-
胞外电子传递(extracellular electron transfer,EET)是指微生物胞内代谢过程所产生的电子传递至细胞外的电子受体,或是细胞外的电子供体将电子传递至胞内进行代谢的过程。这种胞外呼吸的方式最初是通过研究异化金属还原菌还原铁、锰矿物而发现的[1-2]。电子流动是微生物新陈代谢的固有特征,具有胞外电子转移能力的微生物称为电活性微生物(electroactive microorganisms)[3]。EET是元素生物地球化学循环与能量交换的重要驱动力,其研究受到广泛关注[4]。EET过程结合了物质流与能量流,可用于生物能源的制备以及废弃物的资源化利用[5-7],这使得电活性微生物不仅深刻影响地球化学循环,也具有了生态修复、工业生产和资源利用上的巨大潜力。
随着人们对于胞外电子传递过程的研究日渐深入,电活性微生物的胞外电子传递反应机制被逐渐认识。图1显示了微生物向胞外传递电子的几种方式。直接电子传递(direct electron transfer)在微生物细胞与胞外电子受体直接接触的前提下,微生物通过(a)细胞膜上的活性蛋白(如细胞色素c)或(b)生成纳米导线(导电菌毛)的方式将电子传递给胞外受体[8]。直接电子传递发生的前提是微生物电子传递部位与电子受体的距离在几个纳米范围。间接电子传递(mediated electron transfer)指微生物自身分泌(c)电子中介体(electron shuttles),或利用外源添加电子中介体实现胞外呼吸[8]。电子中介体也被称为氧化还原介体、电子穿梭体,在反应中充当电子载体,其特点是可在微生物与电子受体之间往返且可被循环利用。电子中介体在环境中具有扩散迁移能力,因此可以突破微生物与胞外电子受体间距离的限制。一些难溶或不溶物质具有赝电容性(d),可以储存来自微生物的电子,当环境条件变化或与氧化性物质接触,电子可重新释放,传递至最终电子受体[9]。
胞外电子传递过程涉及电子供体、受体和电子中介体,这些物质涵盖有机物和无机物,其中不乏难溶于水的物质。同时,一些通常被归类为“可溶性”的底物也可能在细胞表面被呼吸转化。原因是:(1)底物在其存在环境中可能与固体表面作用,实际上不溶;例如二甲基亚砜虽然可溶于水,但在海洋环境中常与悬浮颗粒物结合,而难以进入微生物胞内代谢,希瓦氏菌可通过外膜蛋白进行胞外电子传递以利用二甲基亚砜[10];(2)底物虽然可溶但分子量较大,无法通过细胞膜[11];(3)底物本身或其代谢副产物有毒[12]。例如在地下水、泥炭地、沉积物等多相环境中,固相碳材料、矿物、腐殖质、高分子聚合物和难溶有机污染物等物质无法进入细胞质膜和周质空间。因此,本文通过介绍胞外电子传递过程中典型的固体无机物-微生物界面和难溶有机物-微生物界面,总结物质表面性质对微生物EET途径和效率的影响,有助于更好的利用微生物胞外电子传递过程来进行污染修复及资源回收。
微生物的胞外电子传递界面
The interface of microbial extracellular electron transfer
-
摘要: 微生物胞外电子传递(Extracellular electron transfer,EET)在地球生物化学循环、生态修复、废水处理以及资源再生等领域发挥着重要作用。自然界中胞外电子传递的界面性质各异,导致反应速率和效率明显不同。本文介绍了胞外电子传递过程涉及的无机物-微生物界面和有机物-微生物界面,总结了反应物表面性质与微生物的互作规律:反应物表面的氧化还原活性决定其电子接受/释放能力,从根本上影响胞外电子传递发生的可能性;微生物与反应物之间的氧化还原电势差决定了电子传递方向;表面电荷、润湿性、表面粗糙度、孔隙度和生物相容性综合影响微生物在固体表面的吸附、粘附、生物膜生长及活性,从而影响胞外电子传递的效率;导电性影响电子传输速率。本综述旨在通过对比各种反应界面,认识不同反应物界面间的共性与特性。这些认识有助于系统理解微生物胞外电子传递与环境的关系,为其在工程中的应用提供理论指导。Abstract: Microbial extracellular electron transfer (EET) plays an important role in the fields of earth biochemical cycle, ecological restoration, wastewater treatment and resource regeneration. In nature, the interface properties of extracellular electron transfer are different, resulting in significantly different reaction rates and efficiencies. In this article, we introduce the microbe-inorganic substance interface and the microbe-organic substance interface involved in the process of extracellular electron transfer, and summarize the interaction rules between surface properties and microorganisms. The redox activities of reactants determine its electron accepting and releasing abilities, and fundamentally affects the possibility of extracellular electron transfer. The redox potential difference between the microorganism and reactants determines the direction of electron transfer. The surface charge, wettability, surface roughness, porosity and biocompatibility of the solid surface comprehensively affect the adsorption, adhesion, biofilm growth and activity of microorganisms on the solid-phase surface, thereby affecting the efficiency of extracellular electron transfer. The conductivity of the solid interface affects the electron transfer rate. This review aims to understand the commonalities and characteristics of different reaction interfaces by comparing various reaction interfaces. These understandings help to systematically understand the relationship between the EET behavior of microorganisms and environment, provide theoretical guidance for its application in engineering.
