter and formation of DBPs from chlor(am)ination [J]. Water Research, 2010, 44(20): 5897-5906. doi: 10.1016/j.watres.2010.07.009 [14] HUA L C, LAI C H, WANG G S, et al. Algogenic organic matter derived DBPs: Precursor characterization, formation, and future perspectives - A review [J]. Critical Reviews in Environmental Science and Technology, 2019, 49(19): 1803-1834. doi: 10.1080/10643389.2019.1586057 [15] LI L, GAO N Y, DENG Y, et al. Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds [J]. Water Research, 2012, 46(4): 1233-1240. doi: 10.1016/j.watres.2011.12.026 [16] PIVOKONSKY M, SAFARIKOVA J, BARESOVA M, et al. A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga [J]. Water Research, 2014, 51: 37-46. doi: 10.1016/j.watres.2013.12.022 [17] LI G, REN Y, GU L, et al. Migration and transformation of nitrogen in algae organic matter (AOM) during the growth of Microcystis aeruginous [J]. Desalination and Water Treatment, 2018, 111(APRa): 79-87. [18] ZHAO Z M, SUN W J, RAY A K, et al. Coagulation and disinfection by-products formation potential of extracellular and intracellular matter of algae and cyanobacteria [J]. Chemosphere, 2020, 245: 125669. doi: 10.1016/j.chemosphere.2019.125669 [19] LIAO X, LIU J, YANG M, et al. Evaluation of disinfection by-product formation potential (DBPFP) during chlorination of two algae species — Blue-green Microcystis aeruginosa and diatom Cyclotella meneghiniana [J]. Science of the Total Environment, 2015, 532: 540-547. doi: 10.1016/j.scitotenv.2015.06.038 [20] HUA L C, LIN J L, CHAO S J, et al. Probing algogenic organic matter (AOM) by size-exclusion chromatography to predict AOM-derived disinfection by-product formation [J]. The Science of the Total Environment, 2018, 645: 71-78. doi: 10.1016/j.scitotenv.2018.07.100 [21] MATILAINEN A, GJESSING E T, LAHTINEN T, et al. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment [J]. Chemosphere, 2011, 83(11): 1431-1442. doi: 10.1016/j.chemosphere.2011.01.018 [22] EDZWALD J K. Coagulation in drinking-water treatment - particles, organics and coagulants [J]. Water Science and Technology, 1993, 27(11): 21-35. doi: 10.2166/wst.1993.0261 [23] EDZWALD J K, TOBIASON J E. Enhanced coagulation: US requirements and a broader view [J]. Water Science and Technology, 1999, 40(9): 63-70. doi: 10.2166/wst.1999.0444 [24] ZHOU S Q, SHAO Y S, GAO N Y, et al. Characterization of algal organic matters of Microcystis aeruginosa: Biodegradability, DBP formation and membrane fouling potential [J]. Water Research, 2014, 52: 199-207. doi: 10.1016/j.watres.2014.01.002 [25] NGUYEN M L, WESTERHOFF P, BAKER L, et al. Characteristics and reactivity of algae-produced dissolved organic carbon [J]. Journal of Environmental Engineering, 2005, 131(11): 1574-1582. doi: 10.1061/(ASCE)0733-9372(2005)131:11(1574) [26] HUANG W W, CHU H Q, DONG B Z. Characteristics of algogenic organic matter generated under different nutrient conditions and subsequent impact on microfiltration membrane fouling [J]. Desalination, 2012, 293: 104-111. doi: 10.1016/j.desal.2012.03.001 [27] BOSE P, RECKHOW D A. The effect of ozonation on natural organic matter removal by alum coagulation [J]. Water Research, 2007, 41(7): 1516-1524. doi: 10.1016/j.watres.2006.12.027 [28] WANG Z, WU Z, TANG S. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor [J]. Water Research, 2009, 43(9): 2504-2512. doi: 10.1016/j.watres.2009.02.026 [29] WANG Z W, WU Z C, TANG S J. Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy [J]. Water Research, 2009, 43(6): 1533-1540. doi: 10.1016/j.watres.2008.12.033 [30] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence Excitation−Emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [31] LI L, WANG Y, ZHANG W, et al. New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: A review [J]. Chemical Engineering Journal, 2020, 381: 122676. doi: 10.1016/j.cej.2019.122676 [32] PERSSON T, WEDBORG M. Multivariate evaluation of the fluorescence of aquatic organic matter [J]. Analytica Chimica Acta, 2001, 434(2): 179-192. doi: 10.1016/S0003-2670(01)00812-1 [33] MURPHY K R, STEDMON C A, GRAEBER D, et al. Fluorescence spectroscopy and multi-way techniques. PARAFAC [J]. Analytical Methods, 2013, 5(23): 6557-6566. doi: 10.1039/c3ay41160e [34] ZHOU J, WANG J J, BAUDON A, et al. Improved fluorescence excitation-emission matrix regional integration to quantify spectra for fluorescent dissolved organic matter [J]. Journal of Environmental Quality, 2013, 42(3): 925-930. doi: 10.2134/jeq2012.0460 [35] PIVOKONSKY M, NACERADSKA J, KOPECKA I, et al. The impact of algogenic organic matter on water treatment plant operation and water quality: A review [J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4): 291-335. doi: 10.1080/10643389.2015.1087369 [36] HUA L C, LIN J L, SYUE M Y, et al. Optical properties of algogenic organic matter within the growth period of Chlorella sp and predicting their disinfection by-product formation [J]. Science of the Total Environment, 2018, 621: 1467-1474. doi: 10.1016/j.scitotenv.2017.10.082 [37] HUA G H, RECKHOW D A. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size [J]. Environmental Science & Technology, 2007, 41(9): 3309-3315. [38] CHOW C W K, FABRIS R, LEEUWEN J V, et al. Assessing natural organic matter treatability using high performance size exclusion chromatography [J]. Environmental Science & Technology, 2008, 42(17): 6683-6689. [39] LAI C H, CHOU Y C, YEH H H. Assessing the interaction effects of coagulation pretreatment and membrane material on UF fouling control using HPSEC combined with peak-fitting [J]. Journal of Membrane Science, 2015, 474: 207-214. doi: 10.1016/j.memsci.2014.09.052 [40] ZHOU S Q, ZHU S M, SHAO Y S, et al. Characteristics of C-, N-DBPs formation from algal organic matter: Role of molecular weight fractions and impacts of pre-ozonation [J]. Water Research, 2015, 72: 381-390. doi: 10.1016/j.watres.2014.11.023 [41] LI L, WANG Z M, RIETVELD L C, et al. Comparison of the effects of extracellular and intracellular organic matter extracted from Microcystis aeruginosa on ultrafiltration membrane fouling: Dynamics and mechanisms [J]. Environmental Science & Technology, 2014, 48(24): 14549-14557. [42] BIN L, QU F, LIANG H, et al. Algae-laden water treatment using ultrafiltration: Individual and combined fouling effects of cells, debris, extracellular and intracellular organic matter [J]. Journal of Membrane Science, 2017, 528: 178-186. doi: 10.1016/j.memsci.2017.01.032 [43] PIVOKONSKY M, SAFARIKOVA J, BUBAKOVA P, et al. Coagulation of peptides and proteins produced by Microcystis aeruginosa: Interaction mechanisms and the effect of Fe-peptide/protein complexes formation [J]. Water Research, 2012, 46(17): 5583-5590. doi: 10.1016/j.watres.2012.07.040 [44] QU F S, LIANG H, ZHOU J, et al. Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from Microcystis aeruginosa: Effects of membrane pore size and surface hydrophobicity [J]. Journal of Membrane Science, 2014, 449: 58-66. doi: 10.1016/j.memsci.2013.07.070 [45] SAFARIKOVA J, BARESOVA M, PIVOKONSKY M, et al. Influence of peptides and proteins produced by cyanobacterium Microcystis aeruginosa on the coagulation of turbid waters [J]. Separation and Purification Technology, 2013, 118: 49-57. doi: 10.1016/j.seppur.2013.06.049 [46] HENDERSON R K, PARSONS S A, JEFFERSON B. The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae [J]. Water Research, 2010, 44(12): 3617-3624. doi: 10.1016/j.watres.2010.04.016 [47] CHU H, YU H, TAN X, et al. Extraction procedure optimization and the characteristics of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) from Chlorella pyrenoidosa [J]. Colloids and Surfaces B-Biointerfaces, 2015, 125: 238-246. doi: 10.1016/j.colsurfb.2014.08.007 [48] ZAOURI N, GUTIERREZ L, DRAMAS L, et al. Interfacial interactions between Skeletonema costatum extracellular organic matter and metal oxides: Implications for ceramic membrane filtration [J]. Water Research, 2017, 116: 194-202. doi: 10.1016/j.watres.2017.03.034 [49] MAO J D, CORY R M, MCKNIGHT D M, et al. Characterization of a nitrogen-rich fulvic acid and its precursor algae from solid state NMR [J]. Organic Geochemistry, 2007, 38(8): 1277-1292. doi: 10.1016/j.orggeochem.2007.04.005 [50] AKHTER M, DUTTA MAJUMDAR R, FORTIER-MCGILL B, et al. Identification of aquatically available carbon from algae through solution-state NMR of whole ^13C-labelled cells [J]. Analytical and Bioanalytical Chemistry, 2016, 408(16): 4357-4370. doi: 10.1007/s00216-016-9534-8 [51] HUA L-C, LIN J-L, CHEN P-C, et al. Chemical structures of extra- and intra-cellular algogenic organic matters as precursors to the formation of carbonaceous disinfection byproducts [J]. Chemical Engineering Journal, 2017, 328: 1022-1030. doi: 10.1016/j.cej.2017.07.123 [52] RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research [J]. Mutation Research-Reviews in Mutation Research, 2007, 636(1-3): 178-242. doi: 10.1016/j.mrrev.2007.09.001 [53] GOSLAN E H, SEIGLE C, PURCELL D, et al. Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter [J]. Chemosphere, 2017, 170: 1-9. doi: 10.1016/j.chemosphere.2016.11.148 [54] PARK K Y, CHOI S Y, AHN S K, et al. Disinfection by-product formation potential of algogenic organic matter from Microcystis aeruginosa: Effects of growth phases and powdered activated carbon adsorption [J]. Journal of Hazardous Materials, 2021, 408: 124864. doi: 10.1016/j.jhazmat.2020.124864 [55] HONG H C, MAZUMDER A, WONG M H, et al. Yield of trihalomethanes and haloacetic acids upon chlorinating algal cells, and its prediction via algal cellular biochemical composition [J]. Water Research, 2008, 42(20): 4941-4948. doi: 10.1016/j.watres.2008.09.019 [56] NORWOOD D L, JOHNSON J D, CHRISTMAN R F, et al. Reactions of chlorine with selected aromatic models of aquatic humic material [J]. Environmental Science & Technology, 1980, 14(2): 187-190. [57] SCULLY F E, HOWELL G D, KRAVITZ R, et al. Proteins in natural waters and their relation to the formation of chlorinated organics during water disinfection [J]. Environmental Science & Technology, 1988, 22(5): 537-542. [58] 朱广伟, 金颖薇, 任杰, 等. 太湖流域水库型水源地硅藻水华发生特征及对策分析 [J]. 湖泊科学, 2016, 28(1): 9-21. doi: 10.18307/2016.0102 ZHU G W, JIN Y W, REN J, et al. Characteristics of diatom blooms in a reservoir-water supply area and the countermeasures in Taihu Basin, China [J]. Journal of Lake Science, 2016, 28(1): 9-21(in Chinese). doi: 10.18307/2016.0102
