-
随着水域富营养化现象频发,藻类爆发性生长繁殖,其产生的嗅味物质等次级代谢产物污染了水源水,造成了经济与环境损失,影响着饮用水的供水安全,引发了社会各界的关注[1]。在水体污染物中,嗅味物质是国内外饮用水处理中较为容易见到也是十分难解决的问题之一[2]。饮用水中出现嗅味将引起群众大范围恐慌,嗅味目前已被列为水厂出厂水和管网水的必检项目之一。
水中的嗅味问题在各个地方有不同的成因,所形成的臭味种类也不同,但土臭素(GSM)和2-甲基异莰醇(2-MIB)是引起水质问题的众多恶臭物质中最突出的,饮用水中二者的含量均不能超过10 ng·L−1。常规水处理工艺,如混凝、沉淀、过滤、消毒等,无法有效减少水中的GSM和2-MIB,不能达到《生活饮用水卫生标准》要求[3]。常用控制嗅味物质的方法包括活性炭吸附、生物降解、高级氧化、臭氧氧化等。其中高级氧化技术(AOPs)被普遍认为是一种高效降解GSM和2-MIB的方法,其中紫外联用高级氧化(UV-AOPs)技术是近年来研究的热点[4]。UV-AOPs技术实质是通过利用某些活性物质较强的氧化能力,如氯自由基、羟基自由基,氧化降解污染物,将其分解成水、二氧化碳等无机小分子[5]。该技术具有氧化电位高、选择性低、碱干扰小、对大多数有机污染物降解迅速、操作过程简单、反应条件温和等优点。
本文通过对比不同UV-AOPs工艺降解嗅味物质的效能,考察了光照强度、氧化剂投加量、目标物初始浓度、反应时间、pH、腐殖酸浓度及水体所含无机阴离子(SO42-、Cl−、HCO3−)等对降解效果的影响,并对比了在实际水体中UV-AOPs工艺对嗅味物质的去除效果,以期为UV-AOPs工艺去除嗅味物质在实际运用中提供理论参考与技术支持。
紫外高级氧化工艺降解土臭素(GSM)和2-甲基异莰醇(2-MIB)的对比
Comparative study on degradation of GSM and 2-MIB by ultraviolet advanced oxidation processes
-
摘要: 紫外(UV)、紫外/过氧化氢(UV/H2O2)、紫外/氯(UV/Cl2)等3种不同的紫外高级氧化工艺(UV-AOPs)可在一定程度上去除土臭素(GSM)和2-甲基异莰醇(2-MIB),其中UV/H2O2工艺对GSM和2-MIB的去除效果更好。光照强度、氧化剂投加量、反应时间、目标污染物初始浓度、pH值、无机阴离子及腐殖酸均会影响UV-AOPs工艺去除GSM和2-MIB的效果。提高光照强度、氧化剂投加量、反应时间会促进3种工艺对GSM和2-MIB的去除;目标污染物初始浓度、pH值及腐殖酸的浓度过高会抑制3种工艺对GSM和2-MIB的去除;SO42−对去除嗅味物质有促进作用,HCO3−会抑制对嗅味物质的去除。通过对产物降解途径的分析,UV/H2O2工艺降解GSM和2-MIB会导致其中的环结构断裂,将小分子链状产物最终矿化成CO2和H2O。通过比较不同UV-AOPs工艺对实际水体不同指标的处理效能得出,UV/H2O2工艺对实际水体的处理效果优于UV及UV/Cl2工艺。Abstract: Ultraviolet (UV), ultraviolet/hydrogen peroxide (UV/H2O2), ultraviolet/chlorine (UV/Cl2) three different ultraviolet advanced oxidation processes (UV-AOPs) for geosmin (GSM) and 2-methylisoborneol (2-MIB) has a certain removal effect, and the UV/H2O2 process has a better removal effect on GSM and 2-MIB. The light intensity, dosage of oxidant, reaction time, initial concentration of target pollutants, pH, inorganic anions and humic acid will all affect the effect of UV-AOPs process in removing GSM and 2-MIB. Among them, the light intensity, dosage of oxidant, and reaction time will promote the removal of GSM and 2-MIB by the three processes; the high concentration of the initial concentration of target pollutants, pH and humic acid will inhibit the effects of the three processes on GSM and 2-MIB. SO42− enhances the removal of odorous substances, and HCO3- can abate the removal of odorous substances. Through the analysis of the degradation pathway of the products, the degradation of GSM and 2-MIB by UV / H2O2 process will lead to the ring structure fracture, and the small molecular chain products will eventually be mineralized into CO2 and H2O. By comparing the treatment efficiency of different UV-AOPs processes on different indicators of the real waters, it is concluded that the UV/H2O2 process has better treatment effects on the real waters than the UV and UV/Cl2 processes.
