-
为预防和治疗由微生物引起的多种疾病,大量抗生素被不合理使用[1],残留在环境中的抗生素导致了全球范围内的水体污染[2]。其中,磺胺类抗生素是目前使用最广的抗生素种类之一,被大量应用于医药、畜牧业及水产养殖业等[3-4]。作为一种新型污染物,磺胺类抗生素在地表水、地下水、饮用水及污水中的残留问题严重,即使低浓度暴露,也能对水生生物造成氧化应激毒性[5]。磺胺甲恶唑(SMX)是检出率最高的一种磺胺类抗生素,其在我国部分地区地表水中的平均检出浓度超过100 ng·L-1[6]。由于不能被生物体彻底新陈代谢,磺胺嘧啶(SDZ)、磺胺二甲嘧啶(SMZ)以及磺胺异恶唑(SSX)的环境残留水平也很高[7],对环境、生物及人体健康构成极大威胁。因此,亟需开发环保、高效、低成本的方法以实现磺胺类抗生素的去除。
目前常见的抗生素污染治理办法有物理吸附、生物降解和化学降解等[8-10]。近年来,光催化降解技术作为一种环境友好的污染物处理途径受到普遍关注。在催化剂作用下,仅利用太阳光能即可实现多种污染物的高效降解。其中,石墨型氮化碳(g-C3N4)材料被广泛应用于多种污染物降解,作为一种非金属、可见光响应催化剂,g-C3N4还具有制备方法简便,化学性质稳定,能带结构适宜,环境友好,生物毒性低等诸多优点[11-13]。但g-C3N4的比表面积较小,使催化污染物降解的反应活性位点不能充分暴露,光生载流子的重组率也很高[14]。为提高g-C3N4的比表面积,降低光子电子和空穴的重组率,构建二元或多元纳米复合材料被认为是一种有效的方法[15]。
本研究利用浸渍法在超声辅助下,制备了还原氧化石墨烯/二硫化钼-氮化碳(rGO/MoS2-CN)三元复合材料,并将其应用于4种常见磺胺类抗生素的光催化降解去除。MoS2纳米片是具有2D平面结构的纳米材料,可以作为电子受体,提高电子迁移率[16-17]。rGO比表面积大,可为催化反应提供更多的活性位点[18]。系统研究各反应条件对抗生素降解的影响,明确降解机理。近来,微塑料(MP)被证实广泛存在多种水体环境中[19-20],且有报道证明,微塑料在一定程度上会影响污染物的光催化降解过程[21-22],因此设计实验探究了4种常见微塑料颗粒对目标抗生素降解的影响,及该方法在实际水环境中的应用潜力,旨在为抗生素水体污染综合治理提供技术支持。
rGO/MoS2-CN的制备及可见光催化降解磺胺类抗生素的性能研究
Fabrication rGO/MoS2-CN for photocatalytic degradation of sulfonamides under visible light
-
摘要: 以三聚氰胺为前驱体制备了石墨型氮化碳(MCN)材料,并通过超声辅助浸渍法,将MCN与还原氧化石墨烯(rGO)和二硫化钼(MoS2)纳米片复合,成功制备了rGO/MoS2-CN三元复合材料。采用SEM、XRD、UV-vis和BET等多种手段对材料进行系统表征分析。以磺胺嘧啶(SDZ)、磺胺甲恶唑(SMX)、磺胺异恶唑(SSX)和磺胺二甲嘧啶(SMZ)四种磺胺类抗生素为目标物,考察了rGO/MoS2-CN在可见光条件下的催化活性。结果表明rGO/MoS2-CN与MCN相比,对SDZ、SSX、SMX和SMZ的降解效率大幅提升,可见光照60 min,降解百分比分别提高51.22%、52.62%、38.47%和45.05%。rGO/MoS2-CN比表面积的增加有利于电子的传输与分离,对可见光吸收利用能力也显著增强。此外,系统研究了催化剂用量、抗生素初始浓度、pH值变化、微塑料颗粒等对目标抗生素降解率的影响。通过活性物种捕获实验,明确了参与抗生素降解的主要活性物种,阐述了降解机理。rGO/MoS2-CN材料的制备和应用有助于减轻水体抗生素残留给环境造成的危害。
-
关键词:
- rGO/MoS2-CN /
- 可见光 /
- 磺胺类抗生素 /
- 降解 /
- 机理
Abstract: Graphitic carbon nitride (MCN) was prepared first using melamine, then a novel rGO/MoS2-CN nanocomposite photocatalyst was synthesized via impregnation method with the assistance of ultrasound. SEM, XRD, UV-vis and BET were used to investigate the structure and properties of the samples. The photocatalytic activities of rGO/MoS2-CN were evaluated by decomposing sulfadiazine (SDZ), sulfamethoxazole (SMX), sulfisoxazole (SSX) and sulfamerazine (SMZ) under visible light irradiation. Compared to MCN, rGO/MoS2-CN composites showed the improved photoactivity with SDZ, SSX, SMX and SMZ degradation percentage of 51.22%, 52.62%, 38.47% and 45.05% higher after 60 min visible light irradiation. The enhancement activity can be assigned to the larger BET specific surface areas, which can promote light trapping and charge separation. Besides, the effects of catalyst dosage, initial concentration of antibiotics, solution pH and the presence of microplastics on the photodegradation process were discussed. The degradation mechanism of four sulfonamides was proposed based on the results of trapping experiments. This study provides an insight into the rGO/MoS2-CN nanocomposite for antibiotics removal.-
Key words:
- rGO/MoS2-CN /
- visible light /
- sulfonamides /
- degradation /
- mechanism
-
表 1 液相色谱梯度洗脱条件
Table 1. Gradient liquid chromatogram conditions
时间 /min
Time乙腈/%
Acetonitrile水-甲酸 (0.1%)/%
H2O-HCOOH (0.1%)0 10.0 90.0 1.0 10.0 90.0 4.5 90.0 10.0 5.5 90.0 10.0 5.6 10.0 90.0 6.5 10.0 90.0 表 2 四种抗生素的相关信息及质谱分析条件
