-
酚类化合物是一类常见的化学工业原料,广泛应用于与人类生活紧密相关的各行各业,但是酚类污染物的不合理排放易对人类和环境造成伤害。很多酚类污染物都是典型的内分泌干扰物质,即使在较低浓度下都可能对人体造成伤害[1]。我国原国家环境保护局选择出排放量大、毒性高、水中难降解的污染物,将其列入中国水环境优先控制污染“黑名单”,其中酚类污染物多达6种[2]。因此,检测痕量的酚类污染物是重要的环境分析工作。
酚类污染物的常用检测方法有分光光度法[3]、色谱法[4]、质谱法[5]、化学发光法[6]和电化学方法[7-8]等。在这些方法中,电化学方法具有简单快捷、灵敏准确、成本低廉的显著优势。然而,未经修饰的裸电极在检测低浓度和多组分酚类污染物时可能存在峰电位重叠、稳定性差、线性范围窄等不足[9]。利用性能优异且绿色环保的材料修饰裸电极是解决上述问题的有效途径之一。目前,有大量新型材料用于电化学传感器的构建[7,10-11],其中,MOFs由于比表面积大、孔隙率高、表面性质可调控,在气体贮存[12]、吸附[13]、催化[14]和电化学传感[15]等方面有成功的应用案例。
近年来,MOFs电化学传感器在酚类污染物的检测中表现出检测限低、选择性高、线性范围宽等优势[16-18]。本文综述了一些基于MOFs、MOFs复合物、MOFs衍生物表面修饰的电化学传感器在检测酚类污染物的应用案例;总结了MOFs基材料制备方法对酚类污染物检测性能的影响;并展望MOFs基电化学传感器在酚类检测中的发展趋势。
MOFs表面修饰的电化学传感器在酚类污染物检测中的应用综述
Review of sensors based on MOFs-modified on the surface of bare electrodes for the detection of phenolic pollutants
-
摘要: 酚类化合物广泛应用于各行各业,但它们是一类毒性大的化合物,即使在极低浓度下也会对人类、动物和环境造成很大的危害,因此检测痕量的酚类污染物至关重要。在众多酚类化合物的检测方法中,成本低、效果好、易操作的电化学方法脱颖而出,但裸电极并很难达到痕量检测的要求。金属有机骨架化合物(metal-organic frameworks, MOFs)材料是一种比表面积大、孔隙度高、结构多变,在多个领域表现优异的新型材料,以MOFs及其复合物或衍生物修饰裸电极是一种有效提高其检测性能的方法。本文对基于MOFs及MOFs复合物或衍生物表面修饰的电化学传感器在酚类污染物检测中的应用进行综述,总结MOFs基材料制备方法对其检测性能的影响,并展望其未来发展的趋势。Abstract: Phenolic compounds are widely used in all walks of life. They are highly toxic pollutants that can cause great harm to human beings, animals and the environment even at very low concentrations. Therefore, trace detection of phenolic pollutants is very important. Among many methods for the detection of phenolic compounds, the electrochemical method with low cost, good effect and easy operation stands out, but bare electrodes cannot meet the requirements of trace detection. Metal-Organic Frameworks (MOFs) are new materials with large specific surface area, high porosity and variable structure, and have been shown excellent performance in many fields. Modification of bare electrodes with MOFs and their composites or derivatives is an effective method to improve their detection performance. In this paper, the application of surface-modified electrochemical sensors based on pristine MOFs, MOFs composites and MOFs derivatives for phenolic pollutants detection was reviewed. The influence of preparation methods of MOFs-based materials on the detection effect was summarized, and the trend of this type of sensors for phenolic detection in the future was prospected.
