-
氟喹诺酮类抗生素(fluoroquinolone antibiotics,FQs)作为全球最广泛的抗生素处方药之一,被广泛应用于防治人类及动物疾病。与许多抗生素类似,FQs不能被完全吸收,30%—90%以母体形式或代谢物形式进入各类环境中,对生态系统、食品卫生和人类安全造成威胁[1-3]。有调查发现,再生水中检测到的FQs最高浓度达1190 ng·L−1,地下水中FQs的浓度为未检出—503 ng·L−1 [4]。根据美国食品和药物管理局和欧洲药品管理局,长时间接触低水平的FQs会造成长期(长达数月或数年)的严重的致残性和不可逆的药物反应,从而影响到多个器官和感官,这种情况被称为“氟喹诺酮相关的残疾”(FADS)[5]。因此,寻找有效的处理手段以高效去除FQs成为亟待解决的问题。据报道,目前许多学者已经尝试将传统水处理技术、生物降解、化学氧化法、吸附技术等用于去除抗生素[6]。然而,每种处理方法都有其局限性,如污泥寿命有限,产生有毒中间体[7],且共同的缺点是处理成本高。相比之下,吸附法因其成本低、操作简便、去除率高而成为一种高效的抗生素废水处理方法[8]。
石墨烯(graphene,G)独特的蜂窝状二维晶体结构赋予其特殊的物理特性、化学可调性,如为其碳主链的修饰或功能化提供了无限的可能性[9]。同时,石墨烯因极高的电荷载流子迁移率,已经吸引了众多学者的研究兴趣。目前有研究学者为了解决吸附剂分离回收难的问题而将磁性铁氧体和石墨烯材料复合,其中CoFe2O4因具有较高的饱和磁化强度、矫顽力、良好的机械硬度及化学稳定性等显著特性[10-11]而被广泛使用。有研究表明,在微波场中,石墨烯是良好的介电损耗型材料,而CoFe2O4属于介电损耗型和磁损耗型吸波材料[12],石墨烯和CoFe2O4结合可增加相对介电常数,改善电磁波的阻抗匹配,同时CoFe2O4和石墨烯之间的界面极化和相关弛豫对微波利用率的提高有一定贡献。在此基础上,本文通过接枝阿仑膦酸对材料进行磷酸化改性,磷酸基团特殊的磷氧四面体结构可增加其与石墨烯的接触面积,使磷酸基团负载于石墨烯表面而非边缘,同时也提高了材料表面酸性基团的数量,一定程度上增加了材料对亲水性药物的吸附量。
本文采用微波法合成磷酸化石墨烯@CoFe2O4(PG@CoFe2O4)。相较于传统加热法,微波具有绿色、安全、低耗、耗时短等优点[13],且微波辅助加热过程中大量的微波能直接与反应体系内的溶剂或试剂耦合,避免出现加热不均匀的现象[14]。基于此,本文研究PG@CoFe2O4、pH、共存离子等对FQs吸附的影响,同时结合吸附等温线和吸附动力学参数探讨了PG@CoFe2O4吸附FQs的可能的吸附机理。
微波法制备磷酸化石墨烯@CoFe2O4及其对氟喹诺酮类抗生素的吸附
Synthesis of phosphorylated graphene@CoFe2O4 by microwave method for the adsorption of fluoroquinolone antibiotics
-
摘要: 本研究通过微波法制备了磷酸功能化磁性石墨烯(PG@CoFe2O4)材料,并用其吸附水中6种氟喹诺酮类抗生素(FQs)。采用扫描电镜、透射电镜、X射线衍射、磁滞回线等对复合材料进行系统的表征。系统考察了
${{\rm{Cl}}^ - } $ 、${{{\rm{HCO}}}_3^-} $ 、${{\rm{SO}}_4^{2-}}$ 和腐殖酸(HA)等对FQs吸附的影响。实验结果显示,在pH=4.0的情况下,PG@CoFe2O4投加量20.0 mg,30 min内6种目标物的去除率最高可达到95.5%。低浓度${{\rm{Cl}}^ - } $ 促进吸附而高浓度则抑制吸附,${{{\rm{HCO}}}_3^-} $ 、${{\rm{SO}}_4^{2-}} $ 和HA几乎不影响吸附过程,而${{\rm{Cr}}^{3+} } $ 和${{\rm{Cu}}^{2+} } $ 抑制FQs的吸附。准一级动力学模型和Freundlich模型拟合效果较好,说明吸附过程以化学吸附为主。两种实际水样中FQs的去除率均高达89.6%以上。实验表明,PG@CoFe2O4对含有氨基和卤素基团的污染物存在特异性吸附。Abstract: Phosphorylated magnetic graphene (PG@CoFe2O4) were fabricated by microwave radiation method and used to adsorb six fluoroquinolone antibiotics (FQs) in water. The composites were systematically characterized by X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The effects of${{\rm{Cl}}^ - } $ ,${{{\rm{HCO}}}_3^-} $ ,${{\rm{SO}}_4^{2-}} $ and humic acid (HA) on the adsorption of FQs were systematically investigated. The experimental results showed that the maximum removal efficiency of six targets could recah up to 95.5% within 30 min based on the condition of pH=4.0, PG@CoFe2O4 20.0 mg. Also, low concentrations of${{\rm{Cl}}^ - } $ promoted adsorption while high concentrations inhibited adsorption,${{{\rm{HCO}}}_3^-} $ ,${{\rm{SO}}_4^{2-}} $ and HA hardly affected the adsorption process, while${{\rm{Cr}}^{3+} } $ and${{\rm{Cu}}^{2+} } $ inhibited the adsorption of FQs. Besides, the quasi-first-order kinetic model and Freundlich model fit well, indicating that the adsorption process is dominated by chemisorption. The removal efficiency of FQs in both actual water samples were above 89.6%. The experiments showed that the PG@CoFe2O4 was specific for the adsorption of pollutants containing amino and halogen groups. -