-
表 1 不同UV-AOPs降解GSM和2-MIB的拟一级反应动力学参数
Table 1. Quasi-first-order reaction kinetic parameters for degradation of GSM and 2-MIB by different UV-AOPs
嗅味物质
Odorants工艺
Method一级反应动力学方程
First order kinetic equationK/min-1 R2 GSM UV $ \mathrm{l}\mathrm{n}\left(C/{C}_{0}\right)=-0.0024t-0.1021 $ 0.0024 0.989 UV/H2O2 $ \mathrm{l}\mathrm{n}\left(C/{C}_{0}\right)=-0.0143t-0.1671 $ 0.0143 0.9822 UV/Cl2 $ \mathrm{l}\mathrm{n}\left(C/{C}_{0}\right)=-0.0100t-0.2054 $ 0.0100 0.9741 2-MIB UV $ \mathrm{l}\mathrm{n}\left(C/{C}_{0}\right)=-0.0021t-0.0925 $ 0.0021 0.9788 UV/H2O2 $ \mathrm{l}\mathrm{n}\left(C/{C}_{0}\right)=-0.0132t-0.2235 $ 0.0132 0.9956 UV/Cl2 $ \mathrm{l}\mathrm{n}\left(C/{C}_{0}\right)=-0.0098t-0.2488 $ 0.0098 0.9783 表 2 不同UV-AOPs工艺对实际水体的处理效能
Table 2. Treatment efficiency of different UV-AOPs processes for real water
名称Name GSM/
(ng·L−1)2-MIB/
(ng·L−1)浊度/NTU
TurbidityUV254 耗氧量/(mg·L−1)
Oxygen
consumption可溶性有机碳/
(g·kg−1)
DOC比紫外吸光度
SUVA北控水厂 水厂原水 20.99 115.23 4.50 0.048 2.58 2.93 1.655 原水经UV/H2O2处理后 2.51 28.24 4.11 0.039 2.05 2.87 1.367 原水经UV/Cl2处理后 5.25 42.02 4.18 0.041 2.21 2.90 1.407 水厂滤后水 7.54 85.66 0.22 0.027 1.6 2.76 0.987 滤后水经UV/H2O2处理后 1.20 17.40 0.20 0.021 1.25 2.56 0.810 滤后水经UV/Cl2处理后 3.73 34.67 0.21 0.022 1.33 2.62 0.846 众兴水厂 水厂原水 15.89 81.67 2.58 0.069 3.84 4.25 1.634 原水经UV/H2O2处理后 2.41 20.14 2.30 0.056 3.27 4.09 1.359 原水经UV/Cl2处理后 6.74 31.82 2.34 0.058 3.52 4.13 1.408 水厂滤后水 10.40 50.62 0.46 0.049 2.14 3.10 1.576 滤后水经UV/H2O2处理后 1.92 8.54 0.40 0.038 1.7 2.91 1.311 滤后水经UV/Cl2处理后 4.23 15.90 0.41 0.040 1.79 2.98 1.341 白浪河水厂 水厂原水 28.42 106.5 4.30 0.048 2.4 3.62 1.336 原水经UV/H2O2处理后 2.46 68.19 3.86 0.039 1.89 3.49 1.110 白浪河水厂 原水经UV/Cl2处理后 4.31 84.10 3.92 0.041 1.99 3.50 1.176 水厂滤后水 14.81 44.06 2.32 0.020 1.42 2.23 0.901 滤后水经UV/H2O2处理后 1.22 12.52 2.01 0.015 1.14 2.16 0.700 滤后水经UV/Cl2处理后 6.84 19.62 2.08 0.016 1.26 2.18 0.742 -
[1] 林晓娟, 高姗, 仉天宇, 等. 海水富营养化评价方法的研究进展与应用现状 [J]. 地球科学进展, 2018, 33(4): 373-384. doi: 10.11867/j.issn.1001-8166.2018.04.0373 LIN X J, GAO S, ZHANG T Y, et al. Researching progress and application status of eutrophication evaluation method of seawater [J]. Advances in Earth Science, 2018, 33(4): 373-384(in Chinese). doi: 10.11867/j.issn.1001-8166.2018.04.0373
[2] 李勇, 张晓健, 陈超. 我国饮用水中嗅味问题及其研究进展 [J]. 环境科学, 2009, 30(2): 583-588. doi: 10.3321/j.issn:0250-3301.2009.02.045 LI Y, ZHANG X J, CHEN C. Review on the tastes and odors compounds in drinking water of China [J]. Environmental Science, 2009, 30(2): 583-588(in Chinese). doi: 10.3321/j.issn:0250-3301.2009.02.045
[3] 宋武昌, 李星, 贾瑞宝, 等. 微污染引黄水库水中有机物特性研究 [J]. 北京工业大学学报, 2015, 41(1): 131-136. SONG W C, LI X, JIA R B, et al. Investigation of characteristics of organics in the micro-polluted Yellow River reservoir water [J]. Journal of Beijing University of Technology, 2015, 41(1): 131-136(in Chinese).