-
Key words:
- MOFs /
- electrochemical sensors /
- phenolic pollutants /
- trace detection
-
表 1 单纯MOFs构建的电化学传感器在检测痕量酚类污染物中的应用
Table 1. Applications of electrochemical sensors constructed by pristine MOFs materials for the detection of trace phenolic pollutants
检测电极
Electrode目标检测物
Analyte检测方法
Method线性范围/(μmol·L−1)
Linear range检测限度/(μmol·L−1)
LODMOF-235(10%)/GE[11] 邻苯二酚 DPV 12.79—514 12.79 MOF-801-CPE[26] 对苯二酚 DPV 50—1000 0.57 UiO-67-CPE[27] 对苯二酚 DPV 5—300 0.0036 Cu-Ni-BTC-CPE[28] 邻苯二酚 DPV 0.5—330 0.2 对苯二酚 0.3—390 0.08 UiO-66/CPE[29] 2,4,6−三氯苯酚 DPV 0.01—0.5 0.00646 Cu-BTC films/GCE[30] 双酚A DPV 0.005—2 0.00072 Cu-MOF-CPE[31] 邻苯二酚 SWV 0.8—32 0.1 表 2 MOFs复合物构建的电化学传感器在检测痕量酚类污染物中的应用
Table 2. Applications of electrochemical sensors constructed by MOFs composites for the detection of trace phenolic pollutants
检测电极
Electrode目标检测物
Analyte检测方法
Method线性范围/(μmol·L−1)
Linear range检测限度/(μmol·L−1)
LODMIL-101(Cr)-rGO-2-CPE[20] 邻苯二酚 DPV 10—1400 4.1 对苯二酚 4—1000 0.66 RGO@Ce-MOF[25] 二氯酚 DPV 0.02—10 0.007 Ce-Ni-MOF/MWCNTs/GCE[29] 双酚A DPV 0.1—100 0.0078 Cu-MOF/ZnTeNRs/AuNPs/GCE[36] 邻苯二酚 DPV 0.25—300 0.016 Ni-MOF@CNTs/GCE[37] 双酚A DPV 0.001—1.0 0.00035 Fe-CuMOF/rGO/GCE[38] 邻苯二酚 AMP 0.1—800 0.016 间苯二酚 0.1—720 0.02 Cu-MOF-GN/GCE[39] 邻苯二酚 DPV 1—1000 0.33 对苯二酚 1—1000 0.59 M@Pt@M-rGO/GCE[40] 邻苯二酚 DPV 0.1—160 0.032 对苯二酚 0.05—20;20—200 0.015 间苯二酚 0.4—30;30—300 0.133 MOF-ERGO-5/GCE[41] 邻苯二酚 DPV 0.1—566 0.1 对苯二酚 0.1—476 0.1 Cu3(btc)2/CS-ERGO/GCE[42] 邻苯二酚 DPV 2—200 0.41 对苯二酚 5.0—400 0.44 间苯二酚 1—200 0.33 PPy@ZIF−8/GAs/GCE[43] 4−氯酚 SWV 0.0003—0.01 0.0001 Ce-MOF-ERGO/GCE
(with 0.1 mmol·L−1 CTAB)[44]双酚A DPV 0.003—10 0.0019 MIP-Eu-MOF-CNTs/GCE[45] 双酚S DPV 0.05—50 0.025 CuMOF-Tyr-CS/GCE[46] 双酚A AMP 0.05—3 0.013 Hemin/Cu-MOF-74/GCE[47] 2,4,6-三氯苯酚 DPV 0.01—9 0.005 FxGnP-Ni-MOF[48] 双酚A AMP 0.002—10 0.000184 Ag@MOF-5(Zn)/GCE[49] 2−甲基−4−硝基苯酚 DPV 0.1—10;50—1000 0.056 4−亚硝基苯酚 0.1—10;50—500 0.057 2−亚硝基苯酚 0.1—10;50—200 0.09 NiMOF/rGO paper/GCE[50] 邻苯二酚 AMP 0.02—760 0.0018 表 3 MOFs衍生物构建的电化学传感器在检测痕量酚类污染物中的应用
Table 3. Applications of electrochemical sensors constructed by MOFs derivatives for the detection of trace phenolic pollutants
检测电极
Electrode目标检测物
Analyte检测方法
Method线性范围/(μmol·L−1)
Linear range检测限度/(μmol·L−1)
LODZIF-67-1000/GCE[64] 邻苯二酚 DPV 1—300 0.267 对苯二酚 1—200 0.348 C-ZIF-67/PAN-800/GCE[65] 邻苯二酚 DPV 1—200 1 对苯二酚 1—120 1 NPC-FJU-40-H/GCE[66] 邻苯二酚 DPV 1—100 0.31 对苯二酚 1—70 0.18 ZIF-8@rGO-0.02/GCE[67] 邻苯二酚 DPV 0.5—10;10—70 0.076 对苯二酚 0.5—10;10—70 0.073 Alk-Ti3C2/N-PC/GCE[68] 邻苯二酚 DPV 0.5—150 0.0031 对苯二酚 0.5—150 0.0048 FeOx/TiO2@mC700/GCE[69] 4−亚硝基甲苯 DPV 5—310 0.183 CoxP/NC/GCE[70] 4−亚硝基苯酚 DPC 0.05—1.0;1.0—4.0 0.002 CoPx@NCNTs/GCE[71] 对硝基苯酚 DPV 0.0025—1;1—1000 0.00079 -
[1] SOFEN L E, FURST A L. Perspective—electrochemical sensors to monitor endocrine disrupting pollutants [J]. Journal of the Electrochemical Society, 2019, 167(3): 037524. [2] 周文敏, 傅德黔, 孙宗光. 中国水中优先控制污染物黑名单的确定 [J]. 环境监测管理与技术, 1991, 3(4): 18-20. ZHOU W M, FU D Q, SUN Z G. Identification of priority control of pollution blacklist in China [J]. The Administration and Technique of Environmental Monitoring, 1991, 3(4): 18-20(in Chinese).
