-
氯代芳烃,包括二噁英(PCDD/Fs)、多氯联苯、五氯苯、六氯苯等[1],作为一类典型的持久性有机污染物,具有高毒性、生物累积性,难降解性和远距离迁移性[2],会对环境造成严重的危害[3],因此,包括六氯苯、PCDD/Fs以及多氯联苯等在内的氯代芳烃已被列入《关于持久性有机污染物的斯德哥尔摩公约》。研究表明,废弃物焚烧[4],铁矿石烧结,金属冶炼[5]、炼焦以及发电供热等热工业过程的非故意排放[6]是目前二噁英等氯代芳烃的主要来源[7]。Lei等[8]根据估算的二噁英排放因子以及对各类二噁英来源的调查,计算了2018年中国的二噁英排放总量为9267 g TEQ,约占世界排放总量的9.5%。在各类排放源中,金属生产、供热和发电、垃圾焚烧、垃圾处置是我国二噁英的主要排放来源,分别占国家排放总量的53.7%、22.3%、9.8%和7.1%,其它排放源仅占7.1%。陈露露等[9]的研究表明,在空间上,我国PCDD/Fs的排放主要集中在京津冀、长三角、珠三角等地区,其中京津冀和长三角地区的PCDD/Fs排放主要来源于钢铁生产,而珠三角地区主要来源于垃圾焚烧。此外,在日本[10]和葡萄牙[11],垃圾焚烧是最主要的二噁英排放来源。近年来,随着公民环保意识的增强以及国家对环境保护的重视,我国对生活垃圾焚烧二噁英的排放浓度进行了严格的控制。2016年执行的《生活垃圾焚烧污染控制标准》中规定垃圾焚烧烟气中二噁英类的排放浓度降低至0.1 ng·m−3[12]。因此,控制和削减热工业过程,尤其是垃圾焚烧行业中的二噁英等氯代芳烃的排放对于我国的履约建设及环境安全具有重要意义。
垃圾焚烧等热工业过程中,除了氯代芳烃等有机污染物的排放外,高温条件也会造成氮氧化物(NOx)的生成[13]。NOx的主要生成机理有燃料型NOx[14]、热力型NOx和瞬时型NOx[15]。垃圾焚烧炉膛温度一般为850—1000 ℃,因此NOx排放主要来自燃料型NOx,即燃料中的含氮化合物在燃烧条件下转化为NOx[14]。氮氧化物的排放会引起一系列环境问题,如臭氧层空洞[16]、酸雨、雾霾[17]、光化学烟雾等[14]。随着国家对脱硝的重视及相关政策的实施,工业氮氧化物的排放量从2010年的1523.8万t,降低至2019年的548.1万t,总体下降了64.0%[18]。虽然NOx排放量逐年下降,但工业过程的排放限值也在进一步收紧。2016年执行的《生活垃圾焚烧污染控制标准》规定,垃圾焚烧烟气中NOx的排放浓度从400 mg·m−3降低至250 mg·m−3(24 h均值)[12]。因此,对氮氧化物的削减也至关重要[19]。
目前,常见的氯代芳烃的控制技术主要有热焚烧技术、光催化氧化技术、电催化氧化技术、催化加氢脱氯技术[20]、催化氧化技术等[21-22]。其中,催化氧化技术可以将氯代芳烃深度降解为CO2、H2O、HCl等小分子物质,从而引起研究者们的广泛关注[23]。催化氧化技术的核心是催化剂,常见的催化剂主要有贵金属催化剂(如Pt、Pb等)、钙钛矿催化剂(ABO3型)和过渡金属氧化物催化剂(CrOx、MnOx、VOx等)[24]。其中,贵金属催化剂拥有优异的催化活性,但其成本高,抗氯中毒能力弱;钙钛矿型催化剂热稳定性强,具有一定的抗中毒能力,并且价格低廉,但是其活性温度高,容易产生高氯代副产物。相比而言,过渡金属氧化物具有较低的成本、较强的催化活性以及抗中毒能力,且不易产生二次污染等优势[25]。其中以二氧化钛为载体的过渡金属氧化物催化剂凭借其优异的性能在催化降解领域有着广泛的应用。
氮氧化物(NOx)的控制技术通常可以分为3类[14]:燃烧前脱氮、改进燃烧方式降低燃烧后氮氧化物的排放量、烟气脱硝技术。在这3类技术中,烟气脱硝技术在工业上的应用最为广泛,常见的烟气脱硝技术主要有选择性催化还原(SCR)、选择性非催化还原、湿式洗涤法、吸附法、电子束法、电化学还原法等。其中,选择性催化还原法降解效率较高,目前已经成为主要的NOx减排技术[26]。在SCR反应中,催化剂的选择也至关重要,通常需要满足以下特性:(1)脱硝活性好;(2)机械强度高;(3)合适的操作温度范围;(4)抗中毒能力强。常见的用于NH3-SCR反应的催化剂主要有贵金属(Pt,Pd、Au等)、贵金属/过渡金属(Pt/Al2O3、Pt/ZSM5、Pd/Al2O3、Rh/Al2O3、Rh/ZSM5等)、过渡金属氧化物(NiO、Co3O4、V2O5、Fe3O4、MnO2等)以及过渡金属(Cu、Fe、Cr、V、Mn等)。其中以钒基催化剂为代表的过渡金属氧化物由于具有良好的低温活性以及优异的抗SO2能力在工业催化中有着广泛的应用。V2O5-WO3/TiO2催化剂是目前工业上应用最广泛的商业催化剂,这类催化剂在固体废弃物焚烧等行业都表现出了优异的性能[27]。