-
表 1 常见铁矿物的表面物理性质
Table 1. Surface properties of common iron minerals
矿物
Mineral化学式
Chemical formulaBET比表面积/(m2·g−1)
BET specific surface area导带电位[53] /(V vs. SHE)
Conduction band potential等电点
Isoelectric point针铁矿Goethite α-FeOOH 11—50[54− 55] −0.02 7.5—8.2[54] 赤铁矿Hematite α-Fe2O3 9—40[55− 56] −0.01 8.4—8.5[56] 磁铁矿Magnetite Fe3O4 6[55] +0.48 6.4—6.8 [55] 纤铁矿Lepidocrocite γ- FeOOH 25[57] — 7—10 [57] 水铁矿Ferrihydrite — 30—300[58] −0.1—+0.1[59] 8.0[58] 磁赤铁矿Maghemite γ-Fe2O3 — + 0.15 — -
[1] LOVLEY D R, PHILLIPS E J P. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese [J]. Applied & Environmental Microbiology, 1988, 54(6): 1472-1480. [2] MYERS C R , NEALSON K H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor [J]. Science, 1988, 240(4857): 1319-1321. doi: 10.1126/science.240.4857.1319 [3] XIAO X , YU H Q. Molecular mechanisms of microbial transmembrane electron transfer of electrochemically active bacteria [J]. Current Opinion in Chemical Biology, 2020, 59: 104-110. doi: 10.1016/j.cbpa.2020.06.006 [4] LOGAN B E, ROSSI R, RAGAB A, et al. Electroactive microorganisms in bioelectrochemical systems [J]. Nature Reviews. Microbiology, 2019, 17(5): 307-319. doi: 10.1038/s41579-019-0173-x [5] SHI L, DONG H, REGUERA G, et al. Extracellular electron transfer mechanisms between microorganisms and minerals [J]. Nature Reviews Microbiology, 2016, 14(10): 651-662. doi: 10.1038/nrmicro.2016.93 [6] LOGAN B E, RABAEY K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies [J]. Science, 2012, 337(6095): 686-690. doi: 10.1126/science.1217412 [7] ZHENG Y, WANG H, LIU Y, et al. Methane-dependent mineral reduction by aerobic methanotrophs under hypoxia [J]. Environmental Science & Technology Letters, 2020, 7(8): 606-612. [8] LOVLEY D R. Electromicrobiology [J]. Annual Review of Microbiology, 2012, 66: 391-409. doi: 10.1146/annurev-micro-092611-150104 [9] KAPPLER A, BRYCE C, MANSOR M, et al. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 2021, 19: 360-374. [10] GRALNICK J A, VALI H, LIES D P, et al. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(12): 4669-4674. doi: 10.1073/pnas.0505959103 [11] WOOD J M, WANG H K. Microbial resistance to heavy metals [J]. Environmental Science & Technology, 1983, 17(12): 582-590. [12] LUAN F B, BURGOS W D, XIE L, et al. Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN32 [J]. Environmental Science & Technology, 2010, 44(1): 184-190. [13] LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: Methodology and technology [J]. Environmental Science & Technology, 2006, 40(17): 5181-5192. [14] JIANG D , LI B. Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): A design suitable for large-scale wastewater treatment processes [J]. Biochemical Engineering Journal, 2009, 47(1-3): 31-37. doi: 10.1016/j.bej.2009.06.013 [15] ZHANG P, ZHENG S L, LIU J, et al. Surface properties of activated sludge-derived biochar determine the facilitating effects on Geobacter co-cultures [J]. Water Research, 2018, 142: 441-451. doi: 10.1016/j.watres.2018.05.058 [16] ANTAL M J , GRONLI M. The art, science, and technology of charcoal production [J]. Industrial & Engineering Chemistry Research, 2003, 42(8): 1619-1640. [17] QIU L, DENG Y F, WANG F, et al. A review on biochar-mediated anaerobic digestion with enhanced methane recovery [J]. Renewable & Sustainable Energy Reviews, 2019, 115: 14. [18] SUN T R, LEVIN B D A, GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon [J]. Nature Communications, 2017, 8: 14873. doi: 10.1038/ncomms14873 [19] CHACÓN F J, CAYUELA M L, ROIG A, et al. Understanding, measuring and tuning the electrochemical properties of biochar for environmental applications [J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(4): 695-715. doi: 10.1007/s11157-017-9450-1 [20] KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals [J]. Environmental Science & Technology Letters, 2014, 1(8): 339-344. [21] XU X, HUANG H, ZHANG Y, et al. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(VI) during its sorption [J]. Environmental Pollution, 2019, 244: 423-430. doi: 10.1016/j.envpol.2018.10.068 [22] SCHIEVANO A, BERENGUER R, GOGLIO A, et al. Electroactive biochar for large-scale environmental applications of microbial electrochemistry [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18198-18212. [23] YAO Y, GAO B, INYANG M, et al. Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential [J]. Bioresource Technology, 2011, 102(10): 6273-6278. doi: 10.1016/j.biortech.2011.03.006 [24] CHAUDHURI, S K and LOVLEY D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells [J]. Nature Biotechnology, 2003, 21(10): 1229-1232. doi: 10.1038/nbt867 [25] YU L P, WANG Y Q, YUAN Y, et al. Biochar as electron acceptor for microbial extracellular respiration [J]. Geomicrobiology Journal, 2016, 33(6): 530-536. doi: 10.1080/01490451.2015.1062060 [26] GASIOROWSKI J Z, MURPHY C J, NEALEY P F. Biophysical cues and cell behavior: the big impact of little things [J]. Annual Review of Biomedical Engineering, 2013, 15: 155-176. doi: 10.1146/annurev-bioeng-071811-150021 [27] CHEN W Q, WENG S N, ZHANG F, et al. Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies [J]. ACS Nano, 2013, 7(1): 566-575. doi: 10.1021/nn304719q [28] YAN F F, HE Y R, WU C, et al. Carbon nanotubes alter the electron flow route and enhance nitrobenzene reduction by Shewanella oneidensis MR-1 [J]. Environmental Science & Technology Letters, 2014, 1(1): 128-132. [29] WANG J X, LI M X, SHI Z J, et al. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes [J]. Analytical Chemistry, 2002, 74(9): 1993-1997. doi: 10.1021/ac010978u [30] XIE X, HU L B, PASTA M, et al. Three-dimensional carbon Nanotube−Textile anode for high-performance microbial fuel cells [J]. Nano Letters, 2011, 11(1): 291-296. doi: 10.1021/nl103905t [31] XIE X, MENG Y, HU L B, et al. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes [J]. Energy Environ. Sci., 2012, 5(1): 5265-5270. doi: 10.1039/C1EE02122B [32] XIE X, ZHAO W T, LEE H R, et al. Enhancing the nanomaterial bio-interface by addition of mesoscale secondary features: Crinkling of carbon nanotube films to create subcellular ridges [J]. ACS Nano, 2014, 8(12): 11958-11965. doi: 10.1021/nn504898p [33] LI Z, XIONG W, DE VILLERS B J T, et al. Extracellular electron transfer across bio-nano interfaces for CO2 electroreduction [J]. Nanoscale, 2021, 13(2): 1093-1102. doi: 10.1039/D0NR07611B [34] WANG G M, QIAN F, SALTIKOV C W, et al. Microbial reduction of graphene oxide by Shewanella [J]. Nano Research, 2011, 4(6): 563-570. doi: 10.1007/s12274-011-0112-2 [35] IGARASHI K, MIYAKO E, KATO S. Direct interspecies electron transfer mediated by graphene oxide-based materials [J]. Frontiers in Microbiology, 2019, 10: 3068. [36] TANG J, CHEN S, YUAN Y, et al. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells [J]. Biosensors and Bioelectronics, 2015, 71: 387-395. doi: 10.1016/j.bios.2015.04.074 [37] LIU J, QIAO Y, GUO C X, et al. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells [J]. Bioresource Technology, 2012, 114: 275-280. doi: 10.1016/j.biortech.2012.02.116 [38] 鲁安怀, 王长秋, 李艳, 环境矿物学研究进展(2011—2020年)[J]. 矿物岩石地球化学通报, 2020, 39(5): 881-898, 1068. LU A, WANG C, LI Y. Ressearch progress of environmental mineralogy (2011—2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(5): 881-898, 1068. (in Chinese).