[3] FIGUEIREDO E C, TARLEY C R T, KUBOTA L T, et al. On-line molecularly imprinted solid phase extraction for the selective spectrophotometric determination of catechol [J]. Microchemical Journal, 2007, 85(2): 290-296. doi: 10.1016/j.microc.2006.07.004 [4] MARRUBINI G, CALLERI E, COCCINI T, et al. Direct analysis of phenol, catechol and hydroquinone in human urine by coupled-column HPLC with fluorimetric detection [J]. Chromatographia, 2005, 62(1/2): 25-31. [5] MOLDOVEANU S C, KISER M. Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke [J]. Journal of Chromatography A, 2007, 1141(1): 90-97. doi: 10.1016/j.chroma.2006.11.100 [6] HAN S Q, LIU B B, LIU Y, et al. Silver nanoparticle induced chemiluminescence of the hexacyanoferrate-fluorescein system, and its application to the determination of catechol [J]. Microchimica Acta, 2016, 183(2): 917-921. doi: 10.1007/s00604-015-1704-4 [7] ZHANG H, ZHAO J S, LIU H T, et al. Electrochemical determination of diphenols and their mixtures at the multiwall carbon nanotubes/poly (3-methylthiophene) modified glassy carbon electrode [J]. Microchimica Acta, 2010, 169(3/4): 277-282. [8] LIN H G, GAN T, WU K B. Sensitive and rapid determination of catechol in tea samples using mesoporous Al-doped silica modified electrode [J]. Food Chemistry, 2009, 113(2): 701-704. doi: 10.1016/j.foodchem.2008.07.073 [9] ZHANG Y H, LEI Y N, LU H, et al. Electrochemical detection of bisphenols in food: A review [J]. Food Chemistry, 2021, 346: 128895. doi: 10.1016/j.foodchem.2020.128895 [10] SARIKA C, SHIVAKUMAR M S, SHIVAKUMARA C, et al. A novel amperometric catechol biosensor based on α-Fe2O3 nanocrystals-modified carbon paste electrode [J]. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(3): 625-634. doi: 10.3109/21691401.2016.1167702 [11] BATISTA L C D, SANTOS T I S, SANTOS J E L, et al. Metal organic framework-235 (MOF-235) modified carbon paste electrode for catechol determination in water [J]. Electroanalysis, 2021, 33(1): 57-65. doi: 10.1002/elan.201800811 [12] REZA ABBASI A, MOSHTKOB A, SHAHABADI N, et al. Synthesis of nano zinc-based metal-organic frameworks under ultrasound irradiation in comparison with solvent-assisted linker exchange: Increased storage of N2 and CO2 [J]. Ultrasonics Sonochemistry, 2019, 59: 104729. doi: 10.1016/j.ultsonch.2019.104729 [13] LIU G Y, TIAN M S, LU M, et al. Preparation of magnetic MOFs for use as a solid-phase extraction absorbent for rapid adsorption of triazole pesticide residues in fruits juices and vegetables [J]. Journal of Chromatography B, 2021, 1166: 122500. doi: 10.1016/j.jchromb.2020.122500 [14] DAN-HARDI M, SERRE C, FROT T, et al. A new photoactive crystalline highly porous titanium(IV) dicarboxylate [J]. Journal of the American Chemical Society, 2009, 131(31): 10857-10859. doi: 10.1021/ja903726m [15] PRATHAP M U A, GUNASEKARAN S. Rapid and scalable synthesis of zeolitic imidazole framework (ZIF-8) and its use for the detection of trace levels of nitroaromatic explosives [J]. Advanced Sustainable Systems, 2018, 2(10): 1800053. doi: 10.1002/adsu.201800053 [16] SHERINO B, MOHAMAD S, ABDUL HALIM S N, et al. Electrochemical detection of hydrogen peroxide on a new microporous Ni-metal organic framework material-carbon paste electrode [J]. Sensors and Actuators B:Chemical, 2018, 254: 1148-1156. doi: 10.1016/j.snb.2017.08.002 [17] LIU C S, LI J J, PANG H. Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing [J]. Coordination Chemistry Reviews, 2020, 410: 213222. doi: 10.1016/j.ccr.2020.213222 [18] LIU S Y, LAI C, LIU X G, et al. Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing [J]. Coordination Chemistry Reviews, 2020, 424: 213520. doi: 10.1016/j.ccr.2020.213520 [19] LI Z, ZHU M S. Detection of pollutants in water bodies: Electrochemical detection or photo-electrochemical detection? [J]. Chemical Communications, 2020, 56(93): 14541-14552. doi: 10.1039/D0CC05709F [20] WANG H L, HU Q Q, MENG Y, et al. Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode [J]. Journal of Hazardous Materials, 2018, 353: 151-157. doi: 10.1016/j.jhazmat.2018.02.029 [21] MUELLER U, SCHUBERT M, TEICH F, et al. Metal–organic frameworks—prospective industrial applications [J]. J Mater Chem, 2006, 16(7): 626-636. doi: 10.1039/B511962F [22] QIU L G, LI Z Q, WU Y, et al. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines [J]. Chemical Communications (Cambridge, England), 2008(31): 3642-3644. doi: 10.1039/b804126a [23] SENTHIL KUMAR R, SENTHIL KUMAR S, ANBU KULANDAINATHAN M. Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction [J]. Microporous and Mesoporous Materials, 2013, 168: 57-64. doi: 10.1016/j.micromeso.2012.09.028 [24] ZHOU J, LI X, YANG L L, et al. The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits [J]. Analytica Chimica Acta, 2015, 899: 57-65. doi: 10.1016/j.aca.2015.09.054 [25] TU X L, XIE Y, MA X, et al. Highly stable reduced graphene oxide-encapsulated Ce-MOF composite as sensing material for electrochemically detecting dichlorophen [J]. Journal of Electroanalytical Chemistry, 2019, 848: 113268. doi: 10.1016/j.jelechem.2019.113268 [26] 张婷. 电化学法合成Zr-MOFs及其检测对苯二酚性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2020. ZHANG T. Study on electrochemical synthesis of Zr-MOFs and its performance in detecting hydroquinone[D]. Harbin: Harbin University of Science and Technology, 2020 (in Chinese)
[27] ZHANG T, WEI J Z, SUN X J, et al. Continuous and rapid synthesis of UiO-67 by electrochemical methods for the electrochemical detection of hydroquinone [J]. Inorganic Chemistry, 2020, 59(13): 8827-8835. doi: 10.1021/acs.inorgchem.0c00580 [28] DONG S Y, LI Z J, FU Y L, et al. Bimetal-organic framework Cu-Ni-BTC and its derivative CuO@NiO: Construction of three environmental small-molecule electrochemical sensors [J]. Journal of Electroanalytical Chemistry, 2020, 858: 113785. doi: 10.1016/j.jelechem.2019.113785 [29] ZHANG T, WEI J Z, SUN X J, et al. Rapid synthesis of UiO-66 by means of electrochemical cathode method with electrochemical detection of 2, 4, 6-TCP [J]. Inorganic Chemistry Communications, 2020, 111: 107671. doi: 10.1016/j.inoche.2019.107671 [30] HU P, ZHU X M, LUO X H, et al. Cathodic electrodeposited Cu-BTC MOFs assembled from Cu(II) and trimesic acid for electrochemical determination of bisphenol A [J]. Microchimica Acta, 2020, 187(2): 145. doi: 10.1007/s00604-020-4124-z [31] BRONDANI D, ZAPP E, DA SILVA HEYING R, et al. Copper-based metal-organic framework applied in the development of an electrochemical biomimetic sensor for catechol determination [J]. Electroanalysis, 2017, 29(12): 2810-2817. doi: 10.1002/elan.201700509 [32] SCHUBERT D M, VISI M Z, KNOBLER C B. Acid-catalyzed synthesis of zinc imidazolates and related bimetallic metal-organic framework compounds [J]. Main Group Chemistry, 2008, 7(4): 311-322. doi: 10.1080/10241220902750928 [33] HUANG X Z, HUANG D H, CHEN J Y, et al. Fabrication of novel electrochemical sensor based on bimetallic Ce-Ni-MOF for sensitive detection of bisphenol A [J]. Analytical and Bioanalytical Chemistry, 2020, 412(4): 849-860. doi: 10.1007/s00216-019-02282-3 [34] WANG Y, CHEN H H, HU X Y, et al. Highly stable and ultrasensitive chlorogenic acid sensor based on metal-organic frameworks/titanium dioxide nanocomposites [J]. The Analyst, 2016, 141(15): 4647-4653. doi: 10.1039/C6AN00727A [35] CAO Q, XIAO Y S, LIU N, et al. Synthesis of Yolk/Shell heterostructures MOF@MOF as biomimetic sensing platform for catechol detection [J]. Sensors and Actuators B:Chemical, 2021, 329: 129133. doi: 10.1016/j.snb.2020.129133 [36] MOLLARASOULI F, KURBANOGLU S, ASADPOUR-ZEYNALI K, et al. Preparation of porous Cu metal organic framework/ZnTe nanorods/Au nanoparticles hybrid platform for nonenzymatic determination of catechol [J]. Journal of Electroanalytical Chemistry, 2020, 856: 113672. doi: 10.1016/j.jelechem.2019.113672 [37] XU C X, LIU L B, WU C, et al. Unique 3D heterostructures assembled by quasi-2D Ni-MOF and CNTs for ultrasensitive electrochemical sensing of bisphenol A [J]. Sensors and Actuators B:Chemical, 2020, 310: 127885. doi: 10.1016/j.snb.2020.127885 [38] KıRANŞAN K D, TOPÇU E. Graphene paper with sharp-edged nanorods of Fe–CuMOF as an excellent electrode for the simultaneous detection of catechol and resorcinol [J]. Electroanalysis, 2019, 31(12): 2518-2529. doi: 10.1002/elan.201900352 [39] LI J, XIA J F, ZHANG F F, et al. An electrochemical sensor based on copper-based metal-organic frameworks-graphene composites for determination of dihydroxybenzene isomers in water [J]. Talanta, 2018, 181: 80-86. doi: 10.1016/j.talanta.2018.01.002 [40] YE Z, WANG Q W, QIAO J T, et al. In situ synthesis of sandwich MOFs on reduced graphene oxide for electrochemical sensing of dihydroxybenzene isomers [J]. The Analyst, 2019, 144(6): 2120-2129. doi: 10.1039/C8AN02307G [41] LI B, MA J G, CHENG P. Integration of metal nanoparticles into metal-organic frameworks for composite catalysts: Design and synthetic strategy [J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(32): 1804849. doi: 10.1002/smll.201804849 [42] YANG Y Z, WANG Q X, QIU W W, et al. Covalent immobilization of Cu3(btc)2 at chitosan-electroreduced graphene oxide hybrid film and its application for simultaneous detection of dihydroxybenzene isomers [J]. The Journal of Physical Chemistry C, 2016, 120(18): 9794-9803. doi: 10.1021/acs.jpcc.6b01574 [43] XIE Y, TU X L, MA X, et al. In-situ synthesis of hierarchically porous polypyrrole@ZIF-8/graphene aerogels for enhanced electrochemical sensing of 2, 2-methylenebis (4-chlorophenol) [J]. Electrochimica Acta, 2019, 311: 114-122. doi: 10.1016/j.electacta.2019.04.132 [44] WANG X, SHI Y R, SHAN J J, et al. Electrochemical sensor for determination of bisphenol A based on MOF-reduced graphene oxide composites coupled with cetyltrimethylammonium bromide signal amplification [J]. Ionics, 2020, 26(6): 3135-3146. doi: 10.1007/s11581-019-03260-6 [45] 石亚茹. 构建MOFs电化学传感器检测酚类污染物的研究[D]. 大连: 大连理工大学, 2020. SHI Y R. Construction of electrochemical sensor based on MOFs for the detection of phenolic contaminants[D]. Dalian, China: Dalian University of Technology, 2020 (in Chinese).