表 1 FQs在PG@CoFe2O4上的吸附动力学参数
Table 1. Kinetic parameters for adsorption of FQs on PG@CoFe2O4
FQs 拟一级动力学模型 Quasi-first-order kinetic model 拟二级动力学模型 Quasi-second-order kinetic model qe/(mg·g−1) k1/min−1 R2 qe/(mg·g−1) k2/(g·(mg·min)−1) R2 CIP 4.0657 1.0325 0.9846 4.3154 0.3307 0.9995 DAN 4.4430 1.4097 0.9948 4.5956 0.5816 0.9998 ENR 4.2407 1.2265 0.9923 4.4163 0.4939 0.9998 LEV 3.7409 1.2737 0.9924 3.9079 0.5058 0.9997 FLE 3.7134 1.1053 0.9885 3.9162 0.4086 0.9996 SPA 4.7926 2.0622 0.9999 4.8054 7.0416 1.0000 表 2 FQs在PG@CoFe2O4上的吸附等温线拟合参数
Table 2. Adsorption isotherm fitting parameters for adsorption of FQs on PG@CoFe2O4
FQs Freundlich Langmuir KF 1/n R2 qm/(mg·g−1) KL R2 CIP 0.2069 0.6029 0.9938 52.7382 0.3381 0.9602 DAN 0.0766 0.7927 0.9795 126.5833 0.1708 0.9756 ENR 0.0637 0.8536 0.9956 213.9142 0.1219 0.9909 LEV 0.0039 1.3270 0.9880 413.9253 0.0002 0.9474 FLE 0.0079 1.1575 0.9965 315.8589 0.0003 0.9865 SPA 0.1192 0.7805 0.9895 141.8438 0.2302 0.9814 表 3 两种实际水样对FQs在PG@CoFe2O4上吸附的影响
Table 3. Influence of two actual water samples on FQs adsorption on PG@CoFe2O4
实际水样
Actual water samples基础数据/(mg·L−1)
Basic data去除率/%
Removal rateCIP DAN ENR LEV FLE SPA 水样1
Water sample 1TOC 12.95 89.62 94.49 93.48 93.85 94.99 95.91 ${\rm{SO}}_4^{2-} $ 46.39 Cl- 46.39 Cr3+ — Cu2+ — 水样2
Water sample 2TOC 10.51 89.83 94.55 93.62 93.85 94.97 96.12 ${\rm{SO}}_4^{2-} $ 50.89 Cl- 35.51 Cr3+ — Cu2+ — -
[1] CHEN J, YING G G, DENG W J. Antibiotic residues in food: Extraction, analysis, and human health concerns [J]. Journal of Agricultural and Food Chemistry, 2019, 67(27): 7569-7586. doi: 10.1021/acs.jafc.9b01334 [2] KOVALAKOVA P, CIZMAS L, MCDONALD T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: A review [J]. Chemosphere, 2020, 251: 126351. doi: 10.1016/j.chemosphere.2020.126351 [3] FELSEN C B, DODDS ASHLEY E S, BARNEY G R, et al. Reducing fluoroquinolone use and Clostridioides difficile infections in community nursing homes through hospital-nursing home collaboration [J]. Journal of the American Medical Directors Association, 2020, 21(1): 55-61. doi: 10.1016/j.jamda.2019.11.010 [4] DING G Y, CHEN G L, LIU Y D, et al. Occurrence and risk assessment of fluoroquinolone antibiotics in reclaimed water and receiving groundwater with different replenishment pathways [J]. Science of the Total Environment, 2020, 738: 139802. doi: 10.1016/j.scitotenv.2020.139802 [5] RICHARDS G A, BRINK A J, FELDMAN