[39] LOVLEY D R, STOLZ J F, NORD G L, et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism [J]. Nature, 1987, 330(6145): 252-254. doi: 10.1038/330252a0 [40] LOVLEY D R, CHAPELLE F H, PHILLIPS E J P. Fe(Ⅲ)-reducing bacteria in deeply buried sediments of the Atlantic Coastal Plain [J]. Geology, 1990, 18(10): 954-957. doi: 10.1130/0091-7613(1990)018<0954:FIRBID>2.3.CO;2 [41] PIRBADIAN S, BARCHINGER S E, LEUNG K M, et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12883-12888. doi: 10.1073/pnas.1410551111 [42] TAN Y, ADHIKARI R Y, MALVANKAR N S, et al. The low conductivity of Geobacter uraniireducens pili suggests a diversity of extracellular electron transfer mechanisms in the genus Geobacter [J]. Frontiers in Microbiology, 2016, 7: 980-990. [43] CHEN L X, CAO C L, WANG S H, et al. Electron communication of Bacillus subtilis in harsh environments [J]. Science, 2019, 12: 260-269. doi: 10.1016/j.isci.2019.01.020 [44] LIU J C, PEARCE I, SHI L, et al. Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1 [J]. Geochimica et Cosmochimica Acta, 2016, 193: 160-175. doi: 10.1016/j.gca.2016.08.022 [45] LOVLEY D R, PHILLIPS E J P. Organic matter mineralization with reduction of ferric iron in anaerobic sediments [J]. Applied and Environmental Microbiology, 1986, 51(4): 683-689. doi: 10.1128/aem.51.4.683-689.1986 [46] WU T, KUKKADAPU R K, GRIFFIN A M, et al. Interactions between Fe(Ⅲ)-oxides and Fe(Ⅲ)-phyllosilicates during microbial reduction 1: synthetic sediments [J]. Geomicrobiology Journal, 2016, 33(9): 793-806. doi: 10.1080/01490451.2015.1117546 [47] WU T, GRIFFIN A M, GORSKI C A, et al. Interactions between Fe(Ⅲ)-oxides and Fe(Ⅲ)-phyllosilicates during microbial reduction 2: Natural subsurface sediments [J]. Geomicrobiology Journal, 2017, 34(3): 231-241. doi: 10.1080/01490451.2016.1174758 [48] LOVLEY D R, PHILLIPS E J P. Availability of ferric iron for microbial reductionin bottom sediments of the freshwater tidal potomac river [J]. Applied and Environmental Microbiology, 1986, 52(4): 751-757. doi: 10.1128/aem.52.4.751-757.1986 [49] JAISI D P, DONG H L, LIU C X. Influence of biogenic Fe(Ⅱ) on the extent of microbial reduction of Fe(Ⅲ) in clay minerals nontronite, illite, and chlorite [J]. Geochimica Et Cosmochimica Acta, 2007, 71(5): 1145-1158. doi: 10.1016/j.gca.2006.11.027 [50] MIOT J, BENZERARA K, MORIN G, et a. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria [J]. Geochimica et Cosmochimica Acta, 2009, 73(3): 696-711. doi: 10.1016/j.gca.2008.10.033 [51] CUTTING R S, COKER V S, FELLOWES J W, et al. Mineralogical and morphological constraints on the reduction of Fe(Ⅲ) minerals by Geobacter sulfurreducens [J]. Geochimica et Cosmochimica Acta, 2009, 73(14): 4004-4022. doi: 10.1016/j.gca.2009.04.009 [52] AEPPLI M, VRANIC S, KAEGI R, et al. Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite [J]. Environmental Science & Technology, 2019, 53(15): 8736-8746. [53] NAKAMURA R, KAI F, OKAMOTO A, et al. Mechanisms of long-distance extracellular electron transfer of metal-reducing bacteria mediated by nanocolloidal semiconductive iron oxides [J]. Journal of Materials Chemistry A, 2013, 1(16): 5148-5157. doi: 10.1039/c3ta01672b [54] 朱朝菊, 向文军, 罗和青, 等. 铝掺杂针铁矿的制备、表征及吸附氟的特性 [J]. 无机化学学报, 2017, 33(12): 2215-2224. doi: 10.11862/CJIC.2017.266 ZHU Z J, XIANG W J, LUO H Q, et al. Preparation, characterization and fluoride adsorption characteristics of goethite and Al-doped goethite [J]. Chinese Journal of Inorganic Chemistry, 2017, 33(12): 2215-2224(in Chinese). doi: 10.11862/CJIC.2017.266
[55] 贾小红, 王甫, 任燕, 等. SO2、NO2与针铁矿、赤铁矿、磁铁矿的非均相反应 [J]. 地球化学, 2021, 50(1): 88-97. JIA X, WANG F, REN Y, et al. Heterogeneous reactions of SO2 and NO2 with goethite, hematite, and magnetite [J]. Geochimica, 2021, 50(1): 88-97(in Chinese).
[56] 向文军, 朱朝菊, 魏世勇. 几种赤铁矿的制备、表征及其对氟的吸附性能研究 [J]. 化学研究与应用, 2018, 30(2): 290-296. XIANG W, ZHU Z, WEI S Y. Preparation, characterization and fluoride adsorption characteristics of three hematite samples [J]. Chemical Research and Application, 2018, 30(2): 290-296(in Chinese).
[57] 方敦, 王锐, 许海娟, 等. 硅/铝掺杂纤铁矿的表面性质及对F-的吸附性能 [J]. 环境污染与防治, 2020, 42(3): 287-292. FANG D, WANG R, XU H J, et al. The surface properties and adsorption performance for F- of Si-or Al-doped lepidocrocite [J]. Environmental Pollution and Control, 2020, 42(3): 287-292(in Chinese).