[46] WANG X, LU X B, WU L D, et al. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A [J]. Biosensors and Bioelectronics, 2015, 65: 295-301. doi: 10.1016/j.bios.2014.10.010 [47] ZHANG T, WANG L, GAO C W, et al. Hemin immobilized into metal-organic frameworks as an electrochemical biosensor for 2, 4, 6-trichlorophenol [J]. Nanotechnology, 2018, 29(7): 074003. doi: 10.1088/1361-6528/aaa26e [48] ARUL P, HUANG S T, GOWTHAMAN N S K, et al. Electrocatalyst based on Ni-MOF intercalated with amino acid-functionalized graphene nanoplatelets for the determination of endocrine disruptor bisphenol A [J]. Analytica Chimica Acta, 2021, 1150: 338228. doi: 10.1016/j.aca.2021.338228 [49] YADAV D K, GANESAN V, MARKEN F, et al. Metal@MOF materials in electroanalysis: Silver-enhanced oxidation reactivity towards nitrophenols adsorbed into a zinc metal organic framework—Ag@MOF-5(Zn) [J]. Electrochimica Acta, 2016, 219: 482-491. doi: 10.1016/j.electacta.2016.10.009 [50] KıRANŞAN K D. Preparation and characterization of highly flexible, free-standing, three-dimensional and rough NiMOF/rGO composite paper electrode for determination of catechol [J]. ChemistrySelect, 2019, 4(21): 6488-6495. doi: 10.1002/slct.201900974 [51] DUAN J G, LI Y S, PAN Y C, ET AL. Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials [J]. Coordination Chemistry Reviews, 2019, 395: 25-45. doi: 10.1016/j.ccr.2019.05.018 [52] FENG Y L, WANG F Y, WANG L Y, et al. In situ growth of MoS2 on three-dimensional porous carbon for sensitive electrochemical determination of bisphenol A [J]. Journal of Applied Electrochemistry, 2021, 51(2): 307-316. doi: 10.1007/s10800-020-01499-w [53] XU X, ZHANG Q Q, YU Y K, et al. Naturally dried graphene aerogels with superelasticity and tunable poisson's ratio [J]. Advanced Materials, 2016, 28(41): 9223-9230. doi: 10.1002/adma.201603079 [54] LU M X, DENG Y J, LUO Y, et al. Graphene aerogel-metal-organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions [J]. Analytical Chemistry, 2019, 91(1): 888-895. doi: 10.1021/acs.analchem.8b03764 [55] LUO G L, ZOU R Y, NIU Y Y, et al. Fabrication of ZIF-67@three-dimensional reduced graphene oxide aerogel nanocomposites and their electrochemical applications for rutin detection [J]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 190: 113505. doi: 10.1016/j.jpba.2020.113505 [56] WEI W, HU H H, CHEN L L, et al. Size-controllable synthesis of zinc ferrite/reduced graphene oxide aerogels: Efficient electrochemical sensing of p-nitrophenol [J]. Nanotechnology, 2020, 31(43): 435706. doi: 10.1088/1361-6528/ab9e91 [57] YANG J, ZHAO F Q, ZENG B Z. One-step synthesis of a copper-based metal-organic framework-graphene nanocomposite with enhanced electrocatalytic activity [J]. RSC Advances, 2015, 5(28): 22060-22065. doi: 10.1039/C4RA16950F [58] ZHANG T T, XING Y, SONG Y, et al. AuPt/MOF-graphene: A synergistic catalyst with surprisingly high peroxidase-like activity and its application for H2O2 detection [J]. Analytical Chemistry, 2019, 91(16): 10589-10595. doi: 10.1021/acs.analchem.9b01715 [59] SUN D P, YANG D C, WEI P, et al. One-step electrodeposition of silver nanostructures on 2D/3D metal-organic framework ZIF-67: Comparison and application in electrochemical detection of hydrogen peroxide [J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41960-41968. [60] ALVES N M, MANO J F. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications [J]. International Journal of Biological Macromolecules, 2008, 43(5): 401-414. doi: 10.1016/j.ijbiomac.2008.09.007 [61] QIAN K, FANG G Z, WANG S. A novel core-shell molecularly imprinted polymer based on metal-organic frameworks as a matrix [J]. Chemical Communications (Cambridge, England), 2011, 47(36): 10118-10120. doi: 10.1039/c1cc12935j [62] AN H D, LI M M, GAO J, et al. Incorporation of biomolecules in Metal-Organic Frameworks for advanced applications [J]. Coordination Chemistry Reviews, 2019, 384: 90-106. doi: 10.1016/j.ccr.2019.01.001 [63] ZHAO F. Metal-organic frameworks-based electrochemical sensors and biosensors [J]. International Journal of Electrochemical Science, 2019: 5287-5304. doi: 10.20964/2019.06.63 [64] XU J Y, XIA J F, ZHANG F F, et al. An electrochemical sensor based on metal-organic framework-derived porous carbon with high degree of graphitization for electroanalysis of various substances [J]. Electrochimica Acta, 2017, 251: 71-80. doi: 10.1016/j.electacta.2017.08.114 [65] ZHANG M X, LI M S, WU W G, et al. MOF/PAN nanofiber-derived N-doped porous carbon materials with excellent electrochemical activity for the simultaneous determination of catechol and hydroquinone [J]. New Journal of Chemistry, 2019, 43(9): 3913-3920. doi: 10.1039/C9NJ00417C [66] ZHENG S N, WU D, HUANG L M, et al. Isomorphic MOF-derived porous carbon materials as electrochemical sensor for simultaneous determination of hydroquinone and catechol [J]. Journal of Applied Electrochemistry, 2019, 49(6): 563-574. doi: 10.1007/s10800-019-01304-3 [67] CHEN H, WU X X, LAO C F, et al. MOF derived porous carbon modified rGO for simultaneous determination of hydroquinone and catechol [J]. Journal of Electroanalytical Chemistry, 2019, 835: 254-261. doi: 10.1016/j.jelechem.2019.01.027 [68] HUANG R M, LIAO D, CHEN S S, et al. A strategy for effective electrochemical detection of hydroquinone and catechol: Decoration of alkalization-intercalated Ti3C2 with MOF-derived N-doped porous carbon [J]. Sensors and Actuators B:Chemical, 2020, 320: 128386. doi: 10.1016/j.snb.2020.128386 [69] WANG M H, LIU Y K, YANG L Y, et al. Bimetallic metal-organic framework derived FeOx/TiO2 embedded in mesoporous carbon nanocomposite for the sensitive electrochemical detection of 4-nitrophenol [J]. Sensors and Actuators B:Chemical, 2019, 281: 1063-1072. doi: 10.1016/j.snb.2018.11.083 [70] XIAO L L, XU R Y, WANG F. Facile synthesis of CoxP decorated porous carbon microspheres for ultrasensitive detection of 4-nitrophenol [J]. Talanta, 2018, 179: 448-455. doi: 10.1016/j.talanta.2017.11.046 [71] WANG K D, WU C, WANG F, et al. MOF-derived CoPx nanoparticles embedded in nitrogen-doped porous carbon polyhedrons for nanomolar sensing of p-nitrophenol [J]. ACS Applied Nano Materials, 2018, 1(10): 5843-5853. doi: 10.1021/acsanm.8b01501 [72] WANG L B, HU X L. Recent advances in porous carbon materials for electrochemical energy storage [J]. Chemistry, an Asian Journal, 2018, 13(12): 1518-1529. doi: 10.1002/asia.201800553 [73] 张辉, 郭玉鹏, 刘艳华, 等. 稻壳制备多孔炭对肌酐的吸附 [J]. 物理化学学报, 2007, 23(6): 825-829. doi: 10.3866/PKU.WHXB20070606 ZHANG H, GUO Y P, LIU Y H, et al. Adsorption of creatinine on porous carbon prepared from rice husk [J]. Acta Physico-Chimica Sinica, 2007, 23(6): 825-829(in Chinese). doi: 10.3866/PKU.WHXB20070606
[74] FIGUEIREDO J L. Functionalization of porous carbons for catalytic applications [J]. Journal of Materials Chemistry A, 2013, 1(33): 9351. doi: 10.1039/c3ta10876g [75] TANG J, ZHENG S B, JIANG S X, et al. Metal organic framework(ZIF-67)-derived Co nanoparticles/N-doped carbon nanotubes composites for electrochemical detecting of tert-butyl hydroquinone [J]. Rare Metals, 2021, 40(2): 478-488. doi: 10.1007/s12598-020-01536-9 [76] LI L J, DAI P C, GU X, et al. High oxygen reduction activity on a metal-organic framework derived carbon combined with high degree of graphitization and pyridinic-N dopants [J]. Journal of Materials Chemistry, A. Materials