目前工业上对污染物的控制已经由单一污染物向混合多污染物的方向发展[28],在固体废弃物焚烧、铁矿石烧结和金属冶炼等行业中会同时排放氯代芳烃和氮氧化物,这两类物质均作为PM2.5和O3的重要前驱体,容易对生态环境及人体健康造成严重威胁。因此,有必要对二者进行协同处置,从而达到排放标准。目前,关于氯代芳烃和NOx的协同控制已有了一定进展。Xu等[29]的研究发现,在有氧条件下,NOx对五氯苯的降解有促进作用,而在无氧条件下,NOx对五氯苯促进作用则忽略不计。Bertinchamps等[30]发现,对于VOx-TiO2催化剂而言,在有氧条件下,通入NO后对氯苯降解活性没有较大提升,而当催化剂中含有WO3和MoO3时,NO则对氯苯的降解有较为明显的促进作用。此外,Gallastegi-Villa等[31]还通过研究不同类型催化剂(将Cu、Fe、Mn、V负载在ZSM-5载体上)对氯代芳烃和NOx的降解活性,并与商用VOx/TiO2催化剂进行对比,结果发现在模拟焚烧厂烟气环境的条件下,与金属/沸石催化剂相比,VOx/TiO2催化剂对NO和o-DCB的协同降解表现出了最好的性能。因此,催化剂对二者协同处置的活性与反应条件和催化剂的种类息息相关。然而,目前对于氯代芳烃和NOx的协同处置的研究大多数集中于实验室自主研发的催化剂,而对商用催化剂的协同活性缺乏系统全面的评价。因此开展商用催化剂对氯代芳烃和NOx的协同处置研究能够为实际工业过程中两类污染物的协同减排提供科学有效的参考与支撑。
本研究选取了5类商用SCR蜂窝催化剂为研究对象,选取氯苯(CB)作为氯代芳烃的模型污染物,一氧化氮(NO)作为NOx的模型污染物,分别探究在不同温度条件下商用SCR催化剂对CB、NO以及CB和NO协同降解活性。采用XRD、SEM-EDX、XPS、BET等表征技术对催化剂的晶型、微观形貌、元素组成以及元素价态、比表面积进行深入分析,探究不同催化剂协同降解活性差异的主导因素,利用热脱附-GC/MS联用技术全面研究催化降解过程中的中间产物,揭示CB与NO协同控制机制。
商用催化剂对氯代芳烃和氮氧化物的协同处置研究
The research on the synergistic elimination of chlorinated aromatics and nitrogen oxides over commercial catalysts
-
摘要: 多污染物的协同控制是环境催化研究的前沿,氯代芳烃和氮氧化物(NOx)是生活垃圾焚烧等热工业过程中共存的典型污染物,目前商用催化剂能否实现二者的协同处置尚不清楚。因此,本文研究了5类商用SCR催化剂对氯苯(CB)和一氧化氮(NO)的协同处置活性。结果表明,1#催化剂在300 ℃下对CB和NO具有较好的降解活性,且在90 min的反应周期内具有较高的稳定性,这是由于1#催化剂具有较大比表面积、较高比例的表面吸附氧(Oβ)以及V5+。1#催化剂对CB和NO的协同降解实验显示,在250 ℃和300 ℃下,NO的引入能够生成NO2,可促进CB的降解。300 ℃时CB的存在抑制了NO的转化,而当温度降到250 ℃时,CB对NO的转化有促进作用。这可能是因为在较高温度下NO2生成量相对较多,C—Cl键解离程度较大,在一定程度上会影响SCR反应的进行,导致NO的转化率较低;而温度降低时,CO2选择性增强,可能会抑制NH3的过度氧化,同时NO2生成量和C—Cl键的解离均变弱,进而使得SCR反应相对增强。利用热脱附/GC-MS联用系统全面分析了降解过程中产生的中间产物,发现CB和NO协同处置体系中间产物种类显著减少,经过脱氯、烷基化、氧化等一系列反应生成苯、甲苯、苯甲醛和苯酚等中间产物,最终矿化生成H2O和CO2。可见NO的引入不仅能促进CB的深度氧化,还能在一定程度上抑制多氯代副产物的生成。