[4] 朱欢欢, 孙韶华, 冯桂学, 等. 紫外联用高级氧化技术处理饮用水应用进展 [J]. 水处理技术, 2019, 45(3): 1-7,13. ZHU H H, SUN S H, FENG G X, et al. Research progress of ultraviolet combined advanced oxidation technology for drinking water treatment [J]. Technology of Water Treatment, 2019, 45(3): 1-7,13(in Chinese).
[5] 刘俊逸, 张宇, 张蕾, 等. 含酚工业废水处理技术的研究进展 [J]. 工业水处理, 2018, 38(10): 12-16. doi: 10.11894/1005-829x.2018.38(10).012 LIU J Y, ZHANG Y, ZHANG L, et al. Research progress in the treatment technologies of industrial wastewater containing phenol [J]. Industrial Water Treatment, 2018, 38(10): 12-16(in Chinese). doi: 10.11894/1005-829x.2018.38(10).012
[6] 张燚. 真空紫外/氯技术去除饮用水致嗅物质2-MIB和GSM的研究[D]. 西安: 西安建筑科技大学, 2018. ZHANG Y. Study on removing odorants of 2-MIB and GSM in drinking water by vacuum ultraviolet combined with chlorine[D]. Xi'an: Xi'an University of Architecture and Technology, 2018(in Chinese).
[7] CHANG M W, CHUNG C C, CHERN J M, et al. Dye decomposition kinetics by UV/H2O2: Initial rate analysis by effective kinetic modelling methodology [J]. Chemical Engineering Science, 2010, 65(1): 135-140. doi: 10.1016/j.ces.2009.01.056 [8] 喻杰, 叶志伟, 党文悦, 等. 紫外波长对UV/Cl2高级氧化去除水中有机物的影响 [J]. 环境工程学报, 2019, 13(3): 577-585. doi: 10.12030/j.cjee.201809143 YU J, YE Z W, DANG W Y, et al. Effect of ultraviolet wavelength on organic matter removal from water by UV/Cl2 advanced oxidation [J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 577-585(in Chinese). doi: 10.12030/j.cjee.201809143
[9] 李慧琴. 基于紫外的高级氧化技术在水处理中的应用进展 [J]. 化工设计通讯, 2020, 46(11): 28-30. doi: 10.3969/j.issn.1003-6490.2020.11.015 LI H Q. Recent advances of ultraviolet light-based advanced oxidation processes in water treatment [J]. Chemical Engineering Design Communications, 2020, 46(11): 28-30(in Chinese). doi: 10.3969/j.issn.1003-6490.2020.11.015
[10] 王婷, 吴乾元, 王文龙, 等. 紫外线/氯高级氧化降解甲基异噻唑啉酮 [J]. 环境工程学报, 2017, 11(1): 21-26. doi: 10.12030/j.cjee.201509106 WANG T, WU Q Y, WANG W L, et al. Degradation of methylisothiazolinone by UV/chlorine advanced oxidation process [J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 21-26(in Chinese). doi: 10.12030/j.cjee.201509106
[11] 高乃云, 祝淑敏, 马艳, 等. 2, 4, 6-三氯酚的UV/H2O2光化学降解 [J]. 中南大学学报(自然科学版), 2013, 44(3): 1262-1268. GAO N Y, ZHU S M, MA Y, et al. UV/H2O2 photochemical degradation of 2, 4, 6-trichlorophenol [J]. Journal of Central South University (Science and Technology), 2013, 44(3): 1262-1268(in Chinese).
[12] 章丽萍, 崔炎炎, 贾泽宇, 等. 等离子体高级氧化技术去除饮用水中土霉味物质 [J]. 中国给水排水, 2019, 35(5): 36-42. ZHANG L P, CUI Y Y, JIA Z Y, et al. Removal of earthy/musty odor compounds in drinking water using an advanced oxidation process based on plasma [J]. China Water & Wastewater, 2019, 35(5): 36-42(in Chinese).