[58] YU G, FU F, YE C, et al. Behaviors and fate of adsorbed Cr(VI) during Fe(II)-induced transformation of ferrihydrite-humic acid co-precipitates [J]. Journal of Hazardous Materials, 2020, 392: 122272. doi: 10.1016/j.jhazmat.2020.122272 [59] BIRD L J, BONNEFOY V, NEWMAN D K. Bioenergetic challenges of microbial iron metabolisms [J]. Trends in Microbiology, 2011, 19(7): 330-340. doi: 10.1016/j.tim.2011.05.001 [60] LOVLEY D R, GIOVANNONI S J, WHITE D C, et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals [J]. Archives of Microbiology, 1993, 159(4): 336-344. doi: 10.1007/BF00290916 [61] MARSHALL M J, BELIAEV A S, DOHNALKOVA A C, et al. c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis [J]. PLoS Biology, 2006, 4(8): 1324-1333. [62] LOVLEY D R, PHILLIPS E J P, WIDMAN P K. Reduction of uranium by Desulfovibrio desulfuricans [J]. Applied and Environmental Microbiology, 1992, 58(3): 850-856. doi: 10.1128/aem.58.3.850-856.1992 [63] VELZEN L V. Environmental remediation and restoration of contaminated nuclear and norm sites[M]. America: Woodhead Publishing 2015: 185-236. [64] COLOGGI D L, LAMPA-PASTIRK S, SPEERS A M, et al. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism [J]. Proc Natl Acad Sci U S A, 2011, 108(37): 15248-15252. doi: 10.1073/pnas.1108616108 [65] DUMMI MAHADEVAN G, ZHAO F. A concise review on microbial remediation cells (MRCs) in soil and groundwater radionuclides remediation [J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314(3): 1477-1485. doi: 10.1007/s10967-017-5612-4 [66] SUZUKI Y, KITATSUJI Y, OHNUKI T, et al. Flavin mononucleotide mediated electron pathway for microbial U(VI) reduction [J]. Physical Chemistry Chemical Physics, 2010, 12(34): 10081-10087. doi: 10.1039/c0cp00339e [67] YAMASAKI S, TANAKA K, KOZAI N, et al. Effect of flavin compounds on uranium(VI) reduction- kinetic study using electrochemical methods with UV-vis spectroscopy [J]. Applied Geochemistry, 2017, 78: 279-286. doi: 10.1016/j.apgeochem.2017.01.014 [68] SUN, H, SUN G Q, WANG S L, et al. Pd electroless plated Nafion(R) membrane for high concentration DMFCs [J]. Journal of Membrane Science, 2005, 259(1a2): 27-33. [69] HINDATU Y, ANNUAR M S M, GUMEL A M. Mini-review: Anode modification for improved performance of microbial fuel cell [J]. Renewable and Sustainable Energy Reviews, 2017, 73: 236-248. doi: 10.1016/j.rser.2017.01.138 [70] ZHU X, LOGAN B E. Copper anode corrosion affects power generation in microbial fuel cells [J]. Journal of Chemical Technology & Biotechnology, 2014, 89(3): 471-474. [71] HOU J Z, LIU S, YANG, et al. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells [J]. Journal of Power Sources, 2014, 258: 204-209. doi: 10.1016/j.jpowsour.2014.02.035 [72] LI Y, XU D, CHEN C, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. Journal of Materials Science & Technology, 2018, 34(10): 1713-1718. [73] SHERAR B W A, POWER I M, KEECH P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion [J]. Corrosion Science, 2011, 53(3): 955-960. doi: 10.1016/j.corsci.2010.11.027 [74] JIA R, YANG D, XU D, et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 118: 38-46. doi: 10.1016/j.bioelechem.2017.06.013 [75] SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property [J]. Nature, 2011, 478(7367): 49-56. doi: 10.1038/nature10386 [76] 蔡茜茜, 袁勇, 胡佩, 等. 腐殖质电化学特性及其介导的胞外电子传递研究进展 [J]. 应用与环境生物学报, 2015, 21(6): 996-1002. CAI X X, YUAN Y, HU P, et al. Progress in study of humic substances: Electrochemical redox characterization and extracellular respiration [J]. Chinese Journal of Applied & Environmental Biology, 2015, 21(6): 996-1002(in Chinese).
[77] ZHENG Y, KAPPLER A, XIAO Y, et al. Redox-active humics support interspecies syntrophy and shift microbial community [J]. Science China Technological Sciences, 2019, 62(10): 1695-1702. doi: 10.1007/s11431-018-9360-5 [78] NEWMAN D K and KOLTER R. A role for excreted quinones in extracellular electron transfer [J]. Nature, 2000, 405(6782): 94-97. doi: 10.1038/35011098 [79] BAI Y G, MELLAGE A, CIRPKA O A, et al. AQDS and redox-active NOM enables microbial Fe(Ⅲ)-mineral reduction at cm-scales [J]. Environmental Science & Technology, 2020, 54(7): 4131-4139. [80] SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms [J]. Environmental Science & Technology, 1998, 32(19): 2984-2989. [81] NURMI J T and TRATNYEK P G. Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles [J]. Environmental Science & Technology, 2002, 36(4): 617-624. [82] CORY R M, MCKNIGHT D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter [J]. Environmental Science & Technology, 2005, 39(21): 8142-8149. [83] HERNáNDEZ-MONTOYA V, ALVAREZ L H, MONTES-MORáN M A, et al. Reduction of quinone and non-quinone redox functional groups in different humic acid samples by Geobacter sulfurreducens [J]. Geoderma, 2012, 183-184: 25-31. doi: 10.1016/j.geoderma.2012.03.007 [84] TAN W, WANG G, ZHAO X, et al. Molecular‐weight‐dependent redox cycling of humic substances of paddy soils over successive anoxic and oxic alternations [J]. Land Degradation & Development, 2019, 30(9): 1130-1144. [85] KAPPLER A, BENZ M, SCHINK B, et al. Electron shuttling via humic acids in microbial iron(Ⅲ) reduction in a freshwater sediment [J]. FEMS Microbiology Ecology, 2004, 47(1): 85-92. doi: 10.1016/S0168-6496(03)00245-9 [86] RODEN E E, KAPPLER A, BAUER I, et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances [J]. Nature Geoscience, 2010, 3(6): 417-421. doi: 10.1038/ngeo870 [87] LAU M P, SANDER M, GELBRECHT J, et al. Solid phases as important electron acceptors in freshwater organic sediments [J]. Biogeochemistry, 2015, 123(1-2): 49-61. doi: 10.1007/s10533-014-0052-5 [88] TAN W, XI B, WANG G, et al. Microbial-accessibility-dependent electron shuttling of in situ solid-phase organic matter in soils [J]. Geoderma, 2019, 338: 1-4. doi: 10.1016/j.geoderma.2018.11.037 [89] KLüPFEL L, PIEPENBROCK A, KAPPLER A, et al. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments [J]. Nature Geoscience, 2014, 7(3): 195-200. doi: 10.1038/ngeo2084 [90] ZHAO J L, WANG L, TANG L L, et al. Changes in bacterial community structure and humic acid composition in response to enhanced extracellular electron transfer process in coastal sediment [J]. Archives of Microbiology, 2019, 201(7): 897-906. doi: 10.1007/s00203-019-01659-3 [91] ZHANG D D, ZHANG C F, ZHILING L, et al. Electrochemical stimulation of microbial reductive dechlorination of pentachlorophenol using solid-state redox mediator (humin) immobilization [J]. Bioresource Technology, 2014, 164: 232-240. doi: 10.1016/j.biortech.2014.04.071 [92] PANKRATOVA G, PANKRATOV D, et al. Following nature: Bioinspired mediation strategy for gram-positive bacterial cells [J]. Advanced Energy Materials, 2019, 9(16): 1900215.1-1900215.6. [93] NISHIO K, NAKAMURA R, LIN X J, et al. Extracellular electron transfer across bacterial cell membranes via a cytocompatible redox-active polymer [J]. Chemphyschem, 2013, 14(10): 2159-2163. doi: 10.1002/cphc.201300117 [94] KANEKO M, ISHIKAWA M, SONG J, et al. Cathodic supply of electrons to living microbial cells via cytocompatible redox-active polymers [J]. Electrochemistry Communications, 2017, 75: 17-20. doi: 10.1016/j.elecom.2016.12.002 [95] HASAN K, PATIL S A, LEECH D, et al. Electrochemical communication between microbial cells and electrodes via osmium redox systems [J]. Biochemical Society Transactions, 2012, 40(6): 1330-1335. doi: 10.1042/BST20120120 [96] PATIL S A, HASAN K, LEECH D, et al. Improved microbial electrocatalysis with osmium polymer modified electrodes [J]. Chemical Communications, 2012, 48(82): 10183-10185. doi: 10.1039/c2cc34903e [97] GIROUD F, MILTON R D, TAN B X, et al. Simplifying enzymatic biofuel cells: Immobilized naphthoquinone as a biocathodic orientational moiety and bioanodic electron mediator [J]. ACS Catalysis, 2015, 5(2): 1240-1244. doi: 10.1021/cs501940g [98] HASAN K, GRATTIERI M, WANG T, et al. Enhanced bioelectrocatalysis of Shewanella oneidensis MR-1 by a naphthoquinone redox polymer [J]. ACS Energy Letters, 2017, 2(9): 1947-1951. doi: 10.1021/acsenergylett.7b00585 [99] WANG G , FENG C. Electrochemical polymerization of hydroquinone on graphite felt as a pseudocapacitive material for application in a microbial fuel cell [J]. Polymers, 2017, 9(12): 220. doi: 10.3390/polym9060220 [100] WU W, NIU H, YANG D, et al. Polyaniline/carbon nanotubes composite modified anode via graft polymerization and self-assembling for microbial fuel cells [J]. Polymers, 2018, 10(7): 759. doi: 10.3390/polym10070759 [101] SUMISHA A , HARIBABU K. Modification of graphite felt using nano polypyrrole and polythiophene for microbial fuel cell applications-a comparative study [J]. International Journal of Hydrogen Energy, 2018, 43(6): 3308-3316. doi: 10.1016/j.ijhydene.2017.12.175 [102] RAJENDRAN R, DHAKSHINA MOORTHY G P, KRISHNAN H, et al. A study on polythiophene modified carbon cloth as anode in microbial fuel cell for lead removal [J]. Arabian Journal for Science and Engineering, 