Abstract: The synergistic control of various pollutants has attracted enormous interest in recent years. Both nitrogen oxides (NOx) and chlorinated aromatic hydrocarbon are typical pollutants coexisting in municipal solid waste incineration and other thermal industrial processes. However, it is unclear whether commercial catalysts can achieve the synergistic control of the NOx and chlorinated aromatic hydrocarbon at present. Hence, the synergistic treatment of chlorobenzene (CB) and nitric oxide (NO) over five typical commercial catalysts at 250 ℃ and 300 ℃ was investigated in this study. The results indicated that 1# catalyst exhibited the best degradation activity and excellent stability within 90 min reaction period, which was attributed to its larger specific surface area, higher proportion of surface-adsorbed oxygen(Oβ) and V5+. The synergistic elimination of CB and NO over 1# catalyst demonstrated that the addition of NO could generate NO2 at 250 ℃ and 300 ℃, thus promoting the degradation of CB. In contrast, in the presence of CB, the conversion of NO was inhibited at 300 ℃ but was promoted as the temperature dropped to 250 ℃. Since at the condition of higher temperature, a large amount of NO2 was generated, and the C—Cl bond was greatly dissociated, which could affect the process of the SCR reaction, resulting in a lower conversion rate of NO. Nevertheless, as the temperature dropped, the enhancement of CO2 selectivity could inhibit the over-oxidation of NH3. Meanwhile, both the generation of NO2 and the dissociation of C—Cl were weakened, which in turn facilitated the SCR reaction. In addition, the intermediate products during the degradation process were comprehensively analyzed by thermal desorption/GC-MS. The results implied that the types of intermediate products in the synergistic control system of CB and NO were significantly reduced. A series of intermediate products such as benzene, toluene, benzaldehyde and phenol were generated via the reaction of dechlorination, alkylation and oxidation, and finally mineralized to CO2 and H2O. It was noted that the introduction of NO could not only promote the deep oxidation of CB but also inhibit the formation of polychlorinated by-products to a certain extent.