[13] KIM T K, MOON B R, KIM T, et al. Degradation mechanisms of geosmin and 2-MIB during UV photolysis and UV/chlorine reactions [J]. Chemosphere, 2016, 162: 157-164. doi: 10.1016/j.chemosphere.2016.07.079 [14] 孙昕, 张燚, 史路肖, 等. 真空紫外/氯处理饮用水典型致嗅物质 [J]. 环境科学, 2018, 39(4): 1654-1660. SUN X, ZHANG Y, SHI L X, et al. Removing typical odorants in drinking water by vacuum ultraviolet combined with chlorine [J]. Environmental Science, 2018, 39(4): 1654-1660(in Chinese).
[15] GOGATE P R, PANDIT A B. A review of imperative technologies for wastewater treatment II: Hybrid methods [J]. Advances in Environmental Research, 2004, 8(3/4): 553-597. [16] 成建国. 羟基自由基快速氧化降解饮用水中致嗅物质研究[D]. 大连: 大连海事大学, 2018. CHENG J G. Study on fast oxidative degradation of odor compounds in drinking water by hydroxyl radicals[D]. Dalian, China: Dalian Maritime University, 2018(in Chinese).
[17] TRUONG G L, LAAT J D, LEGUBE B. Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2 [J]. Water Research, 2004, 38(9): 2384-2394. doi: 10.1016/j.watres.2004.01.033 [18] 邱丽佳. H2O2及O3氧化两种典型蓝藻致嗅物质和灭藻效应研究[D]. 北京: 北京建筑大学, 2017. QIU L J. Oxidation of odor compound and inactivation efficiency of two kinds of typical cyanobacteria by hydrogen peroxide and ozone[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2017(in Chinese).
[19] 潘晶, 孙铁珩, 李海波. 水中无机阴离子对UV/H2O2降解LAS的影响及机理 [J]. 环境科学, 2007, 28(11): 2539-2543. doi: 10.3321/j.issn:0250-3301.2007.11.023 PAN J, SUN T H, LI H B. Effects and mechanisms of inorganic anions in water on degradation of LAS by UV/H2O2 combination process [J]. Environmental Science, 2007, 28(11): 2539-2543(in Chinese). doi: 10.3321/j.issn:0250-3301.2007.11.023
[20] RAZAVI B, BEN ABDELMELEK S, SONG W H, et al. Photochemical fate of atorvastatin (lipitor) in simulated natural waters [J]. Water Research, 2011, 45(2): 625-631. doi: 10.1016/j.watres.2010.08.012 [21] 骆靖宇, 李学艳, 李青松, 等. 紫外活化过硫酸钠去除水体中的三氯卡班 [J]. 中国环境科学, 2017, 37(9): 3324-3331. doi: 10.3969/j.issn.1000-6923.2017.09.015 LUO J Y, LI X Y, LI Q S, et al. Degradation of triclocarban aqueous solution through UV irradiation-activated sodium persulfate process [J]. China Environmental Science, 2017, 37(9): 3324-3331(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.09.015
[22] HO L, NEWCOMBE G, CROUÉ J P. Influence of the character of NOM on the ozonation of MIB and geosmin [J]. Water Research, 2002, 36(3): 511-518. doi: 10.1016/S0043-1354(01)00253-6 [23] FOTIOU T, TRIANTIS T M, KALOUDIS T, et al. Photocatalytic degradation of water taste and odour compounds in the presence of polyoxometalates and TiO2: Intermediates and degradation pathways [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2014, 286: 1-9. doi: 10.1016/j.jphotochem.2014.04.013 [24] 李学艳, 高乃云, 沈吉敏, 等. O3/H2O2降解水中致嗅物质2-MIB的效能与机理 [J]. 环境科学学报, 2009, 29(2): 344-352. doi: 10.3321/j.issn:0253-2468.2009.02.018 LI X Y, GAO N Y, SHEN J M, et al. Efficiency and mechanism of degradation of 2-MIB by O3/H2O2 in water [J]. Acta Scientiae Circumstantiae, 2009, 29(2): 344-352(in Chinese). doi: 10.3321/j.issn:0253-2468.2009.02.018
[25] 高乃云, 张晏晏, 马艳. UV/TiO2去除水中磺胺甲唑的动力学及影响因素分析 [J]. 中国环境科学, 2013, 33(11): 1958-1964. GAO N Y, ZHANG Y Y, MA Y. Kinetics and impact factors of sulfamethoxazole(SMX) degradation in drinking water by UV/TiO2 [J]. China Environmental Science, 2013, 33(11): 1958-1964(in Chinese).