C. Rational use of the fluoroquinolones [J]. South African Medical Journal, 2019, 109(6): 378-381. doi: 10.7196/SAMJ.2019.v109i6.14002 [6] YANG W J, FULIDONG F, MA J W, et al. Research progress of antibiotic pollution and treatment technologies in China [J]. E3S Web of Conferences, 2020, 194: 04004. doi: 10.1051/e3sconf/202019404004 [7] TZENG T W, LIU Y T, DENG Y, et al. Removal of sulfamethazine antibiotics using cow manure-based carbon adsorbents [J]. International Journal of Environmental Science and Technology, 2016, 13(3): 973-984. doi: 10.1007/s13762-015-0929-4 [8] LUO J W, LI X, GE C J, et al. Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems [J]. Bioresource Technology, 2018, 263: 385-392. doi: 10.1016/j.biortech.2018.05.022 [9] ZHU Y W, MURALI S, CAI W W, et al. Graphene and graphene oxide: Synthesis, properties, and applications [J]. Advanced Materials, 2010, 22(35): 3906-3924. doi: 10.1002/adma.201001068 [10] EL-SHOBAKY G A, TURKY A M, MOSTAFA N Y, et al. Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation [J]. Journal of Alloys and Compounds, 2010, 493(1/2): 415-422. [11] ATI A, OTHAMAN Z, SAMAVATI A. Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles [J]. Journal of Molecular Structure, 2013, 1052: 177-182. doi: 10.1016/j.molstruc.2013.08.040 [12] 匡嘉敏. CoFe2O4/rGO复合纳米材料的制备及其性能研究[D]. 吉林: 东北电力大学, 2017. KUANG J M. Study on the preparation and properties of cobalt ferrite/reduced graphene oxide nanocomposites[D]. Jilin, China: Northeast Dianli University, 2017(in Chinese).
[13] MENG L Y, WANG B, MA M G, et al. The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials [J]. Materials Today Chemistry, 2016, 1/2: 63-83. doi: 10.1016/j.mtchem.2016.11.003 [14] RATHI A K, GAWANDE M B, ZBORIL R, et al. Microwave-assisted synthesis – Catalytic applications in aqueous media [J]. Coordination Chemistry Reviews, 2015, 291: 68-94. doi: 10.1016/j.ccr.2015.01.011 [15] 张志宾, 张昊岩, 邱燕芳, 等. 磷酸化石墨烯吸附铀的性能研究 [J]. 中国科学:化学, 2019, 49(1): 195-206. doi: 10.1360/N032018-00153 ZHANG Z B, ZHANG H Y, QIU Y F, et al. Adsorption of uranium by phosphorylated graphene oxide [J]. Scientia Sinica (Chimica), 2019, 49(1): 195-206(in Chinese). doi: 10.1360/N032018-00153
[16] LU X F, YANG L, BIAN X J, et al. Rapid, microwave-assisted, and one-pot synthesis of magnetic palladium-CoFe2O4 -graphene composite nanosheets and their applications as recyclable catalysts [J]. Particle & Particle Systems Characterization, 2014, 31(2): 245-251. [17] 戴江栋. 多孔碳基材料的可控制备及其高效分离抗生素行为和机理研究[D]. 镇江: 江苏大学, 2016. DAI J D. Controlled preparation of porous carbon-based materials and study on behavior and mechanism of high-efficiency antibiotic separation[D]. Zhenjiang, China: Jiangsu University, 2016(in Chinese).