-
图 5 5类商用催化剂对CB的(a)降解效率和(b) CO2的选择性(T=300 ℃, CB 921 mg·m−3);(c)5类商用催化剂对NO的转化率(T=300 ℃, NO 134 mg·m−3, NH3 82 mg·m−3) (d) 1#催化剂分别对CB的降解效率、CO2选择性以及对NO的转化率(T=250 ℃, CB 921 mg·m−3, NO 125 mg·m−3, NH3 82 mg·m−3)
Figure 5. (a) The degradation efficiency of CB and (b) the selectivity of CO2 over five typical commercial catalysts (T=300 ℃, CB 921 mg·m−3), (c) The conversion rate of NO over five typical commercial catalyst (T=300 ℃, NO 134 mg·m−3, NH3 82 mg·m−3) (d) The degradation efficiency of CB, the selectivity of CO2 and the conversion rate of NO over 1# catalyst (T=250 ℃, CB 921 mg·m−3, NO 125 mg·m−3, NH3 82 mg·m−3)
表 1 5类商用催化剂的元素组成
Table 1. Element composition of the five typical commercial catalysts
催化剂 Catalysts 元素 Elements 质量 Weight 1# O 55.91 Ti 43.07 V 1.02 2# O 60.75 Ti 38.59 V 0.66 3# O 61.30 Ti 37.69 V 0.55 W 0.46 4# O 60.12 Ti 37.68 W 1.77 V 0.42 5# Ti 60.42 O 38.28 V 1.30 表 2 5类商用催化剂的比表面积和孔径分布
Table 2. Specific surface area and pore diameter of five typical commercial catalysts
催化剂
Catalysts比表面积/( m2·g−1)
Specific surface area总孔容/( cm3·g−1)
Total pore volume平均孔径/nm
Average pore diameter1# 67.87 0.25 14.79 2# 72.48 0.27 15.01 3# 49.78 0.24 19.56 4# 70.79 0.26 14.92 5# 76.21 0.26 13.49 表 3 5类商用催化剂的XPS表征结果
Table 3. The XPS results of five typical commercial catalysts
催化剂
Catalysts结合能 /eV Binding energy V5+/V Oβ/O V5+ V4+ Oα Oβ Oγ 1# 517.53 516.47 530.25 531.70 — 38.95% 44.10% 2# 517.01 516.28 530.25 531.90 — 37.17% 23.95% 3# 517.80 516.49 530.30 531.86 532.92 19.85% 12.46% 4# 517.50 516.40 530.25 531.58 532.88 25.55% 13.22% 5# 517.20 516.30 530.24 531.30 — 38.05% 29.02% -
[1] FAN Y, ZHANG H J, REN M H, et al. Low-temperature catalytic degradation of chlorinated aromatic hydrocarbons over bimetallic Ce-Zr/UiO-66 catalysts [J]. Chemical Engineering Journal, 2021, 414: 128782. doi: 10.1016/j.cej.2021.128782 [2] 刘莎, 黄学敏, 黄林艳, 等. 酸碱气体对氯代芳烃削减的影响 [J]. 环境化学, 2014, 33(5): 731-738. doi: 10.7524/j.issn.0254-6108.2014.05.015 LIU S, HUANG X M, HUANG L Y, et al. Influence of acid and basic gases on the reduction of chlorinated aromatics [J]. Environmental Chemistry, 2014, 33(5): 731-738(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.05.015
[3] XU C H, LIU C Q, ZHONG Y, et al. Study on the active sites of Cu-ZSM-5 in trichloroethylene catalytic combustion with air [J]. Chinese Chemical Letters, 2008, 19(11): 1387-1390. doi: 10.1016/j.cclet.2008.07.010 [4] WEIDEMANN E, LUNDIN L. Behavior of PCDF, PCDD, PCN and PCB during low temperature thermal treatment of MSW incineration fly ash [J]. Chemical Engineering Journal, 2015, 279: 180-187. doi: 10.1016/j.cej.2015.05.015 [5] BA T, ZHENG M H, ZHANG B, et al. Estimation and characterization of PCDD/Fs and dioxin-like PCBs from secondary copper and aluminum metallurgies in China [J]. Chemosphere, 2009, 75(9): 1173-1178. doi: 10.1016/j.chemosphere.2009.02.052 [6] JIN R, ZHENG M H, LAMMEL G, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons: Sources, formation mechanisms, and occurrence in the environment [J]. Progress in Energy and Combustion Science, 2020, 76: 100803. doi: 10.1016/j.pecs.2019.100803 [7] BA T, ZHENG M H, ZHANG B, et al. Estimation and characterization of PCDD/Fs and dioxin-like PCB emission from secondary zinc and lead metallurgies in China [J]. Journal of Environmental Monitoring:JEM, 2009, 11(4): 867-872. doi: 10.1039/b818555g [8] LEI R R, XU Z C, XING Y, et al. Global status of dioxin emission and China's role in reducing the emission [J]. Journal of Hazardous Materials, 2021, 418: 126265. doi: 10.1016/j.jhazmat.2021.126265 [9] 陈露露, 黄韬, 陈凯杰, 等. 我国PCDD/Fs网格化大气排放清单 [J]. 环境科学, 2020, 41(2): 510-519. CHEN L L, HUANG T, CHEN K J, et al. Gridded atmospheric emission inventory of PCDD/fs in China [J]. Environmental Science, 2020, 41(2): 510-519(in Chinese).