[59] DIEHL A C, SPEITEL G E, SYMONS J M, et al. DBP formation during chloramination [J]. Journal American Water Works Association, 2000, 92(6): 76-90. doi: 10.1002/j.1551-8833.2000.tb08961.x [60] GU X, ZHAI H Y, ZHOU Y N. Formation of disinfection byproducts from algal organic matter exposed to monochloramine: Effects of monochloramine dosages, pH, and bromide concentrations [J]. Water, Air, Soil Pollution, 2020, 231(5): 207. doi: 10.1007/s11270-020-04597-9 [61] BICHSEL Y, von GUNTEN U. Formation of iodo-trihalomethanes during disinfection and oxidation of iodide-containing waters [J]. Environmental Science & Technology, 2000, 34(13): 2784-2791. [62] DUIRK S E, LINDELL C, CORNELISON C C, et al. Formation of toxic iodinated disinfection by-products from compounds used in medical imaging [J]. Environmental Science & Technology, 2011, 45(16): 6845-6854. [63] LIU C, ERSAN M S, PLEWA M J, et al. Formation of iodinated trihalomethanes and noniodinated disinfection byproducts during chloramination of algal organic matter extracted from Microcystis aeruginosa [J]. Water Research, 2019, 162: 115-126. doi: 10.1016/j.watres.2019.06.053 [64] WAGNER E D, PLEWA M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review [J]. Journal of Environmental Sciences (China), 2017, 58: 64-76. doi: 10.1016/j.jes.2017.04.021 [65] GAO Z C, LIN Y L, XU B, et al. Effect of bromide and iodide on halogenated by-product formation from different organic precursors during UV/chlorine processes [J]. Water Research, 2020, 182: 116035. doi: 10.1016/j.watres.2020.116035 [66] MORAN J E, OKTAY S D, SANTSCHI P H. Sources of iodine and iodine 129 in rivers [J]. Water Resources Research, 2002, 38(8): 24-1-24-10. doi: 10.1029/2001WR000622 [67] 徐志法, 赵卫佳, 张睿, 等. 饮用水厂消毒副产物有机前驱物及碘代三卤甲烷分布调查 [J]. 广东化工, 2017, 44(4): 7-9, 11. doi: 10.3969/j.issn.1007-1865.2017.04.003 XU Z F, ZHAO W J, ZHANG R, et al. The distribution of disinfection by-products organic precursors and iodinated trihalomethanes in drinking water treatment plant [J]. Guangdong Chemical Industry, 2017, 44(4): 7-9, 11(in Chinese). doi: 10.3969/j.issn.1007-1865.2017.04.003
[68] ZEMANN M, WOLF L, PÖSCHKO A, et al. Sources and processes affecting the spatio-temporal distribution of pharmaceuticals and X-ray contrast media in the water resources of the Lower Jordan Valley, Jordan [J]. The Science of the Total Environment, 2014, 488/489: 100-114. doi: 10.1016/j.scitotenv.2014.04.063 [69] 徐志法, 赵卫佳, 张睿, 等. 太湖部分地区碘代三卤甲烷分布特征及其与藻类有机物的关系初探 [J]. 环境化学, 2017, 36(12): 2541-2549. doi: 10.7524/j.issn.0254-6108.2017012007 XU Z F, ZHAO W J, ZHANG R, et al. Distribution of iodinated trihalomethanes in part of Taihu Lake and correlation analysis between iodinated trihalomethanes and algal organic matter [J]. Environmental Chemistry, 2017, 36(12): 2541-2549(in Chinese). doi: 10.7524/j.issn.0254-6108.2017012007
[70] XU Z, LI X, HU X, et al. Distribution and relevance of iodinated X-ray contrast media and iodinated trihalomethanes in an aquatic environment [J]. Chemosphere, 2017, 184: 253-260. doi: 10.1016/j.chemosphere.2017.05.048 [71] WESTERHOFF P, CHAO P, MASH H. Reactivity of natural organic matter with aqueous chlorine and bromine [J]. Water Research, 2004, 38(6): 1502-1513. doi: 10.1016/j.watres.2003.12.014 [72] LIU C, ERSAN M S, PLEWA M J, et al. Formation of regulated and unregulated disinfection byproducts during chlorination of algal organic matter extracted from freshwater and marine algae [J]. Water Research, 2018, 142: 313-324. doi: 