2021: 1-7. [103] SONG R B, WU Y C, LIN Z Q, et al. Living and conducting: Coating individual bacterial cells with In Situ formed polypyrrole [J]. Angewandte Chemie (International Ed. in English), 2017, 56(35): 10516-10520. doi: 10.1002/anie.201704729 [104] KANEKO M, ISHIHARA K, NAKANISHI S. Redox-active polymers connecting living microbial cells to an extracellular electrical circuit [J]. Small (Weinheim an Der Bergstrasse, Germany), 2020, 16(34): e2001849. doi: 10.1002/smll.202001849 [105] LIU D F, MIN D, CHENG L, et al. Anaerobic reduction of 2, 6-dinitrotoluene by Shewanella oneidensis MR-1: Roles of Mtr respiratory pathway and NfnB [J]. Biotechnology and Bioengineering, 2017, 114(4): 761-768. doi: 10.1002/bit.26212 [106] WANG H F, ZHAO H P, ZHU L Z. Structures of nitroaromatic compounds induce Shewanella oneidensis MR-1 to adopt different electron transport pathways to reduce the contaminants [J]. Journal of Hazardous Materials, 2020, 384: 121495. doi: 10.1016/j.jhazmat.2019.121495 [107] SUNG Y, FLETCHER K E, RITALAHTI K M, et al. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium [J]. Applied and Environmental Microbiology, 2006, 72(4): 2775-2782. doi: 10.1128/AEM.72.4.2775-2782.2006 [108] AMOS B K, SUNG Y, FLETCHER K E, et al. Detection and quantification of Geobacter lovleyi strain SZ: implications for bioremediation at tetrachloroethene- and uranium-impacted sites [J]. Applied and Environmental Microbiology, 2007, 73(21): 6898-6904. doi: 10.1128/AEM.01218-07 [109] WAGNER D D, HUG L A, HATT J K, et al. Genomic determinants of organohalide-respiration in Geobacter lovleyi, an unusual member of the Geobacteraceae [J]. BMC Genomics, 2012, 13(1): 200. doi: 10.1186/1471-2164-13-200 [110] ZHANG J, LI J, YE D, et al. Tubular bamboo charcoal for anode in microbial fuel cells [J]. Journal of Power Sources, 2014, 272: 277-282. doi: 10.1016/j.jpowsour.2014.08.115 [111] HSU L H H, DENG P, ZHANG Y X, et al. Nanostructured interfaces for probing and facilitating extracellular electron transfer [J]. Journal of Materials Chemistry. B, 2018, 6(44): 7144-7158. doi: 10.1039/C8TB01598H [112] WANG L, SU L, CHEN H, et al. Carbon paper electrode modified by goethite nanowhiskers promotes bacterial extracellular electron transfer [J]. Materials Letters, 2015, 141(feba15): 311-314. [113] DING Q, CAO Y, LI F, et al. Construction of conjugated polymer-exoelectrogen hybrid bioelectrodes and applications in microbial fuel cells [J]. Chinese Journal of Biotechnology, 2021, 37(1): 1-14. [114] ZHOU X, LV F, HUANG Y, et al. Biohybrid conjugated polymer materials for augmenting energy conversion of bioelectrochemical systems [J]. Chemistry-a European Journal, 2020, 26(66): 15065-15073. doi: 10.1002/chem.202002041 [115] DONG G W, WANG H H, YAN Z Y, et al. Cadmium sulfide nanoparticles-assisted intimate coupling of microbial and photoelectrochemical processes: Mechanisms and environmental applications [J]. The Science of the Total Environment, 2020, 740: 140080. doi: 10.1016/j.scitotenv.2020.140080 [116] KORTH B, MASKOW T, PICIOREANU C, et al. The microbial electrochemical Peltier heat: an energetic burden and engineering chance for primary microbial electrochemical technologies [J]. Energy & Environmental Science, 2016, 9(8): 2539-2544. [117] WAGNER R C, CALL D F, LOGAN B E. Optimal set anode potentials vary in bioelectrochemical systems [J]. Environmental Science & Technology, 2010, 44(16): 6036-6041. [118] FIRER-SHERWOOD M, PULCU G S, ELLIOTT S J. Electrochemical interrogations of the Mtr cytochromes from Shewanella: Opening a potential window [J]. JBIC Journal of Biological Inorganic Chemistry, 2008, 13(6): 849-854. doi: 10.1007/s00775-008-0398-z [119] STRAUB, BENZ, SCHINK. Iron metabolism in anoxic environments at near neutral pH [J]. FEMS Microbiology Ecology, 2001, 34(3): 181-186. doi: 10.1111/j.1574-6941.2001.tb00768.x [120] WEBER K A, ACHENBACH L A, COATES J D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction [J]. Nature Reviews. Microbiology, 2006, 4(10): 752-764. doi: 10.1038/nrmicro1490 [121] BEBLAWY S, BURSAC T, PAQUETE C, et al. Extracellular reduction of solid electron acceptors by Shewanella oneidensis [J]. Molecular Microbiology, 2018, 109(5): 571-583. doi: 10.1111/mmi.14067 [122] GROBBLER C, VIRDIS B, NOUWENS A, et al. Effect of the anode potential on the physiology and proteome of Shewanella oneidensis MR-1 [J]. Bioelectrochemistry (Amsterdam, Netherlands), 2018, 119: 172-179. doi: 10.1016/j.bioelechem.2017.10.001 [123] KORTH B, HARNISCH F. Spotlight on the energy harvest of electroactive microorganisms: The impact of the applied anode potential [J]. Frontiers in Microbiology, 2019, 10: 1352. doi: 10.3389/fmicb.2019.01352 [124] HIROSE A, KASAI T, AOKI M, et al. Electrochemically active bacteria sense electrode potentials for regulating catabolic pathways [J]. Nature Communications, 2018, 9(1): 1083. doi: 10.1038/s41467-018-03416-4 [125] GARRETT T R, BHAKOO M, ZHANG Z. Bacterial adhesion and biofilms on surfaces [J]. Progress in Natural Science, 2008, 18(9): 1049-1056. doi: 10.1016/j.pnsc.2008.04.001 [126] LI C C , CHENG S A. Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system [J]. Critical Reviews in Biotechnology, 2019, 39(8): 1015-1030. doi: 10.1080/07388551.2019.1662367 [127] MARSHALL T A, MORRIS K, LAW G T W, et al. Incorporation of uranium into hematite during crystallization from ferrihydrite [J]. Environmental Science & Technology, 2014, 48(7): 3724-3731. [128] XIAO Y, ZHANG E H, ZHANG J D, et al. Extracellular polymeric substances are transient media for microbial extracellular electron transfer [J]. Science Advances, 2017, 3(7): e1700623. doi: 10.1126/sciadv.1700623 [129] PONS L, DELIA M L, BERGEL A. Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes [J]. Bioresource Technology, 2011, 102(3): 2678-2683. doi: 10.1016/j.biortech.2010.10.138 [130] HIZAL F, RUNGRAENG N, LEE J, et al. Nanoengineered superhydrophobic surfaces of aluminum with extremely low bacterial adhesivity [J]. ACS Applied Materials & Interfaces, 2017, 9(13): 12118-12129. [131] WANG H, SONG L J, JIANG R J, et al. Super-repellent photodynamic bactericidal hybrid membrane [J]. Journal of Membrane Science, 2020, 614: 118482. doi: 10.1016/j.memsci.2020.118482 [132] ANJUM, A S, K C SUN, M ALI, et al. Fabrication of coral-reef structured nano silica for self-cleaning and super- hydrophobic textile applications [J]. Chemical Engineering Journal, 2020, 401: 125859. doi: 10.1016/j.cej.2020.125859 [133] BOKS N P, NORDE W, van der MEI H C, et al. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces [J]. Microbiology, 2008, 154(10): 3122-3133. doi: 10.1099/mic.0.2008/018622-0 [134] GUO K, FREGUIA S, DENNIS P G, et al. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems [J]. Environmental Science & Technology, 2013, 47(13): 7563-7570. [135] KOBAYASHI M, TERAYAMA Y, YAMAGUCHI H, et al. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes [J]. Langmuir, 2012, 28(18): 7212-7222. doi: 10.1021/la301033h [136] WANG Z X, ELIMELECH M, LIN S H. Environmental applications of interfacial materials with special wettability [J]. Environmental Science & Technology, 2016, 50(5): 2132-2150. [137] YUAN Y, CAI X X, WANG Y Q, et al. Electron transfer at microbe-humic substances interfaces: Electrochemical, microscopic and bacterial community characterizations [J]. Chemical Geology, 2017, 456: 1-9. doi: 10.1016/j.chemgeo.2017.02.020 [138] DING C M, LV M L, ZHU Y, et al. Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4 [J]. Angewandte Chemie (International Ed. in English), 2015, 54(5): 1446-1451. doi: 10.1002/anie.201409163 [139] ZHAO C, DING C, LV M, et al. Hydrophilicity boosted extracellular electron transfer in Shewanella loihica PV-4 [J]. RSC Advances, 2016, 6(27): 22488-22493. doi: 10.1039/C5RA24369F [140] LIN X, YANG F, YOU L X, et al. Liposoluble quinone promotes the reduction of hydrophobic mineral and extracellular electron transfer of Shewanella oneidensis MR-1 [J]. The Innovation, 2021,2 (2): 100104. [141] YEUNG T, GILBERT G E, SHI J L, et al. Membrane phosphatidylserine regulates surface charge and protein localization [J]. Science, 2008, 319(5860): 210-213. doi: 10.1126/science.1152066 [142] KE Y, LIU C, ZHANG X, et al. Surface modification of polyhydroxyalkanoates toward enhancing cell compatibility and antibacterial activity [J]. Macromolecular Materials and Engineering, 2017, 302(11): 1700258. doi: 10.1002/mame.201700258 [143] WU J, ZHAO S, XU S, et al. Acidity-triggered charge-reversible multilayers for construction of adaptive surfaces with switchable bactericidal and bacteria-repelling functions [J]. Journal of Materials Chemistry B, 2018, 6(45): 7462-7470. doi: 10.1039/C8TB02093K [144] CHAROENSRI K, RODWIHOK C, WONGRATANAPHISAN D, et al. Investigation of functionalized surface charges of thermoplastic Starch/Zinc oxide nanocomposite films using polyaniline: the potential of improved antibacterial properties [J]. Polymers, 2021, 13(3): 425. doi: 10.3390/polym13030425