[10] Japan Ministry of The Environment, 2016. Dioxin Emission Inventory, Dioxin Emission Inventory[EB/OL].http://www.env.go.jp/press/files/jp/102407.pdf. [11] QUINA M J, PEDRO R S, GANDO-FERREIRA L M, et al. A national inventory to estimate release of polychlorinated dibenzo-p-dioxins and dibenzofurans in Portugal [J]. Chemosphere, 2011, 85(11): 1749-1758. doi: 10.1016/j.chemosphere.2011.09.028 [12] 中华人民共和国生态环境部. 生活垃圾焚烧污染控制标准[EB/OL]. [2014-05-16] .https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/gthw/gtfwwrkzbz/201405/W020140530531389708182.pdf Ministry of Ecology and Environment of the People's Republic of China. Standard for pollution control on the municipal solid waste incineration[EB/OL]. [2014-05-16].https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/gthwgtfwwrkzbz/201405/W020140530531389708182.
[13] GAN L N, SHI W B, LI K Z, et al. Synergistic promotion effect between NOx and chlorobenzene removal on MnOx-CeO2 catalyst [J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30426-30432. [14] GHOLAMI F, TOMAS M, GHOLAMI Z, et al. Technologies for the nitrogen oxides reduction from flue gas: A review [J]. Science of the Total Environment, 2020, 714: 136712. doi: 10.1016/j.scitotenv.2020.136712 [15] RAO A, MEHRA R K, DUAN H, et al. Comparative study of the NOx prediction model of HCNG engine [J]. International Journal of Hydrogen Energy, 2017, 42(34): 22066-22081. doi: 10.1016/j.ijhydene.2017.07.107 [16] SHANG X S, HU G R, HE C, et al. Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant [J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 513-519. doi: 10.1016/j.jiec.2011.11.070 [17] BONINGARI T, SMIRNIOTIS P G. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement [J]. Current Opinion in Chemical Engineering, 2016, 13: 133-141. doi: 10.1016/j.coche.2016.09.004 [18] 中华人民共和国生态环境部. 2016-2019年全国生态环境统计公报[EB/OL]. [2020-12-14]. http://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202012/P020201214580320276493.pdf. Ministry of Ecology and Environment of the People's Republic of China. National Bulletin of Ecological Environment Statistics[EB/OL]. [2020-12-14]. http://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202012/P020201214580320276493.pdf.
[19] 纪瑞军. 烧结烟气氧化吸收脱硝工艺研究[D]. 北京: 中国石油大学(北京), 2018. JI R J. The study of oxidation and absorption of NOx in sintering gas[D]. Beijing: China University of Petroleum (Beijing), 2018(in Chinese).
[20] WANG X Y, KANG Q, LI D. Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts [J]. Applied Catalysis B:Environmental, 2009, 86(3/4): 166-175. [21] 刘建胜. 基于机械化学原理的卤代芳烃脱卤降解研究[D]. 杭州: 浙江工业大学, 2016. LIU J S. Studies on degradation and dehalogenation of halogenated aromatics by mechanochemical treatment[D]. Hangzhou: Zhejiang University of Technology, 2016(in Chinese).
[22] 罗邯予. 铈钛基催化剂上氯苯的催化燃烧性能研究[D]. 北京: 北京化工大学, 2019. LUO H Y. Catalytic combustion performance of chlorobenzene over ceria-titania-based complex metal oxides[D]. Beijing: Beijing University of Chemical Technology, 2019(in Chinese).
[23] 陈立. Ru基催化剂对氯代挥发性有机物(CVOCs)的催化氧化研究[D]. 贵阳: 贵州大学, 2018. CHEN L. Catalytic oxidation of chlorinated volatile organic compounds over ruthenium-based catalysts[D]. Guiyang: Guizhou University, 2018(in Chinese).