10.1016/j.watres.2018.05.051 [73] BICHSEL Y, von GUNTEN U. Oxidation of iodide and hypoiodous acid in the disinfection of natural waters [J]. Environmental Science & Technology, 1999, 33(22): 4040-4045. [74] YANG Y, KOMAKI Y, KIMURA S Y, et al. Toxic impact of bromide and iodide on drinking water disinfected with chlorine or chloramines [J]. Environmental Science & Technology, 2014, 48(20): 12362-12369. [75] ERSAN M S, LIU C, AMY G, et al. Chloramination of iodide-containing waters: Formation of iodinated disinfection byproducts and toxicity correlation with total organic halides of treated waters [J]. The Science of the Total Environment, 2019, 697: 134142. doi: 10.1016/j.scitotenv.2019.134142 [76] MCLACHLAN J, CRAIGIE J S. Bromide, a substitute for chloride in a marine algal medium [J]. Nature, 1967, 214(5088): 604-605. doi: 10.1038/214604a0 [77] QIAN Y, CHEN Y, HU Y, et al. Formation and control of C- and N-DBPs during disinfection of filter backwash and sedimentation sludge water in drinking water treatment [J]. Water Research, 2021, 194: 116964. doi: 10.1016/j.watres.2021.116964 [78] FANG C, HU J L, CHU W H, et al. Formation of CX3R-type disinfection by-products during the chlorination of protein: The effect of enzymolysis [J]. Chemical Engineering Journal, 2019, 363: 309-317. doi: 10.1016/j.cej.2019.01.143 [79] LIANG L, SINGER P C. Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water [J]. Environmental Science & Technology, 2003, 37(13): 2920-2928. [80] DONG F, LIN Q, DENG J, et al. Impact of UV irradiation on Chlorella sp. damage and disinfection byproducts formation during subsequent chlorination of algal organic matter [J]. Science of the Total Environment, 2019, 671(JUNa25): 519-527. [81] CHOWDHURY S, CHAMPAGNE P, MCLELLAN P J. Models for predicting disinfection byproduct (DBP) formation in drinking waters: A chronological review [J]. Science of the Total Environment, 2009, 407(14): 4189-4206. doi: 10.1016/j.scitotenv.2009.04.006 [82] LIU Z, XU B, ZHANG T Y, et al. Formation of disinfection by-products in a UV-activated mixed chlorine/chloramine system [J]. Journal of Hazardous Materials, 2021, 407: 124373. doi: 10.1016/j.jhazmat.2020.124373 [83] DONG F L, LIN Q F, LI C, et al. Impacts of pre-oxidation on the formation of disinfection byproducts from algal organic matter in subsequent chlor(am)ination: A review [J]. The Science of the Total Environment, 2021, 754: 141955. doi: 10.1016/j.scitotenv.2020.141955 [84] XIE P C, MA J, FANG J Y, et al. Comparison of permanganate preoxidation and preozonation on algae containing water: Cell integrity, characteristics, and chlorinated disinfection byproduct formation [J]. Environmental Science & Technology, 2013, 47(24): 14051-14061. [85] 高乃云, 沈嘉钰, 黎雷, 等. 高锰酸钾灭活铜绿微囊藻及胞内毒素释放机制 [J]. 同济大学学报(自然科学版), 2014, 42(5): 721-729. doi: 10.3969/j.issn.0253-374x.2014.05.010 GAO N Y, SHEN J Y, LI L, et al. Inactivation of Microcystis aeruginosa by permanganate and release kinetics of intracellular microcystin [J]. Journal of Tongji University (Natural Science), 2014, 42(5): 721-729(in Chinese). doi: 10.3969/j.issn.0253-374x.2014.05.010