Table 2. The MS/MS parameters and relevant information of four antibiotics
抗生素
Antibiotics定量/定性离子
Quantification/confirmation transition碰撞电压/eV
CE去簇电压/eV
DP分子结构
Molecular structureSulfadiazine 251.2→156.2*
251.2→108.021
3149
60Sulfamethoxazole 254.2→156.1*
254.2→147.122
2289
89Sulfisoxazole 268.2→156.0*
268.2→113.020
2075
89Sulfadimidine 279.2→186.2*
279.2→124.225
31100
57* 定量离子 Quantification transition. 表 3 材料的比表面积,孔体积和平均孔径
Table 3. The SBET, pore volume and average pore diameter of the prepared samples
材料
Sample比表面积/(m2·g-1)
SBET孔体积/(m3·g-1)
Pore volumes平均孔径/nm
Average pore diametersMCN 14.85 0.11 28.92 rGO/MoS2-CN 61.47 0.30 19.53 -
[1] KONG D Y, LIANG B, YUN H, et al. Cathodic degradation of antibiotics: Characterization and pathway analysis [J]. Water Research, 2015, 72: 281-292. doi: 10.1016/j.watres.2015.01.025 [2] YANG Z T, LI L L, YU H Y, et al. Facile synthesis of highly crystalline g-C3N4 nanosheets with remarkable visible light photocatalytic activity for antibiotics removal [J]. Chemosphere, 2021, 271: 129503. doi: 10.1016/j.chemosphere.2020.129503 [3] KIM K S, KAM S K, MOK Y S. Elucidation of the degradation pathways of sulfonamide antibiotics in a dielectric barrier discharge plasma system [J]. Chemical Engineering Journal, 2015, 271: 31-42. doi: 10.1016/j.cej.2015.02.073 [4] PAN Y W, ZHANG Y, ZHOU M H, et al. Enhanced removal of antibiotics from secondary wastewater effluents by novel UV/pre-magnetized Fe0/H2O2 process [J]. Water Research, 2019, 153: 144-159. doi: 10.1016/j.watres.2018.12.063 [5] ZHOU L, LIMBU S M, SHEN M L, et al. Environmental concentrations of antibiotics impair zebrafish gut health [J]. Environmental Pollution, 2018, 235: 245-254. doi: 10.1016/j.envpol.2017.12.073 [6] GAO S S, ZHAO Z W, XU Y P, et al. Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate—A comparative study [J]. Journal of Hazardous Materials, 2014, 274: 258-269. doi: 10.1016/j.jhazmat.2014.04.024 [7] SONG Y L, TIAN J Y, GAO S S, et al. Photodegradation of sulfonamides by g-C3N4 under visible light irradiation: Effectiveness, mechanism and pathways [J]. Applied Catalysis B:Environmental, 2017, 210: 88-96. doi: 10.1016/j.apcatb.2017.03.059 [8] 袁丹, 孙蕾, 万顺刚, 等. 液化黑藻基炭微球水热制备及吸附诺氟沙星的过程与机制 [J]. 环境化学, 2017, 36(6): 1262-1271. doi: 10.7524/j.issn.0254-6108.2017.06.2016101305 YUAN D, SUN L, WAN S G, et al. Preparation of carbon spheres derived from liquefied Hydrilla verticillata by hydrothermal fabrication and their adsorption performance and mechanism for norfloxcin [J]. Environmental Chemistry, 2017, 36(6): 1262-1271(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.06.2016101305
[9] 杨梖, 刘颢, 俞映倞, 等. 高级氧化技术去除水体中抗性基因污染的研究进展 [J]. 环境化学, 2021, 40(4): 1263-1273. doi: 10.7524/j.issn.0254-6108.2019110302 YANG B, LIU H, YU Y L, et al. A review: Elimination of antibiotic resistance genes in water by advanced oxidation progress [J]. Environmental Chemistry, 2021, 40(4): 1263-1273(in Chinese). doi: 10.7524/j.issn.0254-6108.2019110302
[10] 钟雪晴, 朱雅莉, 王玉娇, 等. 含抗生素废水的微藻处理技术及其进展 [J]. 化工进展, 2021, 40(4): 2308-2317. ZHONG X Q, ZHU Y L, WANG Y J, et al. Progress on antibiotic wastewater treatment by microalgae [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2308-2317(in Chinese).