[24] 赵日晓. 改性钛基催化剂催化氧化气相氯苯以及二噁英的基础研究[D]. 杭州: 浙江大学, 2017. ZHAO R X. Fundamental research of gaseous chlorobenzenes and dioxins catalytic decomposition over modified titanium-based catalysts[D]. Hangzhou: Zhejiang University, 2017(in Chinese).
[25] TIAN W, FAN X Y, YANG H S, et al. Preparation of MnOx/TiO2 composites and their properties for catalytic oxidation of chlorobenzene [J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 887-891. [26] 卢朋. Mn、CeWOx/TiO2催化剂的制备及NH3-SCR性能研究[D]. 杭州: 浙江工业大学, 2017. LU P. Preparation of Mn, CeWOx/TiO2 catalyst and its NH3-SCR activity[D]. Hangzhou: Zhejiang University of Technology, 2017(in Chinese).
[27] CHEN L, LI J H, GE M F. Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3 [J]. The Journal of Physical Chemistry C, 2009, 113(50): 21177-21184. doi: 10.1021/jp907109e [28] 蒋威宇. V2O5-WO3/TiO2催化剂协同净化NOx与氯代芳香化合物的反应特征与副产物研究[D]. 杭州: 浙江大学, 2020. JIANG W Y. Reaction characteristics and byproducts analyses over V2O5-WO3/TiO2 catalyst in the synergistic elimination of NOx and chloroaromatics[D]. Hangzhou: Zhejiang University, 2020(in Chinese).
[29] XU Z Z, DENG S B, YANG Y, et al. Catalytic destruction of pentachlorobenzene in simulated flue gas by a V2O5-WO3/TiO2 catalyst [J]. Chemosphere, 2012, 87(9): 1032-1038. doi: 10.1016/j.chemosphere.2012.01.004 [30] BERTINCHAMPS F, TREINEN M, BLANGENOIS N, et al. Positive effect of NOx on the performances of VOx/TiO2-based catalysts in the total oxidation abatement of chlorobenzene [J]. Journal of Catalysis, 2005, 230(2): 493-498. doi: 10.1016/j.jcat.2005.01.009 [31] GALLASTEGI-VILLA M, ARANZABAL A, GONZÁLEZ-MARCOS J A, et al. Metal-loaded ZSM5 zeolites for catalytic purification of dioxin/furans and NOx containing exhaust gases from MWI plants: Effect of different metal cations [J]. Applied Catalysis B:Environmental, 2016, 184: 238-245. doi: 10.1016/j.apcatb.2015.11.006 [32] CAO J, LIU W Z, KANG K K, et al. Effects of the morphology and crystal-plane of TiO2 on NH3-SCR performance and K tolerance of V2O5-WO3/TiO2 catalyst [J]. Applied Catalysis A:General, 2021, 623: 118285. doi: 10.1016/j.apcata.2021.118285 [33] JIANG Y, GAO X, ZHANG Y X, et al. Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts [J]. Journal of Hazardous Materials, 2014, 274: 270-278. doi: 10.1016/j.jhazmat.2014.04.026 [34] WU Z B, JIN R B, WANG H Q, et al. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature [J]. Catalysis Communications, 2009, 10(6): 935-939. doi: 10.1016/j.catcom.2008.12.032 [35] QU Z P, BU Y B, QIN Y, et al. The improved reactivity of manganese catalysts by Ag in catalytic oxidation of toluene [J]. Applied Catalysis B:Environmental, 2013, 132/133: 353-362. doi: 10.1016/j.apcatb.2012.12.008 [36] HUANG L Y, SU G J, ZHANG A Q, et al. Degradation of polychlorinated biphenyls using mesoporous iron-based spinels [J]. Journal of Hazardous Materials, 2013, 261: 451-462. doi: 10.1016/j.jhazmat.2013.07.064 [37] PAN Y X, ZHAO W, ZHONG Q, et al. Promotional effect of Si-doped V2O5/TiO2 for selective catalytic reduction of NOx by NH3 [J]. Journal of Environmental Sciences, 2013, 25(8): 1703-1711. doi: 10.1016/S1001-0742(12)60181-8 [38] LI G B, SHEN K, WANG L, et al. Synergistic degradation mechanism of chlorobenzene and NOx over the multi-active center catalyst: The role of NO2, Brønsted acidic site, oxygen vacancy [J]. Applied