for Energy and Sustainability, 2017, 5(2): 789-795. doi: 10.1039/C6TA08016B [77] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage [J]. Nature Reviews Materials, 2017, 2: 16098. doi: 10.1038/natrevmats.2016.98 [78] WANG J J, ZHAO J H, YANG J, et al. An electrochemical sensor based on MOF-derived NiO@ZnO hollow microspheres for isoniazid determination [J]. Microchimica Acta, 2020, 187(7): 380. doi: 10.1007/s00604-020-04305-8 [79] ASSI H, MOUCHAHAM G, STEUNOU N, et al. Titanium coordination compounds: From discrete metal complexes to metal–organic frameworks [J]. Chemical Society Reviews, 2017, 46(11): 3431-3452. doi: 10.1039/C7CS00001D [80] YUAN S, BO X J, GUO L P. In-situ insertion of multi-walled carbon nanotubes in the Fe3O4/N/C composite derived from iron-based metal-organic frameworks as a catalyst for effective sensing acetaminophen and metronidazole [J]. Talanta, 2019, 193: 100-109. doi: 10.1016/j.talanta.2018.09.065 [81] WANG S Y, ZHANG X H, HUANG J L, et al. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co3O4 nanododecahedras in situ decorated on carbon nanotubes for glucose detection and biofuel cell application [J]. Analytical and Bioanalytical Chemistry, 2018, 410(7): 2019-2029. doi: 10.1007/s00216-018-0875-3 [82] WANG X G, LI W, XIONG D H, et al. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting [J]. Advanced Functional Materials, 2016, 26(23): 4067-4077. doi: 10.1002/adfm.201505509 [83] ZHANG L J, YANG Y M, ZIAEE M A, et al. Nanohybrid of carbon quantum dots/molybdenum phosphide nanoparticle for efficient electrochemical hydrogen evolution in alkaline medium [J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9460-9467. [84] SHI Y M, ZHANG B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction [J]. Chemical Society Reviews, 2016, 45(6): 1529-1541. doi: 10.1039/C5CS00434A [85] ZHOU Q Q, WANG J Y, GUO F Y, et al. Self-supported bimetallic phosphide-carbon nanostructures derived from metal-organic frameworks as bifunctional catalysts for highly efficient water splitting [J]. Electrochimica Acta, 2019, 318: 244-251. doi: 10.1016/j.electacta.2019.06.082 [86] CHENG N Y, REN L, XU X, et al. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts [J]. Advanced Energy Materials, 2018, 8(25): 1801257. doi: 10.1002/aenm.201801257 [87] SUN Q Q, WANG M, BAO S J, et al. Analysis of cobalt phosphide (CoP) nanorods designed for non-enzyme glucose detection [J]. The Analyst, 2016, 141(1): 256-260. doi: 10.1039/C5AN01928A [88] LIU D N, CHEN T, ZHU W X, et al. Cobalt phosphide nanowires: An efficient electrocatalyst for enzymeless hydrogen peroxide detection [J]. Nanotechnology, 2016, 27(33): 33LT01. doi: 10.1088/0957-4484/27/33/33LT01 [89] LIANG Z Q, HUO R J, YIN S H, et al. Eco-efficient synthesis route of carbon-encapsulated transition metal phosphide with improved cycle stability for lithium-ion batteries [J]. Journal of Materials Chemistry A, 2014, 2(4): 921-925. doi: 10.1039/C3TA13879H [90] ZHENG J L, ZHOU W, LIU T, et al. Homologous NiO//Ni2P nanoarrays grown on nickel foams: A well matched electrode pair with high stability in overall water splitting [J]. Nanoscale, 2017, 9(13): 4409-4418. doi: 10.1039/C6NR07953A [91] CALLEJAS J F, READ C G, POPCZUN E J, et al. Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP [J]. Chemistry of Materials, 2015, 27(10): 3769-3774. doi: 10.1021/acs.chemmater.5b01284 [92] WU X X, LAO C F, LI Y C, et al. Tunable synthesis of CoP and CoP2 decorated 3D carbon nanohybrids and the application of CoP2 decorated one in electrochemical detection of chloramphenicol in milk and honey [J]. Journal of the Electrochemical Society, 2018, 165(16): B916-B923. doi: 10.1149/2.1011816jes