[11] 王震, 任学昌, 郭梅, 等. g-C3N4的硫酸铵-尿素混合法制备及其可见光催化性能 [J]. 环境化学, 2020, 39(10): 2887-2896. doi: 10.7524/j.issn.0254-6108.2019073013 WANG Z, REN X C, GUO M, et al. Preparation of g-C3N4 by ammonium sulfate-urea mixed method and its visible light photocatalytic performance [J]. Environmental Chemistry, 2020, 39(10): 2887-2896(in Chinese). doi: 10.7524/j.issn.0254-6108.2019073013
[12] ZHAO C X, CHEN Z P, XU J S, et al. Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets [J]. Applied Catalysis B:Environmental, 2019, 256: 117867. doi: 10.1016/j.apcatb.2019.117867 [13] PAN C S, XU J, WANG Y J, et al. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly [J]. Advanced Functional Materials, 2012, 22(7): 1518-1524. doi: 10.1002/adfm.201102306 [14] CHAN M H, LIU R S, HSIAO M. Graphitic carbon nitride-based nanocomposites and their biological applications: A review [J]. Nanoscale, 2019, 11(32): 14993-15003. doi: 10.1039/C9NR04568F [15] RHIMI B, WANG C Y, BAHNEMANN D W. Latest progress in g-C3N4 based heterojunctions for hydrogen production via photocatalytic water splitting: A mini review [J]. Journal of Physics:Energy, 2020, 2(4): 042003. doi: 10.1088/2515-7655/abb782 [16] JO W K, LEE J Y, SELVAM N C S. Synthesis of MoS2 nanosheets loaded ZnO-g-C3N4 nanocomposites for enhanced photocatalytic applications [J]. Chemical Engineering Journal, 2016, 289: 306-318. doi: 10.1016/j.cej.2015.12.080 [17] PENG W C, LI X Y. Synthesis of MoS2/g-C3N4 as a solar light-responsive photocatalyst for organic degradation [J]. Catalysis Communications, 2014, 49: 63-67. doi: 10.1016/j.catcom.2014.02.008 [18] JO W K, SELVAM N C S. Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation [J]. Chemical Engineering Journal, 2017, 317: 913-924. doi: 10.1016/j.cej.2017.02.129 [19] ANDRADY A L. Microplastics in the marine environment [J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605. doi: 10.1016/j.marpolbul.2011.05.030 [20] EERKES-MEDRANO D, THOMPSON R C, ALDRIDGE D C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs [J]. Water Research, 2015, 75: 63-82. doi: 10.1016/j.watres.2015.02.012 [21] LIU X, LI C S, ZHANG Y, et al. Simultaneous photodegradation of multi-herbicides by oxidized carbon nitride: Performance and practical application [J]. Applied Catalysis B:Environmental, 2017, 219: 194-199. doi: 10.1016/j.apcatb.2017.07.007 [22] ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport [J]. Environmental Science & Technology, 2018, 52(4): 1704-1724. [23] HUMMERS W S J, OFFEMAN R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society, 1958, 80(6): 1339. doi: 10.1021/ja01539a017 [24] LI X F, ZHANG J, SHEN L H, et al. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine [J]. Applied Physics A, 2009, 94(2): 387-392. doi: 10.1007/s00339-008-4816-4 [25] HONG J D, XIA X Y, WANG Y S, et al. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light [J]. Journal of Materials Chemistry, 2012, 22(30): 15006. doi: 10.1039/c2jm32053c [26] YANG W, WANG Y. Enhanced electron and mass transfer flow-through cell with C3N4-MoS2 supported on three-dimensional graphene photoanode for the removal of antibiotic and antibacterial potencies in ampicillin wastewater [J]. Applied Catalysis B:Environmental, 2021, 282: 119574. doi: 10.1016/j.apcatb.2020.119574 [27] WANG H W, HU Z A, CHANG Y Q, et al. Preparation of reduced graphene oxide/cobalt oxide composites and their enhanced capacitive behaviors by homogeneous incorporation of reduced graphene oxide sheets in cobalt oxide matrix [J]. Materials Chemistry and Physics, 2011, 130(1/2): 672-679.