Catalysis B:Environmental, 2021, 286: 119865. doi: 10.1016/j.apcatb.2020.119865 [39] XU J Q, ZOU X L, CHEN G R, et al. Tailored activity of Ce-Ni bimetallic modified V2O5/TiO2 catalyst for NH3-SCR with promising wide temperature window [J]. Vacuum, 2021, 191: 110384. doi: 10.1016/j.vacuum.2021.110384 [40] JIANG W Y, YU Y L, BI F, et al. Synergistic elimination of NOx and chloroaromatics on a commercial V2O5-WO3/TiO2 catalyst: Byproduct analyses and the SO2 effect [J]. Environmental Science & Technology, 2019, 53(21): 12657-12667. [41] XIAO H P, CHEN Y, QI C, et al. Effect of Na poisoning catalyst (V2O5-WO3/TiO2) on denitration process and SO3 formation [J]. Applied Surface Science, 2018, 433: 341-348. doi: 10.1016/j.apsusc.2017.10.048 [42] SUN B H, LI Q Q, ZHENG M H, et al. Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials: A review [J]. Environmental Pollution, 2020, 265: 114908. doi: 10.1016/j.envpol.2020.114908 [43] HUANG H, DAI Q G, WANG X Y. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene [J]. Applied Catalysis B:Environmental, 2014, 158/159: 96-105. doi: 10.1016/j.apcatb.2014.01.062 [44] PARK B H, KIM M, PARK N K, et al. Single layered hollow NiO-NiS catalyst with large specific surface area and highly efficient visible-light-driven carbon dioxide conversion [J]. Chemosphere, 2021, 280: 130759. doi: 10.1016/j.chemosphere.2021.130759 [45] BERTINCHAMPS F, TREINEN M, ELOY P, et al. Understanding the activation mechanism induced by NOx on the performances of VOx/TiO2 based catalysts in the total oxidation of chlorinated VOCs [J]. Applied Catalysis B:Environmental, 2007, 70(1/2/3/4): 360-369. [46] GAN L N, WANG Y, CHEN J J, et al. The synergistic mechanism of NOx and chlorobenzene degradation in municipal solid waste incinerators [J]. Catalysis Science & Technology, 2019, 9(16): 4286-4292. [47] WANG D, CHEN J J, PENG Y, et al. Dechlorination of chlorobenzene on vanadium-based catalysts for low-temperature SCR [J]. Chemical Communications (Cambridge, England), 2018, 54(16): 2032-2035. doi: 10.1039/C7CC08705E [48] GAN L N, LI K Z, XIONG S C, et al. MnOx-CeO2 catalysts for effective NOx reduction in the presence of chlorobenzene [J]. Catalysis Communications, 2018, 117: 1-4. doi: 10.1016/j.catcom.2018.08.008 [49] ZHAI S Y, SU Y T, WENG X L, et al. Synergistic elimination of NOx and chlorinated organics over VOx/TiO2 Catalysts: A combined experimental and DFT study for exploring vanadate domain effect [J]. Environmental Science & Technology, 2021, 55(19): 12862-12870. [50] GAO C, YANG G P, HUANG X, et al. Key intermediates from simultaneous removal of NOx and chlorobenzene over a V2O5–WO3/TiO2 catalyst: A combined experimental and DFT study [J]. Catalysis Science & Technology, 2021, 11(22): 7260-7267. [51] LICHTENBERGER J, AMIRIDIS M D. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts [J]. Journal of Catalysis, 2004, 223(2): 296-308. doi: 10.1016/j.jcat.2004.01.032 [52] DAI Q G, BAI S X, WANG X Y, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts: Mechanism study [J]. Applied Catalysis B:Environmental, 2013, 129: 580-588. doi: 10.1016/j.apcatb.2012.10.006 [53] SUBRAMANIAN P, MURTHY M S. Mechanism of vapor-phase oxidation of anthracene over vanadium pentoxide catalyst [J]. Industrial & Engineering Chemistry Process Design and Development, 1974, 13(2): 112-115.