[18] BULUT E, OZACAR M, SENGIL I A. Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite [J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 613-622. [19] CHOWDHURY S, SIKDER J, MANDAL T, et al. Comprehensive analysis on sorptive uptake of enrofloxacin by activated carbon derived from industrial paper sludge [J]. The Science of the Total Environment, 2019, 665: 438-452. doi: 10.1016/j.scitotenv.2019.02.081 [20] ZHAO J, LIANG G W, ZHANG X L, et al. Coating magnetic biochar with humic acid for high efficient removal of fluoroquinolone antibiotics in water [J]. The Science of the Total Environment, 2019, 688: 1205-1215. doi: 10.1016/j.scitotenv.2019.06.287 [21] TANG L, YU J F, PANG Y, et al. Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal [J]. Chemical Engineering Journal, 2018, 336: 160-169. doi: 10.1016/j.cej.2017.11.048 [22] 周俊, 李燕, 管益东, 等. 杨木生物炭对水溶液中3种磺胺类抗生素的混合吸附 [J]. 环境工程, 2021, 39(3): 1-6,13. doi: 10.13205/j.hjgc.202103001 ZHOU J, LI Y, GUAN Y D, et al. Mixed sorption of three aqueous sulfonamides onto the biochar derived from poplar wood chips [J]. Environmental Engineering, 2021, 39(3): 1-6,13(in Chinese). doi: 10.13205/j.hjgc.202103001
[23] HUANG P, GE C J, FENG D, et al. Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar [J]. Science of the Total Environment, 2018, 616/617: 1384-1391. doi: 10.1016/j.scitotenv.2017.10.177 [24] AKSU Z, DÖNMEZ G. Binary biosorption of cadmium(II) and nickel(II) onto dried Chlorella vulgaris: Co-ion effect on mono-component isotherm parameters [J]. Process Biochemistry, 2006, 41(4): 860-868. doi: 10.1016/j.procbio.2005.10.025 [25] 王琦, 胡碧波, 阳春, 等. 烷基功能化磁性介孔硅的制备及其对氟喹诺酮类抗生素的吸附 [J]. 环境工程学报, 2020, 14(9): 2450-2462. doi: 10.12030/j.cjee.202001019 WANG Q, HU B B, YANG C, et al. Fabrication of alkyl-functionalized magnetic mesoporous silica and its adsorption of fluoroquinolone antibiotics [J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2450-2462(in Chinese). doi: 10.12030/j.cjee.202001019
[26] PENG X M, HU F P, ZHANG T, et al. Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study [J]. Bioresource Technology, 2018, 249: 924-934. doi: 10.1016/j.biortech.2017.10.095 [27] ZHAO J, WANG Z Y, WHITE J C, et al. Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation [J]. Environmental Science & Technology, 2014, 48(17): 9995-10009. [28] GU X Y, TAN Y Y, TONG F, et al. Surface complexation modeling of coadsorption of antibiotic ciprofloxacin and Cu(Ⅱ) and onto goethite surfaces [J]. Chemical Engineering Journal, 2015, 269: 113-120. doi: 10.1016/j.cej.2014.12.114 [29] PEI Z G, SHAN X Q, KONG J J, et al. Coadsorption of ciprofloxacin and Cu(II) on montmorillonite and kaolinite as affected by solution pH [J]. Environmental Science & Technology, 2010, 44(3): 915-920. [30] LI X Z, BI E P. The impacts of Cu(II) complexation on gatifloxacin adsorption onto goethite and hematite [J]. Journal of Environmental Quality, 2020, 49(1): 50-60. doi: 10.1002/jeq2.20016 [31] HUANG D F, XU Y B, YU X Q, et al. Effect of cadmium on the sorption of tylosin by polystyrene microplastics [J]. Ecotoxicology and Environmental Safety, 2021, 207: 111255. doi: 10.1016/j.ecoenv.2020.111255 [32] MA J, XIONG Y C, DAI X H, et al. Coadsorption behavior and mechanism of ciprofloxacin and Cu(Ⅱ) on graphene hydrogel wetted surface [J]. Chemical Engineering Journal, 2020, 380: 122387. doi: 10.1016/j.cej.2019.122387 [33] ZHANG H C, HUANG C H. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite [J]. Chemosphere, 2007, 66(8): 1502-1512. doi: 10.1016/j.chemosphere.2006.08.024 [34] 童非, 顾雪元. 重金属离子与典型离子型有机污染物的络合效应研究 [J]. 中国环境科学, 2014, 34(7): 1776-1784. TONG F, GU X Y. Study on complexation effect between heavy metal cations and typical ionic organic pollutants [J]. China Environmental Science, 2014, 34(7): 1776-1784(in Chinese).