[86] PLUMMER J D, EDZWALD J K. Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production [J]. Environmental Science & Technology, 2001, 35(18): 3661-3668. [87] ZAMYADI A, FAN Y, DALY R I, et al. Chlorination of Microcystis aeruginosa: Toxin release and oxidation, cellular chlorine demand and disinfection by-products formation [J]. Water Research, 2013, 47(3): 1080-1090. doi: 10.1016/j.watres.2012.11.031 [88] HUO X C, CHANG D W, TSENG J H, et al. Exposure of Microcystis aeruginosa to hydrogen peroxide under light: Kinetic modeling of cell rupture and simultaneous microcystin degradation [J]. Environmental Science & Technology, 2015, 49(9): 5502-5510. [89] QIAO R P, LI N, QI X H, et al. Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide [J]. Toxicon, 2005, 45(6): 745-752. doi: 10.1016/j.toxicon.2005.01.012 [90] CHEN S, DENG J, LI L, et al. Evaluation of disinfection by-product formation during chlor(am)ination from algal organic matter after UV irradiation [J]. Environmental Science and Pollution Research, 2018, 25(6): 5994-6002. doi: 10.1007/s11356-017-0918-x [91] RECKHOW D A, LINDEN K G, KIM J, et al. Effect of UV treatment on DBP formation [J]. American Water Works Association, 2010, 102(6): 100-113. doi: 10.1002/j.1551-8833.2010.tb10134.x [92] CHEN Y Q, BAI F, LI Z Y, et al. UV-assisted chlorination of algae-laden water: Cell lysis and disinfection byproducts formation [J]. Chemical Engineering Journal, 2020, 383: 123165. [93] JUNG C W, SON H J. The relationship between disinfection by-products formation and characteristics of natural organic matter in raw water [J]. Korean Journal of Chemical Engineering, 2008, 25(4): 714-720. doi: 10.1007/s11814-008-0117-z [94] 高乃云, 朱明秋, 周石庆, 等. 藻源型有机物氯化消毒副产物的生成特性 [J]. 华南理工大学学报(自然科学版), 2014, 42(5): 48-53. GAO N Y, ZHU M Q, ZHOU S Q, et al. Characteristics of disinfection by-products formation from algae organic matters in the process of chlorination [J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(5): 48-53(in Chinese).
[95] LUI Y S, HONG H C, ZHENG G J S, et al. Fractionated algal organic materials as precursors of disinfection by-products and mutagens upon chlorination [J]. Journal of Hazardous Materials, 2012, 209/210: 278-284. doi: 10.1016/j.jhazmat.2012.01.023 [96] SADIQ R, RODRIGUEZ M J. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: A review [J]. The Science of the Total Environment, 2004, 321(1/2/3): 21-46. [97] SOHN J, AMY G, CHO J, et al. Disinfectant decay and disinfection by-products formation model development: Chlorination and ozonation by-products [J]. Water Research, 2004, 38(10): 2461-2478. doi: 10.1016/j.watres.2004.03.009 [98] BEAUCHAMP N, LAFLAMME O, SIMARD S, et al. Relationships between DBP concentrations and differential UV absorbance in full-scale conditions [J]. Water Research, 2018, 131: 110-121. doi: 10.1016/j.watres.2017.12.031 [99] MA C X, XU H Z, ZHANG L, et al. Use of fluorescence excitation-emission matrices coupled with parallel factor analysis to monitor C- and N-DBPs formation in drinking water recovered from cyanobacteria-laden sludge dewatering [J]. the Science of the Total Environment, 2018, 640/641(NOVa1): 609-618. [100] WERT E C, ROSARIO-ORTIZ F L. Intracellular organic matter from cyanobacteria as a precursor for carbonaceous and nitrogenous disinfection byproducts [J]. Environmental Science & Technology, 2013, 47(12): 6332-6340. [101] WANG Z, XU B, LIN Y L, et al. A comparison of iodinated trihalomethane formation from iodide and iopamidol in the presence of organic precursors during monochloramination [J]. Chemical Engineering Journal, 2014, 257: 292-298. doi: 10.1016/j.cej.2014.07.084 [102] HUANG J, GRAHAM N, TEMPLETON M R, et al. A comparison of the role of two blue–green algae in THM and HAA formation [J]. Water Research, 2009, 43(12): 3009-3018. doi: 10.1016/j.watres.2009.04.029